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CHAPTER

ONE

INTRODUCTION

For half a century, the three-dimensional structures of proteins were studied indi-

rectly. Details of the protein activity mechanism and its relationship to structure

could only be inferred from the properties of the protein. In 1958 a landmark paper1

on the structure of myoglobin by John Kendrew and co-workers showed the first 3D

structure of a protein. Its resolution was too low to show the atomic details of what

seemed to be a multiply bent sausage, and the crude map gave only a hint of the

revolution to come. The subsequent low-resolution structure of hemoglobin, which

resembled four myoglobin molecules stacked together, was reported by Max Perutz

and colleagues in 19602 and gave the first intimation of protein families.

Solving the structures of proteins at high resolution uncovered a new problem

and initiated a novel field of research: that of protein folding. The “protein folding

problem”, that is the question of how a protein’s amino acid sequence dictates its

three-dimensional atomic structure, is regarded as three different problems: (a) the

folding code: the thermodynamic question of what balance of interatomic forces

dictates the structure of the protein, for a given amino acid sequence; (b) protein

structure prediction: the computational problem of how to predict a protein’s native

structure from its amino acid sequence; and (c) the folding process: the kinetics

question of what routes or pathways some proteins use to fold so quickly.

A major milestone in protein science was the thermodynamic hypothesis of Chris-

tian Anfinsen and colleagues.3,4 From his now-famous experiments on ribonuclease,

Anfinsen postulated that the native structure of a protein is the thermodynamically

stable structure; it depends only on the amino acid sequence and on the conditions

of solution, and not on the kinetic folding route.

Cyrus Levinthal and others, such as Michael Levitt and Oleg Ptitsyn, wanted to

predict tertiary structures by predicting their folding pathways. Levinthal famously

pointed out that it seemed impossible that an unfolded protein could fold sponta-

neously by a random process on a biological time scale. Mechanisms were proposed

that could overcome the “Levinthal paradox” by simplifying the folding process and

1



2 Chapter 1

breaking it down into subprocesses that could occur stepwise.

The search for folding mechanisms has driven major advances in experimental

protein science. These include Fluorescence Resonance Energy Transfer (FRET),

Small-angle X-ray Scattering (SAXS), circular dichroism and real-time NMR;5,6

mutational methods that give quantities called φ-values7–9 (now also used for ion-

channel kinetics and other rate processes10) or ψ-values,11 which can identify those

residues most important for folding speed; hydrogen exchange methods that give

monomer-level information about folding events;12,13 and the extensive exploration

of protein model systems, including cytochrome c, CI2, barnase, apomyoglobin, the

src, α-spectrin, and fyn SH3 domains, proteins L and G, WW domains, trpzip, and

trp cage.14 In addition, peptide model experimental test systems provide insights

into the fast early-folding events.15–17 Among the other experimental techniques,

fast laser temperature-jump methods18 combined to time-resolved infrared (TRIR)

spectroscopy19,20 have been recently developed and widely used to follow unfolding

or refolding transitions in peptides. This method, in spite of its good time resolution,

has the limitation that the band shapes for different secondary structures may be

similar to one another and highly congested,21 thus leading to spectra which are

difficult to interpret. Furthermore, single-molecule methods are beginning to explore

the conformational heterogeneity of folding.22–25

However, modern mechanistic studies have to achieve spatial atomic-resolution

information and so it was necessary to develop methods that could analyze fold-

ing at the level of individual residues and atoms. Experimental X-ray or NMR

structures are typically the starting point for studies of the relationship between

protein structure at the atomic resolution and function. Such structures, however,

do not generally describe the dynamical properties that may be as important to pro-

tein function and regulation as the detailed positioning of backbone and side-chain

atoms.

Molecular Dynamics (MD) simulations provide a unique ability to describe di-

rectly the dynamical aspects of protein structure by tracking the time-dependent

positions of all atoms in the system. The first attempts at simulation were severely

limited by computational power and by approximations in energy functions, which

are still imperfect today. Initially disparaged, these methods are now indispensable

for understanding the mechanisms of folding of proteins as well as their intricate

details because atomistic simulation, benchmarked by experimentation, is the only

way of analyzing a complete folding pathway and calculating the folding energet-

ics. The first all-atom MD simulation of a small protein in vacuo, performed more

than three decades ago, covered less than 10 ps.26 Over the years, improvements

in molecular dynamics algorithms, software, and computer hardware have allowed

MD simulations to access longer timescales. A decade ago, Duan and Kollman per-

formed the first microsecond-length all-atom MD simulation of a small protein.27

This achievement required a Herculean effort, involving four months of supercom-
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puter time despite the small size of the simulated system (slightly less than 10000

atoms) and the use of many approximations. In the last few years, the generation

of accurate microsecond-timescale simulations of systems with tens of thousands of

atoms has become more practical, and a number of studies with individual trajec-

tories longer than one microsecond have been reported.28–35

Despite the huge advances in computational power, it is still not possible, in

general, to predict the structures of proteins de novo. The pathway of protein un-

folding can be calculated by molecular dynamics simulation36 from the known 3D

structure. Folding simulations are more difficult, but have been aided by the dis-

covery of ultra-fast-folding proteins, which fold a million times faster than those

that prompted the Levinthal paradox 40 years ago: these proteins fold within a few

microseconds on the time scale that is accessible to full atomistic simulation. Such

pathways are benchmarked by experimentation, with φ-value analysis of transition

states and NMR spectroscopic structural determination of intermediates and anal-

ysis of denatured states. Simulations using φ values as constraints can also be used

to construct transition states.37 The pathway of folding and unfolding of the En-

grailed homeodomain from Drosophila melanogaster, for example, has been solved at

atomic resolution using this whole gamut of techniques.38,39 In addition, structurally

homologous proteins of vastly different amino-acid sequence can be identified from

databases to study the change of folding mechanism with structure and derive more

general principles about the mechanism.40 Several protein folding pathways are now

known in detail at atomic resolution41 thanks to the application of a combination

of technologies, all of which initially met with some skepticism.

A key issue has been whether semiempirical atomic physical force fields are good

enough to fold up a protein in a computer. Physics-based methods are currently

limited by large computational requirements owing to the formidable conformational

search problem and, to a lesser extent, by weaknesses in force fields. Nevertheless,

there have been notable successes in the past decade enabled by the development of

large supercomputer resources and distributed computing systems. The first mile-

stone was a supercomputer simulation by Duan and Kollman in 1998 of the folding

of the 36-residue villin headpiece in explicit solvent, for nearly a microsecond of

computed time, reaching a collapsed state 4.5 Å from the NMR structure.27 In addi-

tion, three groups have folded the 20-residue Trp-cage peptide to ∼ 1 Å.42–44 More

recently, Lei and Duan45 folded the albumin-binding domain, a 47-residue, three-

helix bundle, to 2.0 Å. Physics-based approaches are also folding small helices and

β-hairpin peptides of up to ∼ 20 residues that have stable secondary structures.46–50

Molecular dynamics (MD) simulation is nowadays a well-established method for

modeling the dynamics of proteins, the characterization of which provides insight

into the workings of biomolecular systems at spatial and temporal scales that are

difficult to access experimentally. Moreover, a recent confluence of progress in both

simulation and laboratory techniques has presented more opportunities to compare
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computational results to experimental data gathered on similar timescales. These

developments allow not only for a better understanding of the biomolecular systems

under study, but also for systematic validation of the models and methods underlying

MD simulations,51 promising to increase the utility of MD simulations in the study

of proteins and other biomolecular systems.

Thanks to the combined use of experimental and theoretical methods, the knowl-

edge of the folding process has considerably evolved during the last decades. Prior

to the mid-1980s, the protein folding code was seen a sum of many different small

interactions, such as hydrogen bonds, ion pairs, van der Waals attractions, and

water-mediated hydrophobic interactions. A key idea was that the primary se-

quence encoded secondary structures, which then encoded tertiary structures.52

However, through statistical mechanical modeling, a different view emerged in the

1980s, namely, that there is a dominant component to the folding code, that it is

the hydrophobic interaction, that the folding code is distributed both locally and

non-locally in the sequence, and that a protein’s secondary structure is as much a

consequence of the tertiary structure as a cause of it.53,54 There is considerable evi-

dence that hydrophobic interactions must play a major role in protein folding. (a)

Proteins have hydrophobic cores, implying nonpolar amino acids are driven to be

sequestered from water. (b) Model compound studies show 1-2 kcal/mol for trans-

ferring a hydrophobic side chain from water into oil-like media.55 (c) Proteins are

readily denatured in nonpolar solvents. (d) Sequences that are jumbled and retain

only their correct hydrophobic and polar patterning fold to their expected native

states,56–59 in the absence of efforts to design packing, charges, or hydrogen bond-

ing. In this scenario, the driving force of folding is the minimization of the nonpolar

surface that is exposed to water, while simultaneously providing hydrogen-bonding

interactions for buried backbone groups, usually in the form of secondary structures

such as α-helices, β-sheets, and reverse turns.60

Reverse turns constitute one of the most common structural features in globular

proteins.61 Despite their prevalence, they have always been more challenging to

categorize than α-helices or β-sheets because of their nonperiodic nature and the

heterogeneity of their structures. They are broadly defined as those regions of the

polypeptide where a change of chain direction occurs.62 Because chain reversals allow

a protein to fold onto itself, forming a compact globular state, they may play a key

role in protein folding. Turns have been proposed to be important in folding also

because they are capable of initiating productive structure formation without a large

loss in chain entropy since the interactions involved in turn formation are largely

local.63–67 This view is consistent with a hierarchical folding model in which certain

turns containing residues with high turn propensities (such as glycine and aspartic

acid) serve as active nucleation sites for structure formation, originating from the

corner residues and propagating toward the flanking -strands. The turn as the site

for chain reversal becomes a nucleation point that facilitates cooperative formation
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of neighboring interactions

Reverse turns comprise the widely distributed β-turns, as well as the less preva-

lent γ-turns and α-turns, and may include well-defined loops, such as ω-loops. The

short, self-contained nature of reverse turns has led to their extensive study us-

ing peptide models. In an approach pioneered by the Blout laboratory, cyclic

peptides have served as constrained models for reverse turns.68 Numerous crystal

structures,69–73 as well as NMR studies of cyclic peptides in solution,74–78,78–81 con-

firmed the original characterization of β-turn types and provided illustrations of

γ-turns and α-turns. The similarity of these local structures in cyclic peptides to

those observed in proteins gave early credence to the importance of local energetic

contributions to turn conformations. Because of the conformationally constrained

nature of cyclic peptides, they have also been useful in defining spectroscopic signa-

tures of turns.73,74,82,83

Over the past two decades, considerable research has been focused on the next

stage in a hierarchical build-up of structure from a β-turn: β-hairpins. These struc-

tural features are stabilized by virtue of turn propensities of amino acid residues as

well cross-strand interactions between the sequences flanking the turns. Favorable

energetic contributions to β-hairpin stability have been demonstrated to include

cross-strand aromatic-aromatic, aromatic-polar, hydrogen-bonding, hydrophobic,

and salt-bridge interactions,84–88 in combination with loop conformational propen-

sity and entropy terms dependent on loop length.87,89

In this thesis, three cyclic peptides are studied, all of them having a biological

relevance, as they show a broad spectrum antibiotic activity. Moreover, they all

show a hemolytic activity which limits their usage as drugs: it is thus of fundamental

importance to clarify the relationship between their structure and activity in order

to design novel peptides with the same antibiotic activity but without any hemolytic

effect.

Two of the three peptides studied here are β-hairpins and all show hydrogen-

bonded turns. These peptides, for which experimental data are available, are used

here as model systems to analyze the structure and the dynamics of formation

of turns and in particular of β-hairpins. The folding/unfolding transitions were

observed and some experimental data were excellently reproduced, thus validating

the models used but also helping the understanding of the experimental data.

In chapter 4 a complete thermodynamic and kinetic characterization has been

achieved for the folding/unfolding transition of a small, fast-folding cyclic β-hairpin

peptide, a synthetic analog of the well-known antibiotic Gramicidin S. In chapters

5 and 6 a new theoretical methodology to reconstruct experimental infrared spectra

is presented and applied to two synthetic analogs of Gramicidin S, shedding light

on the interpretation of vibrational spectra. In chapter 7 a combined NMR and

MD study is presented of the cyclic peptide Syringomycin E, in order to clarify its

structure in the membrane environment.
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CHAPTER

TWO

METHODS FOR MOLECULAR SIMULATIONS

In this chapter some basic concepts and methodologies of molecular simulations

are introduced with a particular attention devoted to the methods relevant to this

thesis. Several books on these subjects can be found with a deeper insight into

these problems.90–92 As the method used in the present thesis to study the properties

of macromolecules in solution is classical Molecular Dynamics (MD), a very brief

description of its basic principles is presented in section 2.1. In sections 2.2 and

2.3 some methods to obtain relevant physical properties of the studied system are

briefly presented.

The classical approach has the disadvantage to not include electrons explicitly in

the calculations and hence molecular properties strictly related to electronic degrees

of freedom cannot be investigated. For these purposes, quantum mechanical tech-

niques should be used in order to properly evaluate the internuclear forces, but at a

very high computational cost. A compromise can be reached by using first-principle

methods for a small reactive region of the whole system and force field methods for

the remaining part. This approach allows to study electronic properties of systems,

fully including their dynamics. One of these hybrid methods, the Perturbed Matrix

Method (PMM), developed in our laboratories, will be introduced in section 2.4

2.1 Classical Molecular Dynamics

Aim of computer simulations of molecular systems is to compute macroscopic be-

havior from microscopic interactions. A model of the real world is constructed, both

measurable and unmeasurable properties are computed and the former are com-

pared with experimentally determined properties. If the model used is validated by

the comparison, it could even be used to predict unknown or unmeasurable quanti-

ties. A theoretical treatment of the motions and interactions of molecules should be

founded, rigorously speaking, on quantum mechanics principles, due to the micro-

scopic nature of these objects. Unfortunately, first-principle approaches are often

7
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unpractical because they require very large computational facilities and they are

definitely prohibitive for systems containing thousands of atoms. Hence, a certain

level of approximation becomes necessary and it should be chosen in such a way that

those degrees of freedom that are essential to a proper evaluation of the quantity or

property of interest can be sufficiently sampled. When excluding chemical reactions,

low temperatures or details of hydrogen atoms motion, it is relatively safe to assume

that the system is governed by the laws of classical mechanics.

In classical MD, a trajectory (configurations as a function of time) of the molecu-

lar system is generated by simultaneous integration of Newton’s equations of motions

for all atoms in the system:

d2ri
dt2

= m−1
i Fi (2.1)

Fi = −∂V (r1, . . . , rN)

∂ri
(2.2)

The force acting on atom i is denoted by Fi, the mass by mi and time is denoted

by t. MD simulations require calculation of the gradient of the potential energy

V (r1, . . . , rN), which therefore must be a differentiable function of the atomic co-

ordinates ri. This potential energy function, or force field, is called an effective

interaction function since the average effect of the omitted (electronic) degrees of

freedom has been incorporated in the interaction between the (atomic) degrees of

freedom explicitly present in the model.

The choice of molecular model and force field is essential to a proper prediction

of the properties of a system. Therefore, it is of great importance to be aware of

the fundamental assumptions, simplifications and approximations that are implicit

in the various types of models used in the literature.

2.1.1 Force Field Models

A huge variety of force fields is currently used in the molecular dynamics community,

sometimes differing for minor changes, e.g. CHARMM,93 AMBER,94 GROMOS.95

A typical molecular force field, or effective potential, for a system of N atoms with

masses mi (i = 1, 2, . . . , N) and Cartesian position vectors ri has the following form:

V (r1, r2, . . . , rN) =
∑

bonds

1

2
Kb(b− beq)

2 +
∑

angles

1

2
Kθ(θ − θeq)

2

+
∑

dihedrals

Kφ[1 + cos(nφ− δ)] +
∑

imp.dihedrals

1

2
Kξ(ξ − ξeq)

2

+
∑
pairs

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
∑
pairs

qiqj
4πε0rij

(2.3)
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The first term represents the covalent bond stretching interaction between two

atoms linked by a harmonic potential where beq is the minimum energy bond length

and Kb is the force constant changing with the particular bond type. The second

term is a three-body interaction corresponding to the valence angle, θ, deformation

expressed as a harmonic potential where θeq is the equilibrium valence angle and

Kθ the force constant. The third and fourth terms are used for the (four-body)

dihedral angle interactions: a harmonic term for improper dihedral angles, ξ, that

are not allowed to make transitions, i.e. to keep the aromatic rings planar, and a

sinusoidal term for all the other dihedral angles, φ. The last two terms are sums over

the pairs of non-bonded atoms and represent the effective non-bonded interactions

expressed in terms of van der Waals and Coulombic interactions between atoms i

and j at a distance rij. The parameters εij and σij are the typical constants defining

the Lennard-Jones potential, qi and qj are the atom charges and ε0 is the dielectric

constant in vacuum.

The parameters used in the force field (Eq. 2.3) can be determined in different

ways. Generally two main approaches are followed. The first one is to fit them

with results obtained from ab initio calculations on small molecular clusters. The

alternative way is to fit the force field parameters to experimental data, like crystal

structures, energy and lattice dynamics, infrared or X-ray data on small molecules,

liquid properties like density and enthalpy of vaporization, free energy of solvation,

nuclear magnetic resonance data, etc. Whatever method is used, the resulting model

is far to be universal. It is worth to note that every force field is usually well suited for

specific general conditions, i.e. particular thermodynamic conditions (temperature,

density, pressure, etc.) and also boundary conditions. Moreover, they are optimized

for specific classes of molecules, such as inorganic molecules, organic molecules,

biomolecules (DNA, proteins, lipids), etc.

2.1.2 Integration of Motion Equations

Newton’s equations of motion, a second-order differential equation, can be written

as two first-order differential equations for the particle positions ri(t) and velocities

vi(t) respectively:

dvi(t)

dt
= m−1

i Fi (2.4)

dri(t)

dt
= vi(t) (2.5)

A standard method for solution of the previous ordinary differential equations is

the finite difference approach. The general idea is the following. Given the molec-

ular positions, velocities and forces at time t, we attempt to obtain the positions,

velocities and forces at a later time t + δt, to a sufficient degree of accuracy. The
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equations are solved on a step-by-step basis; the choice of the time interval δt will

depend somewhat on the method of solution, but δt will be significantly smaller

than the typical time taken for a molecule to travel its own length.

Many different algorithms fall into the general finite difference pattern, like

Verlet, and its computational efficient variant leap-frog,96,97 Beeman98 or the Gear

predictor-corrector.99

2.1.3 Long-range Interactions

One of the most challenging problems in molecular dynamics simulations is the

treatment of long-range interactions, which usually correspond to the electrostatic

forces between molecules. To reduce the computational cost, the size of the simu-

lated system is generally small and, as a consequence, a correct evaluation of the

intermolecular interactions is not trivial. Many different methods were developed to

reproduce reasonably the thermodynamics of bulk liquids. Here we consider two of

the most used techniques: the use of a cut-off radius and the Ewald sum.

The cut-off method is based on the truncation of the forces when the distance

between the interacting particles is greater than a specified value, called the cut-off

radius, rc. In this way, the only interactions felt by the i-th particle are those due

to the particles contained in a sphere of radius rc and centered at ri. This method

is doable only if the intermolecular forces decay rapidly with the distance. In fact,

when the forces are negligible at a distance ≥ rc, the main structural and dynamical

properties are correctly reproduced. Otherwise deviations from the correct bulk

behavior are expected.

Another methodology in MD simulations is the use of a periodic lattice method

in which all the interactions between the molecular system in the central cubic cell

and its virtual replica are included. The Coulomb interaction energy in a periodic

system of N charged particles is obtained by a sum over all pairs of which one atom

lies in the central box and the other is its periodic image:

E =
1

8πε0

∞∑

|n|=0

( N∑
i=1

N∑
j=1

qiqj
|rij + n|

)
(2.6)

The sum over n is a summation over all simple cubic lattice points n = (nxL,-

nyL, nzL), with L the side length of the cubic cell and nx, ny, nz integers. The case

i = j is omitted for n = 0. It was shown that the sum over n for such kind of

potential (r−1) is only conditionally convergent, then its limit may vary or even

diverge if the order of terms in the sum is changed. A solution to this problem

was developed following a physical idea:90 each point charge is surrounded by a

charge distribution of equal magnitude and opposite sign, which spreads out radially

from the charge, ρG(r). This distribution has the effect to screen the interactions

between the neighboring point charges and hence the interaction energy becomes
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short-ranged. Commonly, the screening charges have a Gaussian form. The total

charge distribution is given by:

ρi(r) = ρqi (r) + ρGi (r) (2.7)

where ρqi (r) is the distribution of the point charge of the i-th particle and ρGi (r)

is the corresponding Gaussian distribution.

First, the interaction energy due to the distribution 2.7 is calculated in the real

space, then, in order to recover the original charge distribution, a canceling function

is added in the reciprocal space, which is equal to −ρGi (r), realized by means of a

Fourier transform. Hence the final form of the total interaction energy is given by:

E =
1

8πε0

N∑
i=1

N∑
j=1

( ∞∑

|n|=0

qiqjerfc(α|rij + n|)
|rij + n|

+
1

πL3

∑

k 6=0

4π2qiqj
k2

exp(−k2/4α2) cos(k · rij)
)

− α

4π3/2ε0

N∑
i=1

q2
i +

|∑N
i=1 qiri|2

2ε0L3(2ε′ + 1)
(2.8)

Here erfc(x) is the complementary error function, which falls to zero with in-

creasing its argument. Thus, if the parameter α is large enough, the sum over n in

the first term reduces to the only term n = 0. The second term is a sum over the

reciprocal vectors k = 2πn/L. Again, if α is large, a lot of terms in the k-space sum

are needed to get a convergence of the energy. The last two terms are, respectively,

a correction function, due to the fact that a self-interaction of the canceling dis-

tribution is included in the recipe, and the energy contribution of the depolarizing

field, which is compensated by the effect of the external dielectrics. Note that in the

Ewald sum the virtual cubic cells are ordered as concentric spherical layers starting

from the central box. Clearly the infinite sum is truncated at a certain point and

the resulting spherical system is immersed in a continuum dielectrics with dielectric

constant ε′. The last term in equation 2.8 is the sum of the contributions of the

depolarizing field and the reaction field due to the external dielectrics. If the sphere

is embedded in a medium with an infinite dielectric constant, this term vanishes

because of a perfect compensation of the two effects.

Other periodic lattice methods are often used in computer simulations for their

computational stability and efficiency. These methods, like the Particle Mesh Ewald

(PME)100 method, can be considered of the same family of the method shown here.
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2.1.4 The Boundary Conditions

An important characteristic of the molecular dynamics simulations is the way in

which the boundaries are treated. Due to computational limits, a typical simulated

system contains 104 − 105 atoms, and then is quite small compared to macroscopic

matter. This means that, if the molecules are arranged in a cubic box, a relatively

great part of them will lie on the surface and will experience quite different forces

from molecules in the bulk. The consequence of the finite size of the system is

that the boundary conditions may affect seriously the results of the simulations,

especially when the system of interest is a homogeneous liquid or a solution. Usually,

periodic boundary conditions (PBC)90 are adopted to reduce the surface effects. This

technique consists on simulating the system in a central cubic box surrounded by

an infinite number of copies of itself. During the simulation, the molecules in the

original box and their periodic images move exactly in the same way. Hence, when

a molecule leaves the central box one of its images will enter through the opposite

side. As a result, there are no physical boundaries neither surface molecules. Note

that other shapes of the box can be used as the truncated octahedron or the rhombic

dodecahedron.

2.1.5 Enhanced efficiency methods

A clear gap exists between time scales that can be obtained by computer simulation

techniques applied to biological macromolecules and the times required for most

biological processes. Therefore, several techniques have been developed to increase

the time scales of MD simulations.

When Newton’s equations of motion are integrated, the limiting factor that de-

termines the time step that can be taken is the highest frequency that occurs in the

system. In solvated biological macromolecules, the vibrations of bonds involving

hydrogen atoms form the highest frequency vibrations. The bond stretching fre-

quency of an O-H bond is typically about 104 Hz, so the average period would be

of the order of 10 fs.101 This limits the time-step to be taken in MD simulations to

about 0.5 fs (a rule of thumb exists that states that for a reasonable sampling of a

periodic function, samples should be taken at least twenty times per period). The

introduction of a method to constrain these bonds (or, in fact, all covalent bonds)

allowed to increase the time step to a typical value of 2 fs. The most widely used con-

straint algorithm for large molecules is SHAKE 102 and, more recently, LINCS 103.

Since these bond vibrations are practically uncoupled from all other vibrations in

the system, constraining them does not notably alter the rest of the dynamics of

the system. This is not true, however, for bond-angle fluctuations, which form the

second-highest frequency vibrations. Constraining bond-angles has a severe effect

on many other fluctuations in the system, including even global, collective fluctu-

ations, limiting the use of methods that use bond-angle constraints to only a few
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specific cases.101

The notion that a number of discrete classes of frequencies of fluctuations in

simulations of biomolecules can be distinguished, however, can be utilized to design

more efficient algorithms. Forces that fluctuate rapidly need to be recalculated at a

higher frequency than those that fluctuate on a much longer time scale. Although

not trivial to implement, a number of successful applications of so-called multiple

time-step algorithms have been reported in the literature (for a review, see Schlick et

al.101). Speed up factors of 4-5 have been claimed for such methods with respect to

unconstrained dynamics, making them only slightly more efficient than simulations

with covalent bond-length constraints.

Dummy atoms

For the remaining degrees of freedom, the shortest oscillation period as measured

from a simulation is that of bond-angle vibrations involving hydrogen atoms. The

obvious solution would be to constrain all bond angles involving hydrogen atoms

in all molecules, in addition to all bond lengths. With the constraint algorithms

this can already be done, but SHAKE tends to break down with time steps beyond

2 fs, whilst LINCS cannot handle the highly connected constraints that arise from

constraining both bonds and angles. Thus, the most elegant solution would be to

eliminate these high-frequency degrees of freedom from the system altogether.

For hydrogen atoms in large molecules (e.g. proteins), this can be implemented

in a rather straightforward manner. Instead of connecting a hydrogen atom with

bonds, angles, and dihedrals to the molecule, the position of the hydrogen will be

generated every MD step based on the position of three nearby heavy atoms. All

forces acting on the hydrogen atom will be redistributed over these heavy atoms and,

to keep the total mass in the system constant, the mass of each hydrogen atom that

is treated in this way should be added to the bonded heavy atom. A particle treated

in this manner is referred to as a dummy atom104. Introducing dummy atoms, a net

gain in simulation efficiency of a factor of 3 to 3.5 can be achieved.

Roto-translational constraint

Another approach to reach equilibrium conformational properties at an enhanced

rate is by constraining the rotational and translational motions in polyatomic sys-

tems.105 This method is generally used to study biomolecules in solution. In such

a system, the internal motions of the solute are often more interesting than its

rotational and translational motions. This algorithm is implemented in a leap-frog

integration scheme coupled with SHAKE. The use of the roto-translational constraint

presents several advantages, like a reduction of the molecular relaxation time and

the possibility of reducing the amount of solvent molecules to be used.106
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2.1.6 Constant Temperature/Constant Pressure Molecular

Dynamics

When Newton’s equations of motion are integrated the total energy is conserved

(adiabatic system) and if the volume is held constant the simulation will generate

a microcanonical ensemble (NVE). However, this is not always very convenient.

Other statistical ensembles, such as canonical (NVT) and isothermal-isobaric (NPT)

ensembles, better represent the conditions under which experiments are performed

than the standard microcanonical ensemble. Moreover, with the automatic control

of temperature and/or pressure, slow temperature drifts that are an unavoidable

result of force truncation errors are corrected and also rapid transitions to new

desired conditions of temperature and pressure are more easily accomplished.

Several methods for performing MD at constant temperature have been pro-

posed, ranging from ad hoc rescaling of atomic velocities in order to adjust the

temperature, to consistent formulation in terms of modified equations of motion

that force the dynamics to follow the desired temperature constraint. The three

most utilized methods are described next.

The thermal bath coupling method, or Berendsen bath,107 has the great advantage

of being simple. This algorithm simulates a coupling of the system with an external

thermal bath at the temperature T0 and the interaction between this bath and the

system is modulated by a time constant τ . The coupling is obtained multiplying for

a constant λ the velocities. The temperature T is scaled to the reference temperature

T0 via an exponential law.

The isothermal , or isogaussian, method108 allows to fix the temperature exactly

constant. Using this algorithm, a variable is added to the motion equations, acting

as a friction coefficient changing in time in order to keep the kinetic energy constant.

This method correctly generates the configurational properties of the canonical en-

semble, while the momenta distribution is not canonical.105

Nosé-Hoover thermostat is based on the use of an extended Lagrangian, i.e. a

Lagrangian that contains additional, artificial coordinates and velocities.109,110 The

conventional Nosé-Hoover algorithm only generates the correct distribution if there

is a single constant of motion. Normally, the total energy, that includes the artificial

variables, is always conserved. This implies that one should not have any other

conserved quantity. If we have more than one conservation law, we have to use the

Nosé-Hoover chains to obtain correct canonical distribution.111

The various methods for carrying out MD at constant pressure are based on the

same principles as the constant temperature scheme with the role of the temperature

played by the pressure and the role of the atomic velocities played by the atomic

positions.
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2.2 Essential Dynamics

The Essential Dynamics (ED) analysis is a method to seek those collective degrees

of freedom that best approximate the total amount of fluctuation of a dynamical

system.112,113 A brief description will be given here. ED is based on a principal com-

ponent analysis (PCA) of (MD generated) structures. A PCA is a multidimensional

linear least squares fit procedure. To understand how this is applicable to protein

dynamics, the usual three-dimensional (3D) Cartesian space to represent protein co-

ordinates (which is e.g. used to represent protein conformations in the Brookhaven

Protein Data Bank or PDB) needs to be replaced by another, multidimensional

space. A molecule of N particles can be represented by N points in 3D space. With

3 coordinates per point, this adds up to 3N coordinates. In a 3N-dimensional space,

however, such a structure can be represented by a single point. In this space, this

point is characterized by 3N coordinates. This representation is convenient since a

collection or trajectory of structures can now be regarded as a cloud of points. Like

in the case of a two-dimensional cloud of points, also in more dimensions, always

one line exists that best fits all points. As illustrated for a two-dimensional example

(Figure 2.1), if such a line fits the data well, the data can be approximated by only

the position along that line, neglecting the position in the other direction. If this

line is chosen as coordinate axis, then the position of a point can be represented

by a single coordinate. In more dimensions the procedure works similarly, with the

only difference that one is not just interested in the line that fits the data best, but

also in the line that fits the data second-best, third best, and so on (the principal

components). These directions together span a plane, or space, and the subspace

responsible for the majority of the fluctuations has been referred to as the ’essential

subspace’. Applications of such a multidimensional fit procedure on protein con-

figurations from MD simulations of several proteins has proven that typically the

ten to twenty principal components are responsible for 90% of the fluctuations of

a protein.112–114 These principal components correspond to collective coordinates,

containing contributions from every atom of the (protein) molecule. Summarized, a

limited number of collective motions is responsible for a large percentage of a protein

conformational fluctuations.

If all atoms in a protein were able to move uncorrelated from each other, an

approximation of the total fluctuation by only a few collective coordinates would

not be possible. The fact that such an approximation is successful is the result

of the presence of a large number of internal constraints and restrictions (’near-

constraints’) defined by the interactions present in a given protein structure. Atomic

interactions, ranging from covalent bonds (the tightest interactions) to weak non-

bonded interactions, together with the dense packing of atoms in native-state protein

structures form the basis of these restrictions.

In the study of protein dynamics, only internal fluctuations are usually of interest.
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Figure 2.1: Example of Essential Dynamics in two dimensions. With a distribution
of points as depicted here, two coordinates (x,y) are required to identify a point in
the cluster in panel A, whereas one coordinate (x’) approximately identifies a point
in panel B

Therefore, the first step in an Essential Dynamics analysis is to remove overall

rotation and translation. This is done by translation of the center of mass of every

configuration to the origin after which a least squares rotational fit of the atoms is

performed onto to a reference structure. The actual principal component analysis

is based on construction and diagonalization of the covariance matrix of positional

fluctuations. Defining the 3N dimension column vector X(t) representing the atomic

coordinates of the system at time t, the covariance matrix is built up according to:

C = 〈∆X∆XT 〉 (2.9)

where ∆X = X(t) − 〈X〉 and the angle brackets represent a time or ensemble

average. Particles moving in a correlated fashion correspond to positive matrix el-

ements (positive correlation) or negative elements (negative correlation) and those

that move independently to small matrix elements. The orthogonal transformation

T that diagonalizes this (symmetric) matrix contains the eigenvectors or princi-

pal components of C as columns and the resulting diagonal matrix Λ contains the

corresponding eigenvalues:

Λ = T TCT (2.10)

The eigenvalues are the positional mean square fluctuations along the corre-

sponding eigenvectors. When the eigenvectors are sorted to decreasing eigenvalues,
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the first eigenvectors are those collective motions that best approximate the sum of

fluctuations and the last eigenvectors correspond to the most constrained degrees

of freedom. The characteristics of these collective fluctuations can be studied by

projecting the ensemble of structures onto single eigenvectors and by translation of

these projections to 3D space to visualize the atomic displacements connected with

that eigenvector. As stated above, analysis of MD trajectories of several proteins

have shown that few collective coordinates dominate the dynamics of native proteins

(together often referred to as the ’essential subspace’). In a number of cases these

main modes of collective fluctuation were shown to be involved in the functional

dynamics of the studied proteins.112,115,116

ED analysis can be applied to any subset of atoms of the ensemble of structures

and are not restricted to ensembles generated by MD simulation. Applications to

collections of X-ray structures,116,117 NMR structures118 and structures derived from

distance constraints119 have been reported. Since collective (backbone) fluctuations

dominate the dynamics of proteins, usually only backbone or Cα coordinates are used

to save computation time and to prevent problems with apparent correlation of side

chain motions with backbone motions which are merely the result of poor statistics.

However, even when the method is applied to only Cα atoms, the diagonalization of

the covariance matrix can still be an enormous computational task.

2.3 Free energy calculations

In general terms, a microscopic description of a particular molecular system can

be given in the form of a Hamilton operator or function. This is often simply

expressed as the Hamiltonian H(p, q) of the generalized coordinates q and their

conjugate momenta p. For example, the Hamiltonian for a classical system of N

atoms, expressed in terms of the Cartesian coordinates r and momenta p of each

of the atoms, has the form H(p, r) = K(p) + U(r), where K is the kinetic and U

the potential energy. In the canonical ensemble the fundamental formula for the

Helmholtz free energy, A, is:120

A(N, V, T ) = −kBT lnQ(N, V, T ) (2.11)

where the partition function Q is:

Q(N, V, T ) = h−3N

∫ ∫
e−H(p,r)/kBTdpdr (2.12)

where V is the volume of the system, T the absolute temperature, kB Boltzmann’s

constant, h Planck’s constant, and it is assumed that the N atoms are distinguish-

able. The factor before the integral actually comes from quantum mechanics. The

essential difficulty in calculating the free energy of a system is evident from Eq.
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2.12, which is dependent on a 6N -dimensional integral to be carried out over phase

space.

By means of statistical mechanics, free energy differences may also be expressed

in terms of averages over ensembles of atomic configurations for the molecular system

of interest. Such an ensemble can be generated by MC or MD simulation techniques.

If the ergodic hypothesis is verified, that is the simulated trajectory will visit all

possible microstates available to it, given an infinite amount of time the following

equivalence holds:

〈A(q(t), p(t))〉ensemble = 〈A(q(t), p(t))〉time (2.13)

that is the ensemble average of a generic physical observable, A(t), is equivalent to

its time average. In principle this equivalence offers a valid method, the time aver-

age, to obtain physical properties from our ”virtual” experiment, namely computer

simulations. However, despite its inherent simplicity, the computation of thermo-

dynamic properties from molecular simulations remains far from trivial due to the

limit of infinite sampling of phase space and to unavoidable numerical errors.

Within the framework of statistical mechanics, a variety of formulae for deter-

mining the difference in free energy between two states of a system, or the projection

of such a difference in free energy along a spatial (reaction) coordinate, have been

derived. The different formulations available are all equivalent within the limit of

infinite sampling of phase space. In practice, as only a part of the total phase space

accessible to a realistic system can ever be sampled by molecular simulations tech-

niques, there are often significant differences in accuracy between the free energy

estimates obtained from different formulae. Below a list of the most useful statisti-

cal mechanical formulae and computational methods to obtain the difference in free

energy ∆AA→B = AB − AA between a state B and a state A of a molecular system

in a canonical ensemble is provided.

2.3.1 Probability ratio method

In equilibrium thermodynamics, free energy changes are related to the populations

(or probabilities) of states. Hence, the most straightforward way to determine the

difference in free energy between two states of a system is simply to count the

number of configurations in the two corresponding states. For example, in the case

of folding, this involves counting the number of folded conformations NF and the

number of unfolded conformations NU in an ensemble generated during a MD or

MC simulation, with the difference in free energy being given by

∆AU→F = −kBT ln
QF

QU

= −kBT ln
pF
pU

= −kBT ln
NF

NU

(2.14)
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where kB is the Boltzmann constant, T is the temperature, QF and QU are the parti-

tion functions of the folded and unfolded states, respectively, and pF and pU are the

probability densities of finding the system in the folded or unfolded states, respec-

tively. This technique is only appropriate when folded and unfolded conformations

occur with sufficient frequency in the ensemble to obtain reliable statistics. Direct

counting has the advantage that it does not depend on the definition of a reaction

coordinate and it is particularly well-suited to situations in which the end states are

themselves ensembles of structures, such as in the study of protein/peptide folding.

2.3.2 Thermodynamic Integration

Integrations methods determine the change in free energy between two states of a

system from the integral of the work required to go from an initial state to a final

state via a reversible path. In Thermodynamic Integration (TI) method an arbitrary

coupling parameter, λ, is introduced in the the Hamiltonian H(p, q, λ). The coupling

parameter is chosen such that when λ = λA the Hamiltonian of the molecular system

corresponds to that of state A, i.e. H(p, q, λA)=H(p, q) and when λ = λB the

Hamiltonian of the system corresponds to that of state B, i.e. H(p, q, λB)=H(p, q).

If the Hamiltonian is a function of λ the free energy in Eq. 2.11 will also be a

function of λ, and the derivative of the free energy with respect to λ will be given

by

dA(λ)

dλ
=

〈
∂H(λ)

∂λ

〉

λ

(2.15)

From this, it follows directly that the free energy difference between state A and

state B of a molecular system is given by

A(λB)− A(λA) =

∫ λB

λA

〈
∂H(λ)

∂λ

〉

λ

dλ (2.16)

which is the so-called thermodynamic integration formula.121 The ensemble average

〈∂H/∂λ〉 is most commonly determined from simulations at a series of λ values

between λA and λB and the integral in Eq. 2.16 evaluated numerically. The choice

of λ is arbitrary and λ may equally refer to a spatial coordinate or to a non-physical

coordinate in parameter space. In either case, the functional dependence of the

system on λ effectively describes the pathway from the initial to the final state.
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2.3.3 Perturbation method

An alternative to the TI method is to adopt a perturbation approach. In the pertur-

bation method (PM) the free energy change is expressed by the following relation:122

AB − AA = −kBT ln
QB

QA

= −kBT ln
〈
e∆H/kBT

〉
B

(2.17)

where QB and QA are the partition functions of state B and A respectively, ∆H =

HB −HA is the energy difference, kB is the Boltzmann constant and T the absolute

temperature. The subscript on the brackets 〈...〉 indicates that the ensemble average

is performed with respect to the probability function representative of the final

state, B, of the system. Thus, the free energy change is calculated directly from

one MD simulation of the state B averaging the quantity e∆H/kBT . Usually, due to

the known insufficient sampling of the tails of the distribution, this method gives

accurate results when the energies of the initial and final states of the system differ

by a relatively small amount (≤ 2kBT ). Otherwise, it is possible to decompose the

total free energy change by defining intermediate states along a given path between

the initial and final states, hence computing as a sum of partial free energy changes.

2.3.4 Potential of Mean Force

The difference in free energy between two states of a molecular system is a single

number. Often we would like to know how the free energy of a system, or the

potential of mean force (PMF), changes as a function of a particular coordinate

within the system, most commonly a spatial coordinate. Chosen this coordinate,

r, and considering the partial derivative of the free energy with respect to this

coordinate, we obtain:

∂A

∂r
= −kBT 1

Q

∂Q

∂r
= −kBT 1

Q

∫ ∫
−∂U(q)

∂r

1

kBT
e−H(p,q)/kBTdpdq (2.18)

Considering that −∂U(q)/∂r is the force acting along r, F (r), and that the average

value of a generic function, f(p, q), is given by:

〈f(p, q)〉 =
1

Q

∫ ∫
f(p, q)e−H(p,q)/kBTdpdq, (2.19)

Eq. 2.18 becomes

∂A

∂r
= −〈F (r)〉 (2.20)

Hence, if we are interested in the free energy change between two positions rA and

rB, we get
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AB − AA =

∫ rB

rA

−〈F (r)〉dr (2.21)

Usually the ensemble average −〈F (r)〉 is most commonly determined from sim-

ulations at a series of r values between rA and rB and the integral in Eq. 2.21

evaluated numerically.

2.4 The Perturbed Matrix Method (PMM)

As it was stated in the previous sections, classical MD methods do not explicitly treat

the electrons in a molecular system. Instead, they perform computations considering

only interactions among nuclei. This assumption makes classical calculations quite

inexpensive computationally, and allows them to be used for very large systems con-

taining many thousands of atoms. Although this approximation is excellent for a

wide range of materials, it also carries several limitations. Among them the fact that

classical methods cannot treat chemical problems where electronic effects predom-

inate. On the other hand, methods based on the electronic structure use the laws

of quantum mechanics rather than classical physics as the basis for their computa-

tions. Ab initio techniques seek to calculate the properties of a system from first

principles with no parametrization. The goal is to solve the Schrödinger equation as

accurately as possible, using a series of rigorous mathematical approximations. Elec-

tronic structure methods provide high quality quantitative predictions for a broad

range of systems, not limited to any specific class. Several molecular properties can

be calculated with these methods, such as structures,123,124 spectra,125,126 electron

scattering properties,127 etc. Unfortunately, solving the Schrödinger equation accu-

rately for systems with many electrons is a computationally intensive process and

thus sophisticated Ab initio methods are limited in size of system they could handle.

The combination of quantum mechanics (QM) and molecular mechanics (MM),

or more in general classical methods, offer an ideal method that combines the ac-

curacy of QM and the power of MD necessary for biological systems which are

intrinsically dynamical. The concepts behind these hybrid QM/MM methods were

introduced already in the late 1970s in computational biology.128 The QM/MM

approach consists in partitioning the system of interest into two subsystems: one

(QM) contains a small number of atoms and is described by quantum mechanics

and the other (MM), where events such as bond breaking/formation or electronic

transitions do not take place, is described by a suitable MM force field. There are

several open questions and problems about the use of QM/MM approaches, as the

choice of the QM part, the limited size of the system that can be treated quantum-

mechanically, the modeling of the MM part and the interactions between the QM

and MM regions. Nevertheless, this strategy has been demonstrated to be useful in

several fields of study, such as materials science (e.g. for the study of chemically
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induced stress in real materials129), for the study of chemical processes in condensed

phases (e.g. chemical reactions in solution130) or molecular spectroscopic properties

in solution.131

One of the goals of QM/MM methods is the understanding of electronic prop-

erties of a chromophore in a protein environment. This kind of problem in fact

requires to mix electronic structure calculations with structural and dynamical in-

formation of the protein. In general, classical MD is used to provide a statistical

ensemble of configurations representing the state of the system, and QM calcula-

tions are performed only for a limited number of configurations after the simulation

is finished.132,133 These methods provide a very detailed description of the solvent

and/or protein structure but, because the number of QM calculations is usually very

large, their calculation level has to be restricted. On the other hand, if high level QM

calculations are needed, the number of configurations used have to be dramatically

reduced, with a consequent sampling deficiency.

A few years ago, a theoretical method, the Perturbed Matrix Method (PMM),

has been developed for modeling perturbed molecular eigenstates.134,135 In the PMM,

instead of including directly in the Hamiltonian operator the perturbation term, as

usual for Hartree-Fock based calculations, the effect of the perturbation is obtained

diagonalizing the perturbed Hamiltonian matrix constructed in the basis set of the

unperturbed Hamiltonian eigenstates.

The above approach is in principle a rigorous procedure within the only practical

approximation arising from truncating the dimension of the perturbed Hamiltonian

matrix, that is to say the size of the unperturbed basis set used. However, it should

be remarked that the present approach could suffer from a not rigorous derivation

of the unperturbed eigenstates due to the well known limitations which could arise

when highly excited states are concerned. On the other hand, it proved to be

as an investigating tool very promising for large and computationally demanding

molecular systems,136–138 since the unperturbed eigenfunctions have to be evaluated

only once at a given geometry, although the external perturbation is varied. Finally,

it should be noted that the perturbed Hamiltonian matrix can be constructed and

diagonalized nowadays, at a relatively low computational cost.

2.4.1 Basic Derivations

The time independent Schrödinger equation, in matrix notation, for a perturbed

system is:

H̃ci = Uici (2.22)

where H̃ = H̃0 + Ṽ , ci is the i-th eigenvector of the perturbed Hamiltonian

matrix H̃, Ui the corresponding Hamiltonian eigenvalue, H̃0 is the unperturbed

Hamiltonian matrix and Ṽ is the perturbation energy matrix. The Hamiltonian
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matrix and its eigenvectors can be expressed in the basis set defined by the unper-

turbed Hamiltonian matrix eigenvectors, and hence the element of the Hamiltonian

matrix is

Hl,l′ = 〈Φ0
l | Ĥ | Φ0

l
′〉 = U0

l δl,l′ + 〈Φ0
l | V̂ | Φ0

l
′〉 (2.23)

where Φ0
l is the l-th eigenfunction of the unperturbed Hamiltonian operator, U0

l

the corresponding energy eigenvalue,δl,l′ the Kroenecker’s delta and V̂ the pertur-

bation energy operator. From the above equations it is evident that for obtaining

the eigenvectors and eigenvalues, and hence every property, of the perturbed Hamil-

tonian eigenstates, we only have to diagonalize the matrix H̃ , as given by Eq.

2.23. For a system interacting with an external field, we can express in general the

perturbation operator in Eq. 2.23 in terms of the electric potential V as

V̂ =
∑
j

qjV(rj) (2.24)

with rj the coordinates of the j-th charged particle and qj the corresponding

charge. Expanding at the second order V around a given position r0 we have

V(rj) ∼= V(r0) −
3∑

k=1

Ek(rj,k − r0,k)

− 1

2

3∑

k′=1

3∑

k=1

(
∂Ek
∂rk′

)

r=r0

(rj,k − r0,k)(rj,k′ − r0,k′) (2.25)

where k and k0 define the three components of a vector in space and r is the

generic position vector. From these equations, defining with qT the total charge, we

readily obtain

〈Φ0
l | V̂ | Φ0

l
′〉 ∼= qTV(r0)δl,l′ − E · 〈Φ0

l | µ̂ | Φ0
l
′〉+

1

2
Tr

[
Θ̃ Q̃l,l′

]
(2.26)

Ql,l′
k,k′ =

[
Q̃l,l′

]
k,k′

=
∑
j

qj〈Φ0
l | (rj,k − r0, k)(rj,k′ − r0,k′ ] | Φ0

l
′〉 (2.27)

where

Θk,k′ = −
(
∂Ek
∂rk′

)

r=r0

(2.28)

µ̂ =
∑
j

qj(rj − r0) (2.29)

Hence the complete perturbed Hamiltonian matrix is
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H̃ = H̃0 + ĨqTV(r0) + Z̃1(E) + Z̃2(Θ̃) (2.30)

with

[Z̃1]l,l′ = −E · 〈Φ0
l | µ̂ | Φ0

l
′〉 (2.31)

[Z̃2]l,l′ =
1

2
Tr[Θ̃ Q̃l,l′ ] (2.32)

From the last equations it is evident that a second order expansion of the electric

potential, able to describe electric fields up to linear behavior over the molecular

size, requires the knowledge of the total charge and the unperturbed dipoles and

quadrupoles. Higher order expansions can be in principle worked out in the same

way but would require information on higher order multipoles which are typically

very difficult to obtain. Moreover, it is rather unusual that an applied electric field

is beyond the linear approximation over a molecular size. Note that for uncharged

systems and homogeneous applied fields, i.e. Θ̃ is a zero elements matrix, Eq. 2.30

reduces to

H̃ = H̃0 + Z̃1(E) (2.33)

The above equations could be used to describe either a perturbed Born-Oppenheimer

(BO) surface, i.e. Φ0
l corresponding to the l-th unperturbed electronic eigenstate for

a fixed nuclear position, as well as perturbed complete quantum mechanical eigen-

states including nuclear degrees of freedom. However, it has been shown135 that

it is very convenient to use the above equations to evaluate the perturbed energy

on the BO surfaces, and then to include the possible nuclear quantum degrees of

freedom. The previous equations are completely general, but involve in principle

infinite dimensional matrices and vectors and hence in their exact form are practi-

cally undoable. However, if we are interested in the perturbed ground state and the

first excited states, we can approximate Eq. 2.22 using a finite dimensional Hamil-

tonian matrix constructed, via Eq. 2.23, by a limited subspace of the unperturbed

eigenstates, ranging from the ground state to a given excited one.

2.4.2 Application of the PMM to the reconstruction of in-

frared spectra

In this section, the procedure applied in chapters 5.1 and 6 to study the amide I

mode of peptides, is briefly presented.

Once the unperturbed quantum center (QC) mass-weighted Hessian eigenvec-

tors are defined by standard quantum mechanics (QM) calculations on the isolated

quantum center (see section 2.4.1), we may obtain, for a given jth mode, the per-
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turbed ω2
j value at each environment configuration by the PMM as follows. Once

the mode is selected, it is possible to generate a number of QC configurations along

the mode coordinate, q. For each of these QC configurations an orthonormal set of

unperturbed electronic eigenfunctions can be obtained by standard QM procedures

and, using equation 2.30, a number of perturbed electronic Hamiltonian eigenstates

and eigenvalues may be evaluated at each molecular dynamics (MD) frame. Then,

the perturbed electronic ground state energy, ε0 (i.e., the ground state eigenvalue

of the matrix H̃), along the mode coordinate q can be expressed at each time frame

as follows:

ε0(q, t) ∼= ε′0(q, t) + qTV(t) + ∆V (q, t) (2.34)

with ε′0 the ground state eigenvalue of the matrix H̃0 + Z̃1 (equations 2.30 and 2.31).

Finally, the perturbed harmonic frequency is evaluated at each time frame via a

polynomial fit of such an energy curve, providing the second order energy derivative

at the minimum position.

As in previous papers,136–138 ∆V may be considered as essentially constant

along the mode coordinate, at least within the harmonic range, and hence the

perturbed frequency at each time frame can be properly evaluated by using only

ε′0. To support this assumption, a normal mode analysis was performed on trans-

N-methylacetamide/D2O clusters and on a tri-glycine peptide, clearly showing that

the amide I mode in such systems is virtually identical to that of the isolated trans-

NMA. These calculations thus show that the higher order energy term, ∆V , may be

neglected in PMM calculations on liquid state systems for which significantly lower

shifts than in the clusters are to be expected.
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CHAPTER

THREE

THE QUASI-GAUSSIAN ENTROPY THEORY

Accurate methods to obtain the statistical mechanics and thermodynamics of simu-

lated condensed systems are clearly of great importance as they can provide essential

information to describe and predict the behavior of a molecular complex system. De-

spite of the great development of the simulation methods, the evaluation of essential

thermodynamic properties such as free energy and entropy, and of many related

observables, are very difficult and typically the methodologies used can only pro-

vide limited ”local” information, i.e., a few thermodynamic properties at a given

temperature and density, requiring a rather heavy computational effort. Moreover,

the basic theoretical principles underlining these methods, i.e., thermodynamic in-

tegration (TI) and perturbation method (PM), can be affected by severe problems

due to the slow convergence (see sections 2.3.2 and 2.3.3. It is therefore a challenge

in theoretical physical chemistry to develop and optimize more analytical methods

providing the thermodynamics of a simulated system at relatively low computa-

tional costs. From a theoretical point of view, the key point is the evaluation of the

(configurational) partition function, which is in general a high-dimensional integral

over all coordinates. For complex systems with a realistic Hamiltonian, it is virtu-

ally impossible to derive in this way rigorous but easy to handle expressions for the

various thermodynamic properties. Only for very special Hamiltonians analytical

solutions are available, e.g. for the (monoatomic) ideal gas, a set of quantum or

classical harmonic oscillators or one and two-dimensional Ising spin systems. How-

ever, in this chapter we will show that it is possible to switch from the description

in terms of this high-dimensional partition function in the canonical ensemble to

the one-dimensional internal energy distribution function of the system, which is a

special projection of the Hamiltonian. The advantage of this approach is the fact

that these distributions, because of the macroscopic character of usual systems, are

almost Gaussian (“quasi-Gaussian”). Hence, mathematically speaking, relatively

simple functions can be used to model the real distributions, yielding very compact

expressions for the corresponding thermodynamic functions. The theory based on

27
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this, which will be presented in this chapter, will be denoted as the “quasi-Gaussian

entropy theory” (QGE).

3.1 The quasi-Gaussian entropy theory in canon-

ical ensemble

In this section the derivation of the basic theory for the temperature dependence

of thermodynamics properties in the canonical ensemble is presented. Choosing a

proper reference state, the excess entropy S∗ can be expressed in terms of the mo-

ment generating function of the excess internal energy distribution function ρ(∆U ′).
For a macroscopic system the application of the central limit theorem demonstrates

that this distribution function can be modeled as a unimodal function, close to a

Gaussian (”quasi-Gaussian”). Hence, from the statistical mechanical definition of

ρ(∆U ′), the generalized Pearson system of distributions can be used to generate and

classify unimodal distribution of increasing complexity. The parameters of these dis-

tributions and hence of the excess entropy can be expressed in terms of the isochoric

heat capacity and a limited set of its temperature derivatives.

3.1.1 Definition of the system

The Helmholtz free energy of a system at fixed volume, temperature and number of

molecules is

A = −kBT lnQ (3.1)

where Q is the overall partition function. For a system of n identical molecules in

the classical limit

Q =
(2πkT )d/2

n!hd(1 + γ)n

∑

l

∫
e−β(Φ+ψ+εl)

n∏
j=1

(det M̃j)
1/2dx (3.2)

where x are the semiclassical atomic coordinates, Φ is the (classical) intermolecular

potential energy, ψ is the (classical) intramolecular potential energy, εl is the overall

lth quantum energy (in general a function of the coordinates which typically only

refers to vibrational states), β = 1/kBT and the sum runs over all accessible quantum

states {l} of the system in the temperature range of interest. Moreover d is the total

number of semiclassical degrees of freedom of the system, 1 + γ is the symmetry

coefficient of the molecule, h is the Planck constant and M̃ is the (classical) mass

tensor of the molecule. We can simplify Eq. 3.2, considering that in general for

systems where the (quantum) vibrational energies have a significant dependence on

the coordinates, such a dependence is typically observed only up to temperatures

where the molecules are largely confined in the vibrational ground state. In such

systems, as the temperature is increased to values where the first excited states
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become significantly populated, the vibrational energies converge to a coordinates

independent value, usually close to the ideal gas ones. For these kind of systems we

can rewrite Eq. 3.2 as

Q ∝
∑

l

∫
e−β(Φ+ψ+εl) +

n∏
j=1

(det M̃j)
1/2dx (3.3)

=
∑

l

e−βEl

∫
e−β(Φ+ψ)e−β(εl−El)

n∏
j=1

(det M̃j)
1/2dx (3.4)

with El a reference quantum energy of the lth state. We assume, at least for all

the terms in Eq. 3.4 significantly different from zero (i.e., βEl not too large), that

∫
e−β(Φ+ψ)e−β(εl−El)dx

n∏
j=1

(det M̃j)
1/2 ∼=

∫
e−β(Φ+ψ)e−β(ε0−E0)

n∏
j=1

(det M̃j)
1/2dx

(3.5)

Hence

Q ∼=
∫
e−βU

′
n∏
j=1

(det M̃j)
1/2dx (3.6)

Qref
qm =

∑

l

e−βEl (3.7)

Θ =
(2πkT )1/2Qref

qm

n!hd(1 + γ)n
(3.8)

with U ′ = Φ + ψ + ε0 − E0 and where E0 and Qref
qm can be typically obtained by

quantum calculations of the isolated molecule, i.e. in ideal gas conditions. It is

easy to see that Eq. 3.6 is always exact if the system is completely confined in the

vibrational ground state, or if no vibrations are present (e.g. monoatomic molecules)

or when the vibrational energies can be considered independent of the coordinates,

and therefore from the temperature, hence being identical to the ideal gas ones. If

moreover, at least in the whole temperature range of interest, only a part of the

configurational space is energetically accessible (i.e., the system is confined within

a part of the configurational space) we can rewrite Eq. 3.6 as

Q ∼= Qqm
ref

∫ ∗
e−βU

′
n∏
j=1

(det M̃j)
1/2dx (3.9)

where now the star denotes an integration in the accessible part of the config-

urational space only. It should be noted that the inaccessible configurations not

necessarily correspond only to the ones which are forbidden by a simple excluded

volume concept, where it is assumed that the pair potential energy has an infinite

barrier as in a hard sphere liquid. In fact, according to the total intermolecular

potential energy, even configurations with non penetrating molecules might be ener-
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getically excluded up to very high temperatures. Clearly in the infinite temperature

limit every finite energy configuration will be accessible implying that only the con-

finement due to the infinite energy configurations can be considered exact, i.e., really

temperature independent. Eq. 3.9, which reduces to Eq. 3.6 in case the whole con-

figurational space is available, is a very general expression that can be used for many

different types of molecules.

3.1.2 Definition of the reference states and excess properties

For all the systems where Eq. 3.9 can be used, we can define a reference state at the

same temperature and density, but without inter (Φ) and intramolecular potential

energy (ψ). We have

Aref = −kT lnQref (3.10)

Qref = Θ
∫ ∏n

j=1(det M̃j)
1/2dx (3.11)

Therefore the excess Helmholtz free energy is

A′ = A− Aref (3.12)

A′ = A∗ − kT ln ε (3.13)

A∗ = −kT ln
〈
e−βU

′
〉

= −kT ln
〈
e−βU

′
〉
ref

(3.14)

〈
eβU

′
〉

=

∫ ∗
e−βU

′ ∏n
j=1(det M̃j)

1/2eβU
′
dx∫ ∗

e−βU ′
∏n

j=1(det M̃j)1/2eβU ′dx
(3.15)

〈
e−βU

′
〉
ref

=

∫ ∗
e−βU

′ ∏n
j=1(δM̃j)

1/2dx∫ ∗ ∏n
j=1(det M̃j)1/2dx

(3.16)

ε =

∫ ∗ ∏n
j=1(det M̃j)

1/2dx∫ ∏n
j=1(det M̃j)1/2dx

(3.17)

Then we can write the internal energy, heat capacity, pressure and entropy as

U ′ = −
(
∂

∂β
ln
Q

Q ref

)

V

= 〈U ′〉 (3.18)

C ′V =

(
∂U ′

∂T

)

V

=

(
∂〈U ′〉
∂T

)

V

(3.19)

S ′ = −(A′ − U ′)
T

= S∗ + k ln ε (3.20)

S∗ = −k ln
〈
eβ(U ′−〈U ′〉)

〉
(3.21)
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and

p′ = −
(
∂A′

∂V

)

T

= p∗ + Tξ (3.22)

p∗ = −
(
∂A∗

∂V

)

T

(3.23)

ξ = k

(
∂lnε

∂V

)
(3.24)

Finally, from these equations follow the excess enthalpy and the Gibbs free energy

H ′ = U ′ + p′V (3.25)

G′ = A′ + p′V (3.26)

3.1.3 The potential energy distribution

Eq. 3.21 can be explicitly expressed as

S∗ = −k lnG∆U ′(β) = −k ln

∫
eβ∆U ′ρ(∆U ′)d∆U ′ (3.27)

∆U ′ = U ′ − 〈U ′〉 (3.28)

where G∆U ′(β) is the moment generating function 139,140 of the potential energy

distribution function ρ(∆U ′) ( note that ρ is in general temperature dependent).

From the fact that a macroscopic system can be considered as a very large collec-

tion of identical, independent subsystems (elementary systems), we can conclude

that because of the central limit theorem 139,141 the corresponding potential energy

distribution function can be regarded as uninormal. In fact the possible deviations

from the uninormal shape in the far tail of the distribution are in general negligible

because of the very sharply peaked behavior of the curve around its mode (maxi-

mum of probability), also due to the macroscopic nature of the system 120,142, and

therefore the integrand in Eq. 3.27 can be modeled considering ρ as a quasi-Gaussian

distribution. In general we can express the potential energy distribution as 142,143

ρ(∆U ′) =
Ω(∆U ′)∫ ∗

e−β∆U ′
∏n

j=1(det M̃j)1/2dx
e−β∆U ′ (3.29)

with

Ω(∆U ′) =

∫ ∗
δ(∆U ′(x)−∆U ′)

n∏
j=1

(det M̃j)
1/2dx (3.30)

and hence
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dρ

d∆U ′
= −ρ(∆U ′)

[
β − d ln Ω

d∆U ′

]
(3.31)

Using a Padé approximant 144,145, instead of a usual Taylor series, to expand

the function between brackets in Eq. 3.31 around the mode of the distribution, we

finally obtain a general differential equation, equivalent to the one of the generalized

Pearson system of curves 146–148, which can be used to obtain the possible potential

energy distribution functions:

dρ

d∆U ′
= −(∆U ′ −∆U ′m) ρ

Pm(∆U ′)
Gn(∆U ′)

(3.32)

where ∆U ′m is the value of ∆U ′ where ρ has its mode and Pm(∆U ′) and Gn(∆U ′)

are some arbitrary polynomials of order m and n:

Pm(∆U ′) =
m∑
i=0

ai(∆U
′)i (3.33)

Gn(∆U ′) =
n∑
j=0

bj(∆U
′)j (3.34)

where without loss of generality a0 = 1. The solutions of Eq. 3.32 are therefore

fully defined by the parameters ∆U ′m, {ai} and {bj} which can be expressed 146 in

terms of the central potential energy moments Mn. Hence with the use of physical-

mathematical restrictions 146 we can select the physically acceptable distributions,

fully defined by a limited set of central moments, and then order them according to

their increasing complexity. We also showed that these potential energy moments

can be expressed as a function of the isochoric heat capacity and a limited number

of its temperature derivatives 146

M2(T ) = kT 2C ′V (3.35)

M3(T ) = (kT 2)2

(
∂C ′V
∂T

)

V

+ 2(kT )2TC ′V (3.36)

· · ·
Mk(T ) = Mk

(
T,C ′V ,

(
∂C ′V
∂T

)

V

,

(
∂2C ′V
∂T 2

)

V

, · · · ,
(
∂k−2C ′V
∂T k−2

)

V

)
(3.37)

where Mk = 〈(∆U ′)k〉 is the kth central potential energy moment and we used

the fact that C∗V = C ′V . If the functional shape of ρ is defined by the first n central

moments, from Eqs. 3.27 and 3.37 it follows that

S∗ = S∗
(
T,C ′V ,

(
∂C ′V
∂T

)

V

,

(
∂2C ′V
∂T 2

)

V

, · · · ,
(
∂n−2C ′V
∂T n−2

)

V

)
(3.38)
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3.1.4 The thermodynamic master equation

We define the intrinsic entropy function as 146

α =
S ′

C ′V
=
S∗

C ′V
+
k ln ε

C ′V

= α∗
(
T,C ′V ,

(
∂C ′V
∂T

)

V

,

(
∂2C ′V
∂T 2

)

V

, · · · ,
(
∂n−2C ′V
∂T n−2

)

V

)
+
k ln ε

C ′V
(3.39)

with α∗ = S∗/C ′V the confined intrinsic entropy function, and using the general

thermodynamic relation (∂S ′/∂T )V = (∂S∗/∂T )V = C ′V /T , we obtain the thermo-

dynamic master equation 146(TME)

C ′V
T

= C ′V

(
∂α∗

∂T

)

V

+ α∗
(
∂C ′V
∂T

)

V

(3.40)

This is a completely defined differential equation where its unique, always exist-

ing solution gives the temperature dependence of the ideal reduced isochoric heat

capacity C ′V , once the values of C ′V , · · · , (∂n−2C ′V )/(∂T n−2))V at one arbitrary tem-

perature T0 are known. Note that in Eqs. 3.39 and 3.40 we used a generalized

expression of the intrinsic entropy function, treating explicitly the possible confine-

ment of the system, which reduces to the usual one when ε = 1 and therefore α = α∗.

From the solution of the master equation we can obtain the confined entropy S∗ via

Eq. 3.38, and then the excess internal energy and free energy at fixed density via

U ′(T ) = U ′(T0) +

∫ T

T0

C ′V (T )dT (3.41)

A∗(T ) = U ′(T )− TS∗(T ) (3.42)

It is interesting to note that, since

α∗ =
S∗

C ′V
= − S∗/β

(∂S∗/∂β)V
(3.43)

the confined intrinsic entropy function is the ratio between the average slope of

S∗ versus β (remembering that S∗ = 0 when β = 0) and the instantaneous slope

(∂S∗/∂β)V . One can moreover prove that 146,149

lim
T→∞

α∗(T ) = −1

2
(3.44)

which implies that the (confined) thermodynamics of every system in the infinite

temperature limit tends to a Gaussian one, see section 3.2.1.
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3.1.5 The conjugated pressure equation

From Eq. 3.38 it is moreover possible to obtain the excess pressure of the system p′

as a function of the temperature. In fact from the basic thermodynamic relation

(
∂S∗

∂V

)

T

=

(
∂p∗

∂T

)

V

(3.45)

we obtain

1

T

(
∂C ′V
∂V

)

T

=

(
∂2p∗

∂T 2

)

V

(3.46)

and hence in general

(
∂f0

∂V

)

T

= T

(
∂2p∗

∂T 2

)

V

(3.47)

(
∂f1

∂V

)

T

=

(
∂2p∗

∂T 2

)

V

+ T

(
∂3p∗

∂T 3

)

V

(3.48)

· · · (3.49)(
∂fl
∂V

)

T

= l

(
∂l + 1p∗

∂T l + 1

)

T

+ T

(
∂l + 2p∗

∂T l + 2

)

V

(3.50)

where

f0 = C ′V ; f1 =

(
∂C ′V
∂T

)

V

; fl =

(
∂lC ′V
∂T l

)

V

(3.51)

Therefore from Eqs. 3.38, 3.39 and 3.45 we finally obtain another closed dif-

ferential equation at fixed density for the temperature dependence of the confined

pressure p∗, the conjugated pressure equation (CPE)

(
∂p∗

∂T

)

V

= Tα∗(T )

(
∂2p∗

∂T 2

)

V

+ C ′V

(
∂α∗

∂V

)

T

(3.52)

or, equivalently, using Eqs. 3.38 and 3.46-3.51

(
∂p∗

∂T

)

V

=
∑

l

[(
∂S∗

∂fl

)

T,fl

,

(
∂fl
∂V

)

T

]

=
∑

l

[(
∂S∗

∂fl

)

T,fl

,

{
l

(
∂l+1p∗

∂T l+1

)

V

+ T

(
∂l+2p∗

∂T l+2

)

V

}]
(3.53)

with l′ 6= l and l = 0, · · · , (n − 2). Eq. 3.52 or 3.53 can be solved once the first

n − 1 temperature derivatives of the confined pressure are known at one arbitrary

temperature T0. Its solution provides the temperature dependence of (∂p∗/∂T )V for

a system at fixed density and, if the excess pressure is known at one temperature as

well, also the temperature dependence of the excess pressure, enthalpy and Gibbs
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free energy via

p′(T ) = p′(T0) +

∫ T

T0

(
∂p∗

∂T

)

V

dT + ξ(T − T0) (3.54)

H ′(T ) = U ′(T ) + p′(T )V (3.55)

G′(T ) = A′(T ) + p′(T )V (3.56)

Note that it is not necessary to explicitly solve the conjugated pressure differ-

ential equation if the temperature dependence of A∗ is already known from the

thermodynamic master equation, since p∗(T ) = − (∂A∗(T )/∂V )T . As A∗(T ) is an

explicit function of T only, with U ′0, C
′
V 0, (∂C ′V 0/∂T )V (i.e., the values of U ′ etc.

at the reference temperature T0), as parameters depending only on the volume, the

resulting volume derivatives at T0 can be related to p∗0, (∂p∗0/∂T )V , (∂2p∗0/∂T
2)V ,

· · · , according to Eqs. 3.47-3.51 (see also the description of the Gamma and Inverse

Gaussian states, sections 3.2.1 and 3.2.2).

Hence the knowledge of the potential energy distribution function at one tem-

perature, as well as the knowledge of ε and ξ fully defines the whole excess thermo-

dynamics of a system at every temperature at fixed density. Every potential energy

distribution function therefore defines a different statistical state of the system with

a thermodynamical complexity given by the number of the heat capacity temper-

ature derivatives, necessary to define the corresponding type of potential energy

distribution function.

3.1.6 Phase-space confinement

A very simple model for the phase-space confinement is excluded volume due to

“hard body” interactions. If, because of the strong Pauli repulsions at close contact,

it is possible to define for (almost) spherical molecules like water an interparticle

distance σHS = 2rHS at which the two-particle interaction energy is virtually infinite

in the temperature range of interest, the confined ideal reference state can be de-

scribed as a hard sphere (HS) system 120,150. Using the Carnahan-Starling equation

of state (EOS) 151,

pHS = ρNkT

[
1 + η + η2 − η3

(1− η)3

]
(3.57)

with pHS the pressure, η = vρN , ρN the number density, v = πσ3
HS/6 the hard-

sphere volume per molecule and σHS the hard-sphere diameter, we obtain 150 for the

excess Helmholtz free energy

A′ref = −NkT
[
3η2 − 4η

(1− η)2

]
= −NkT ln ε̄HS (3.58)
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where ε̄HS = ε
1/N
HS is the hard sphere phase-space fraction per molecule. Hence

ε̄HS = exp

{
3η2 − 4η

(1− η)2

}
(3.59)

and

ξHS = Nk
d ln ε̄HS
dV

= −Nk
V

[
2η2 − 4η

(1− η)3

]
(3.60)

which is always positive since η < 1. Within this model, p∗ is the pressure of the

system with respect to a HS fluid at the same temperature and density. For more

complex molecules deviating from an almost spherical shape a simple HS description

may not be sufficient. For non spherical molecules several equation of state have

been proposed.

3.2 Description of different statistical states

In this section the temperature dependence of thermodynamic properties for dif-

ferent statistical states are presented. In particular, the simplest solutions of the

Generalized Pearson systems, the Gaussian and Gamma states, are discussed in

details.

3.2.1 Gaussian state

The symmetric Gaussian distribution corresponds to {m = 0, n = 0} in the gener-

alized Pearson system, Eq. 3.32. The distribution is given by

ρ(∆U ′) =
1√
2πb0

exp

{
−∆U ′2

2b0

}
(3.61)

with b0 = M2. Using the fact that the moment generating function of a Gaussian

is simply 139,146,152

G∆U ′(β) = exp

{
b0β

2

2

}
(3.62)

and expressing M2 in terms of C ′V (Eq. 3.35), we obtain for the confined intrinsic

entropy function

α∗ = −1

2
(3.63)

The thermodynamic master equation (TME), Eq. 3.40, therefore reduces to

(
∂C ′V
∂T

)

V

= −2
C ′V
T

(3.64)

the solution of which provides for a confined Gaussian state 146
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α∗(T ) = −1

2
(3.65)

C ′V (T ) = C ′V 0

(
T0

T

)2

(3.66)

S ′(T ) = −1

2
C ′V 0

(
T0

T

)2

+ k ln ε (3.67)

U ′(T ) = U ′0 + T0C
′
V 0

(
1− T0

T

)
(3.68)

and

A′(T ) = U ′0 + T0C
′
V 0

(
1− T0

2T

)
− kT ln ε (3.69)

where U ′0 and C ′V 0 are the values of U ′ and C ′V at an arbitrary reference temper-

ature T0. Since (∂α∗/∂V )T = 0, the conjugated pressure equation (CPE), Eq. 3.52

is in this case a simple first order differential equation

(
∂p∗

∂T

)

V

= −1

2
T

(
∂2p∗

∂T 2

)

V

(3.70)

The solution is

p∗(T ) = p∗0 + T0

(
∂p∗0
∂T

)

V

(
1− T0

T

)
(3.71)

where p∗0 and (∂p∗0/∂T )V are the values at the reference temperature T0. The

excess pressure p′(T ) follows from Eq. 3.71, using p′ = p∗ + Tξ and (∂p′/∂T )V =

(∂p∗/∂T )V + ξ (Eq. 3.22):

p′(T ) = p′0 + T0

{(
∂p′0
∂T

)

V

− ξ

}(
1− T0

T

)
+ ξ(T − T0) (3.72)

It must be noted that only for the confined properties the infinite temperature

limits are always physically meaningful.

3.2.2 Gamma state

The Gamma distribution, shown in Figure 3.1 and given by: 139,146,149

ρ(∆U ′) =
b1(1/b

2
1)
b0/b21

Γ(b0/b21)
(b0 + b1∆U

′)b0/b
2
1 − 1 exp

{
−b0 + b1∆U

′

b21

}
(3.73)

with Γ(·) the Gamma function 153, b0 = M2 and b1 = M3/(2M2), corresponds to

the {m = 0, n = 1} solution of the generalized Pearson system, Eq. 3.32.

The moment generating function of this Gamma distribution is 139,146,152
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G∆U ′(β) = exp

{
−β b0

b1

}
(1− βb1)

−b0/b21 (3.74)

and expressing the central moments M2 and M3, appearing in b0 and b1, in terms

of C ′V and (∂C ′V /∂T )V (Eqs. 3.35-3.36), the confined intrinsic entropy function is in

this case given by 146

α∗ =
1

δ
+

1

δ2
ln(1− δ) (3.75)

with

δ =
M3

2kTM2

=
T (∂C ′V /∂T )V

2C ′V
+ 1 (3.76)

The expression of α∗, combined with the general thermodynamic master equation

(Eq. 3.40), yields

T

(
∂α∗

∂T

)

V

+ 2(δ − 1)α∗ − 1 = 0 (3.77)

where (∂α∗/∂T )V = (dα∗/dδ) (∂δ/∂T )V and (dα∗/dδ) follows from Eq. 3.75. After

straightforward algebra we obtain as a simple form of the TME

(
∂δ

∂T

)

V

= −δ(1− δ)

T
(3.78)

Figure 3.1: The Gamma distribution

The solution provides δ(T ), which can be expressed in terms of C ′V and (∂C ′V /∂T )V .

Hence this gives rise to a new differential equation in C ′V , the solution of which yields
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for a confined Gamma state 146,149

δ(T ) =
T0δ0

T (1− δ0) + T0δ0
(3.79)

α∗(T ) =
1

δ(T )
+

1

δ2(T )
ln {1− δ(T )} (3.80)

C ′V (T ) = C ′V 0

(
δ(T )

δ0

)2

(3.81)

S ′(T ) =
C ′V 0

δ2
0

[
δ(T ) + ln {1− δ(T )}] + k ln ε (3.82)

U ′(T ) = U ′0 + (T − T0)C
′
V 0

δ(T )

δ0
(3.83)

A′(T ) = U ′0 −
T0C

′
V 0

δ0
− TC ′V 0

δ2
0

ln {1− δ(T )} − kT ln ε (3.84)

with δ0 the value of δ at T0. Note that (∂C ′V /∂T )V is always negative, like in the

Gaussian state. Since for a Gamma state the pressure differential equation (Eq. 3.52)

is very complicated, it is more convenient to obtain the p∗ via the volume derivative

of A∗(T ), using Eq. 3.84. Thus, with the usual notation where (∂U ′0/∂V )T etc. are

the derivatives evaluated at T0

p∗(T ) = −
[
∂A∗

∂U ′0

(
∂U ′0
∂V

)

T

+
∂A∗

∂C ′V 0

(
∂C ′V 0

∂V

)

T

+
∂A∗

∂δ0

(
∂δ0
∂V

)

T

]
(3.85)

where from general thermodynamic relations we have

(
∂U ′0
∂V

)

T

= T0

(
∂p∗0
∂T

)

V

− p∗0 (3.86)

(
∂C ′V 0

∂V

)

T

= T0

(
∂2p∗0
∂T 2

)

V

(3.87)

and (
∂δ0
∂V

)

T

=
1

C ′V 0

(
dα∗0
dδ0

)−1 [(
∂p∗0
∂T

)

V

− α∗0T0

(
∂2p∗0
∂T 2

)

V

]
(3.88)

as follows from the CPE at T0, with (dα∗0/dδ0) following from Eq. 3.75. The deriva-

tives ∂A∗/∂U ′0, ∂A
∗/∂C ′V 0 and ∂A∗/∂δ0 follow from Eq. 3.84. After tedious but

straightforward algebra we finally obtain

p∗(T ) = p∗0 +B∗
0 +B∗

1

T

T (1− δ0) + T0δ0
+B∗

2

T

T0

ln

{
T (1− δ0)

T (1− δ0) + T0δ0

}
(3.89)

where

B∗
i = Ai1T0

(
∂p∗0
∂T

)

V

+ Ai2T
2
0

(
∂2p∗0
∂T 2

)

V

i = 0, 1, 2 (3.90)
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with

2A01 = −2(1− δ0) ln(1− δ0) + δ0
D

(3.91)

A02 =
1

δ0

(1− δ0) ln(1− δ0) + δ0
D

A11 =
δ0
D

(3.92)

A12 = − 1

δ0

ln(1− δ0) + δ0
D

(3.93)

A21 =
2(1− δ0)

D
(3.94)

A22 =
1

D

and

D = 2(1− δ0) ln(1− δ0) + δ0(2− δ0) (3.95)

The excess pressure p′(T ) follows from Eq. 3.89, using p′ = p∗ + Tξ, (∂p′/∂T )V =

(∂p∗/∂T )V + ξ and (∂2p′/∂T 2)V = (∂2p∗/∂T 2)V (Eq. 3.22):

p′(T ) = p′0+B0+B1
T

T (1− δ0) + T0δ0
+B2

(
T

T0

)
ln

{
T (1− δ0)

T (1− δ0) + T0δ0

}
+ξT (3.96)

where

B0 = A01T0

(
∂p′0
∂T

)

V

+ A02T
2
0

(
∂2p′0
∂T 2

)

V

+ A03T0ξ (3.97)

Bi = Ai1T0

{(
∂p′0
∂T

)

V

− ξ

}
+ Ai2T

2
0

(
∂2p′0
∂T 2

)

V

i = 1, 2 (3.98)

and

A03 = −δ0(1− δ0)

D
(3.99)

As pointed out previously 149, since the Gamma distribution has a limited do-

main, it can be defined either from −∞ to some upper limit or from some under

limit to +∞. The first case corresponds to a distribution with an asymmetric tail

on the left (defining the negative Gamma state Γ−, with δ < 0 and −1
2
< α∗ < 0),

the second case corresponds to an asymmetric tail on the right (defining the positive

Gamma state Γ+, with 0 < δ < 1 and α∗ < −1
2
). Note that for δ = 0 the distri-

bution is a Gaussian. The properties of and differences between the two Gamma

states have been described in detail 149.

Basically, the Γ+ state is physically acceptable in the whole semi-classical tem-

perature range, whereas the Γ− state must be considered as an approximation to a

more complicated statistical state within some temperature interval. Because of the

finite upper energy limit in a Γ− distribution, the approximation will be worse for

increasing temperature. One other difference is the low temperature limit: while a
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Γ+ state may be extrapolated to T → 0 (although of course in that limit the semi-

classical description is not valid any more), for a Γ− state there exist a temperature

T∗ = −T0δ0/(1− δ0) > 0 (3.100)

at which the solution encounters a singularity.

3.3 Extension of the QGE theory to threat con-

formational equilibria

The QGE theory presented in section 3.1 is basically an extension of the fluctuation

theory.154 In QGE theory, the fundamental expressions of statistical mechanics are

reformulated in terms of the distribution function of the fluctuations of a macroscopic

property, such as the potential energy of the system. By modeling the distribution

of this property, an analytical solution for the thermodynamics of the system can

be obtained. It has been shown that this theory reproduces experimental fluidliquid

state thermodynamics with high accuracy for a variety of physicalchemical systems

over very large temperature and density ranges.149,155–158 However, attempts to de-

scribe the statistical mechanics of conformational equilibria based on simulation data

have been hitherto limited to simple molecules in the (ideal) gas phase. Hereby, an

extension of the QGE theory is presented to describe the complete thermodynamics

of the conformational states of macromolecular systems (e.g. peptides) over a large

temperature range.

3.3.1 Conformational thermodynamics of peptides

In the QGE theory, the thermodynamic quantities of the system are expressed in

terms of an excess with respect to a theoretical thermodynamic reference condition

(QGE reference condition). Such a reference state is identical to the actual system

conditions for chemical composition, number of molecules, volume, and tempera-

ture, but its Hamiltonian does not include any intra- and intermolecular potential

energy, that is, molecules do not interact, and only the kinetic energy, the reference

(quantum) vibrational energy and the reference electronic ground-state energy are

considered. Therefore, for such a virtual ideal gas state, the semiclassical degrees of

freedom of each molecule move freely, and the (quantum) vibrational modes within

the molecule, classically equivalent to holonomic constraints and typically associ-

ated with bond length and angle coordinates, ensure the topological stability of the

molecules. The thermodynamics of this reference condition can be typically obtained

by simple statistical mechanical calculations, while the excess thermodynamics can

be expressed by the distribution of the systems potential energy fluctuations. Hence,

for a given model distribution considered, a corresponding analytical model for the
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excess thermodynamics is obtained. It has been shown that the QGE Gamma state

(i.e., the QGE solution based on modeling the potential energy fluctuations by a

Gamma distribution) provides an accurate quantitative description of the excess

thermodynamics of liquid systems made of rigid or semirigid molecules.149,155–161

Here, the solute is considered to be infinitely diluted, and therefore, the complete

solution thermodynamics can be obtained considering only a single solute embedded

in a large number of solvent molecules,160 that is, the simulation box termed “whole

system” here.

To express the solute conformational state thermodynamics in the QGE frame-

work, the chemical potential of the solute’s ith conformational state, µi, is related to

the corresponding excess chemical potential µ′i
160,162 (the chemical potential shift

between the actual and QGE reference conditions)

∆µi = ∆µ′i + ∆µi,ref = µi − µr = Ai − Ar = −kBT lnPi
Pr

(3.101)

The ∆ always refers to the change of a property in a given conformation with

respect to its value in the reference conformational state r, for example, ∆µ′i =

µ′i − µ′r . Ai and Ar are the Helmholtz free energies of the whole solute-solvent

system with the solute in the ith and reference conformations, respectively, the

subscript ref indicates properties in the QGE reference condition, and P is the

equilibrium probability of a given conformational state. The reference chemical

potential change in Eq. 3.101 is readily obtained from the definition of the QGE

reference condition,160,162 assuming no significant variation of the solute quantum

vibrational partition function for the different conformational states

∆µi,ref = −kBT ln

∫
i

√
detM̃dxin∫

r

√
detM̃dxin

= −kBT ln

√
detM̃i√
detM̃r

− kBT ln
Ωi

Ωr

(3.102)

with

√
detM̃i =

∫
i

√
detM̃dxin∫
i
dxin

(3.103)

Ωi =

∫

i

dxin (3.104)

and likewise for state r. Here, xin are the solute (classical) internal coordinates,

the subscript of the integral sign indicates that integration is taken only over the

intramolecular configurational subspace associated with the corresponding confor-

mational state and M̃ is the (classical) solute mass tensor. Note that if only the bond

length stretching vibrational modes are considered in the peptide (quantum) vibra-

tional partition function, the assumption that vibrational energies are independent

of the conformational states is an excellent approximation. In fact, for the high-
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frequency stretching modes, the atomic environment modifications induced by the

conformational transitions, which are unaccompanied by covalent rearrangement,

typically provide frequency variations within a few cm−1.

The excess chemical potential in Eq. 3.101 is provided by the Gamma state

solution of the QGE theory160

∆µ′i = ∆u′0,i −∆c′V 0,iT0Λ(T ) + p′(T )∆vi − kBT ln
ε̄i
ε̄r

(3.105)

Substituting Eqs. 3.102 and 3.105 into Eq. 3.101 provides along an isochore

∆µi = ∆u′0,i −∆c′V0,i
T0Λ(T ) + p′(T )∆vi − kBT ln γi (3.106)

with

∆u′0,i = u′i(T0)− u′r(T0)

∆cV0,i = c′V,i(T0)− c′V,r(T0)

∆vi = vi − vr

γi =
Ωiε̄i

√
detM̃i

Ωrε̄r

√
detM̃r

(3.107)

Here, u′ is the excess partial molecular internal energy, c′V the excess isochore

partial molecular heat capacity, and v the partial molecular volume, which is tem-

perature independent along an isochore for a Gamma state. The ε̄ is the confinement

fraction providing a pure entropic partial molecular term that is typically associated

with the hard-body-excluded volume; p′ = p− pref is the excess pressure, and T0 is

the reference temperature

Λ(T ) =
1

δ0
+

T

T0δ2
0

ln
T (1− δ0)

T (1− δ0) + T0δ0
(3.108)

where δ0 is a dimensionless constant. Note that within solute infinite dilution

conditions, p′ and Λ, being intensive properties, are fully determined by the sol-

vent, that is, they are identical to the corresponding pure solvent Gamma state

functions.160,162

Using general thermodynamic relations for excess partial molecular properties,160

we may relate the partial molecular Helmholtz free energy a and the chemical po-

tential with the corresponding excess properties via

µ′ = a′ + p′v = µ−muref = a− aref + pv − prefvref (3.109)

with aref = µref − prefvref ; pref = ρskBT and prefvref = kBT .

This provides:
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a′ = a− aref + ρskBTv − kBT (3.110)

where ρs is the solvent molecular density. In the QGE reference condition, the

partial molecular internal energy is independent of the system volume, that is, u′ =

u − uref , where, within our approximations, uref is a constant identical for all of

the conformational states. Using the general expressions of the Gamma state excess

thermodynamic properties,160 we obtain along an isochore for the partial molecular

properties

∆ai(T ) = ∆u′0,i −′V0,i
T0Λ(T )− kBT ln γi − ρskBT∆vi (3.111)

∆si(T ) =
T0∆c

′
V0,i

T

[
T − T0

T (1− δ0) + T0δ0
+ Λ(T )

]
+ kB ln γi + ρskB∆vi (3.112)

∆ui(T ) = ∆u′i(T ) = ∆u′0,i(T ) +
(T − T0)∆c

′
V0,i
T0

T (1− δ0) + T0δ0
(3.113)

∆cV,i(T ) = ∆c′V,i = ∆c′V0,i

(
T0

T (1− δ0) + T0δ0

)2

(3.114)

∆uV,i(T ) =

(
∂(β∆µi)

∂β

)

V

= Ui(T )− Ur(T ) (3.115)

with β = (kBT )−1, Ui and Ur being the internal energies of the whole system

with the solute in the ith and reference conformations, respectively, s the partial

molecular entropy, and use having been made of ∆ai,ref = ∆µi,ref . Note that the

entropy change (Eq. 3.112) is expressed by three terms. The first one, proportional

to ∆c′V0,i
, reflects the changes of the potential energy fluctuations due to the con-

formational change, the second one (KB ln γi) provides the effect of the different

accessible configurational volumes for the rototranslationally fixed solute, and the

third one (ρskB∆v) is due to the change of the available three-dimensional volume

resulting from different solute partial molecular volumes.

The properties ∆u′0,i, ∆c′V0,i
, ∆vi and ln γi are regarded as parameters and can be

estimated if simulation data are available for at least four different thermodynamic

conditions (e.g., temperatures). A fitting procedure is performed in two stages.

First, ∆u′0,i, ∆c′V0,i
and ∆vi may be obtained by fitting the mean potential energy of

the whole simulation box with the corresponding Gamma state expression, for each

solute conformation. Second, by fitting the chemical potential change as obtained

by MD simulations via ∆µ = Ai − Ar = −kBT ln(Pi/Pr) with Eq. 3.106, γ may be

evaluated for each conformation.

The previous equations readily provide the solute thermodynamics considering
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all of its conformational states. Of particular interest, when dealing with peptides,

is to distinguish between the species experimentally characterized as “unfolded” (U)

and “folded” (F). In particular, the probability of the unfolded condition, PU , and

the unfolding free energy, ∆µU , are given by

PU =

∑
i∈U exp(−β∆µi)∑
j exp(−β∆µj)

(3.116)

∆µU = −kBT ln
PU

1− PU
= −kBT ln

∑
i∈U exp(−β∆µi)∑
j /∈U exp(−β∆µj)

(3.117)

It is worthwhile noting that this QGE model, describing the peptide thermody-

namics along an isochore, might be also used to reconstruct the peptide thermody-

namics along an isobar by using QGE models for different solution isochores.
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CHAPTER

FOUR

STRUCTURAL, THERMODYNAMIC, AND

KINETIC PROPERTIES OF GRAMICIDIN

ANALOGUE GS6

Gramicidin S (GS) analogues belong to an important class of cyclic peptides, char-

acterized by an antiparallel double-stranded β-sheet structure with Type II’ β-turns.

Such compounds can be used as model systems to understand the folding/unfolding

process of β-hairpins and more in general of β-structures. In the present study, we

specifically investigate the folding/unfolding behavior of the hexameric Gramicidin

S analogue GS6 by using all-atoms molecular dynamics (MD) simulations at dif-

ferent temperatures, coupled to a statistical mechanical model based on the Quasi

Gaussian Entropy theory. In previous articles,163,164 we quantitatively characterized

the folding/unfolding kinetics and thermodynamics of simple peptides by using MD

simulations and advanced theoretical models based on statistical mechanics. Such an

approach permits to describe the structural, thermodynamic, and kinetic properties

of the peptide and to quantitatively characterize its folding/unfolding transitions.

GS analogues containing 6, 8, 10, 12, 14, and 16 residues were largely studied with

circular dichroism spectroscopy, showing, in the series composed by GS6, GS10, G14,

a higher propensity to form ordered β-sheet with respect to the others.165 The solu-

tion structures of GS6, GS10, GS14 have been solved by NMR spectroscopy,165,166 re-

vealing that they form stable antiparallel β-hairpin structures, bordered by two Type

II’ β-turns. Moreover, the dynamics of β-turn formation and the folding/unfolding

rates of the same peptides were investigated using equilibrium Fourier transform

infrared spectroscopy and T-jump relaxation probed by time-resolved infrared spec-

troscopy.167

The aim of the present study is to quantitatively reproduce the experimentally

observed properties to test the accuracy of the theoretical-computational approach

employed, providing a deeper understanding of the thermodynamic and kinetic

mechanism involved in the folding/unfolding process of GS6 and, more in general,

47
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of small peptides.

4.1 Methods

The initial structure of cyclo[(Lys-dTyr-Pro)2] was created using Pymol version 0.99

(DeLano Scientific) on the basis of the experimental chemical structure.165,166 Geom-

etry optimization of that structure was done by using the empirical potential energy

function of the GROMOS96 43a1 force field.168 The peptide, in its starting confor-

mation, was solvated with water and placed in a periodic cubic box large enough to

contain the peptide and 0.5 nm of solvent on all sides. The two lysine side chains

were protonated as to reproduce a pH of about 7: two negative counterions (Cl−)

were then added by replacing two water molecules to achieve a neutral condition.

Molecular Dynamics simulations, in the NVT ensemble, with fixed bond lengths169

were performed with the GROMACS software package170 and with the GROMOS96

43a1 force field. Water was modeled by the simple point charge (SPC) model.171

A nonbond pairlist cutoff of 9.0 Å was used, and the long-range electrostatic in-

teractions were treated with the particle mesh Ewald method.172 The isokinetic

temperature coupling173 was used to keep the temperature constant at the desired

value. After various equilibration MD runs, six all-atom MD simulations in explicit

water at six different temperatures and with different time lengths were carried out:

400 ns at 280 K, 300 ns at 310 K, 300 ns at 360 K, 180 ns at 400 K, 60 ns at 500 K,

and 60 ns at 600 K. For the last two simulations, a time step of 1 fs was used, while

for the others the time step was 2 fs.

4.2 Theory

4.2.1 Thermodynamic Characterization

Given a system in thermodynamic equilibrium, the change in free energy on going

from a reference state, ref, of the system to a generic state, i (e.g., from unfolded to

folded), at constant temperature and constant volume can be evaluated as:

∆Aref→i = −RT ln
pi
pref

(4.1)

where R is the ideal gas constant, T is the absolute temperature and pi and

pref are the equilibrium probabilities of finding the system in state i and state

ref , respectively. The conformational space and relative free energy as defined by

the reaction coordinates given by the two distances between the oxygen and nitro-

gen atoms involved in the two hydrogen bonds (H-bonds). By projecting the MD

trajectories onto the plane defined by these conformational coordinates (see Figure

4.1), three regions corresponding to three secondary structure states (conformational
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states) were identified: the folded state (F) in which both H-bonds are formed; the

intermediate state (I) in which only one of the two H-bonds is formed; and the

unfolded state (U) in which none of the two H-bonds is formed.

Figure 4.1: Projection of the trajectory at 310 K on the plane of the two NO (H-
bond) distances between Lys residues. Three conformational states can be defined:
the folded state (F) in which both H-bonds are formed, the intermediate state (I) in
which only one of the two H-bonds is formed, and the unfolded state (U) in which
none of the H-bonds is formed.

For every region, the corresponding MD frames were counted providing the equi-

librium probabilities and hence, according to Eq. 4.1, the free energy changes

∆Aref→i. Note that the variation of the Helmholtz free energy, due to the con-

formational transition of the peptide in the simulation box, exactly corresponds to

the peptide chemical potential change (i.e., ∆Aref→i = ∆µref→i). Such peptide

chemical potential variations and the mean potential energies of the whole simula-

tion box, taken for each conformational state for a set of temperatures (see section

4.1), were utilized to obtain, by a fitting procedure, a detailed model of the peptide

partial molar thermodynamics according to the QGE theory as described in details

in section 3.3. Such a QGE model provides the temperature dependence of the

peptide chemical potential change and related partial molar properties according

to:

∆µ = ∆u′0 −∆c′v0T0Λ(T ) + p′(T )∆v −RT ln γ (4.2)

where ∆u′0 and ∆c′v0 are the variations of the partial molar excess internal energy
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and isochoric heat capacity with respect to the reference state at the reference

temperature T0 (in the present study T0 = 310 K), ∆v is the partial molar volume

change with respect to the reference state and Rlnγ corresponds to a partial molar

entropic term due to hard body effects. Moreover, p0 is the pure solvent excess

pressure and

Λ(T ) =
1

δ0
+

T

T0δ2
0

ln

(
1− δ0t0

T (1− δ0) + δ0T0

)
(4.3)

with δ0 a temperature independent dimensionless constant obtained by the pure

solvent simulations. Note that ∆u′0, ∆c′v0 , ∆v and R ln γ are the parameters, cor-

responding to the physical properties fully defining the QGE model, which are ob-

tained via the fitting procedure.

4.2.2 Kinetic characterization

To describe in a simple way the kinetics of the folding-unfolding process, the single

conformational degree of freedom q can be considered as defined by the bisector of

the plane identified by the two hydrogen bonds coordinates in Figure 4.1 by using

the free energy profile along q, as obtained via:

∆A(q) = −RT ln
ρ(q)

ρ(qref
(4.4)

with ρ(q) the equilibrium probability density, it can be readily obtained the

complete kinetics of the folding/unfolding transitions by solving a Fokker-Plank

type equation:174

∂ρ(q, t)

∂t
=

D

KT

[
ρ

(
d2∆A

dq2

)
+

(
∂ρ(q, t)

∂q

)(
d∆A

dq

)]
+D

(
∂2ρ(q, t)

∂q2

)
(4.5)

where ρ(q, t) is the time-dependent probability density and D is the diffusion

coefficient along q (in the present case at 310 K, D = 1.66 ·10−4nm2/ps). It must be

remarked that such a model is sufficiently accurate only within the approximation of

an instantaneous relaxation of all the other degrees of freedom during the diffusion

along q. When some degrees of freedom other than q relax at a comparable rate

of the diffusion along the chosen reaction coordinate, a proper kinetic model must

include such degrees of freedom and their coupling. This can be accomplished either

explicitly including all the relevant reaction coordinates in the Fokker-Plank type

equation or implicitly considering the effects of the other degrees of freedom by

monitoring the fluctuation time behavior of q as provided by MD simulations, hence

still describing the kinetics via a single reaction coordinate.

In the present case, the trajectory of the reaction coordinate q (see Figure 4.2)

reveals the presence of two distinct fluctuation regimes corresponding to two free
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Figure 4.2: Time evolution of the reaction coordinate q during the MD run at 310
K.

Figure 4.3: Free energy variation (at 310 K) along the reaction coordinate q, defined
by the bisector of the plane given by the two NO (H-bond) distances between Lys
residues. Two local minima can be observed corresponding to the folded (left) and
the unfolded (right) states. Two representative snapshots of the folded and unfolded
states extracted from the MD run at 310 K are also reported below the corresponding
minimum. Hydrogen bonds are represented with dotted lines.
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energy basins (see Figure 4.3) and characterized by different fluctuation distribu-

tions: one peaked at about 0.4 nm (corresponding to the folded state basin) and the

other peaked at about 1.0 nm (corresponding to the unfolded state basin). It must

be noted that the two identified distributions significantly overlap in the 0.7-0.9 nm

range, hence indicating that GS6 folding/unfolding kinetics is characterized by the

relaxation of a set of coupled degrees of freedom corresponding to the interconversion

kinetics of the two q-fluctuation regimes.

In this study, the transition from one fluctuation regime to the other is defined

as occurring when the reaction coordinate reaches the value corresponding to the

peak of the other regime (e.g., starting from the folded state, when q reaches 1.0).

In this way, the q trajectory can be easily subdivide into subparts corresponding to

a single fluctuation regime and hence the mean lifetime for the folded to unfolded

and reverse transition can be evaluated. In practice, the use of such a criterion for

the MD simulation data of GS6 at 310 K, provides 4 and 3 blocks of the q trajectory

for the folded and unfolded state, respectively (the lower and upper fluctuation

blocks in Figure 4.2). The mean time interval of the folded/unfolded blocks (i.e.,

the average of the corresponding time intervals), gives hence the estimate of the

unfolding/folding mean lifetime.

4.3 Results and Discussion

As mentioned in section 4.2, the plane defined by the two (H-bonds) N-O distances

between Lys residues as conformational space was used to describe the relevant

conformational state of GS6.

Using 0.43 nm as cut-off distance for the formation of each hydrogen bond (0.43

nm corresponds to the probability minimum of the N-O distance distribution, see

Figure 4.4), the chosen conformational space may be divided into three regions

representing different conformational states: the folded state (F), the intermediate

state (I), and the unfolded state (U).

It is worth to note that the density peaks of the folded and unfolded states in

Figure 4.4, corresponding to the free energy minima and relative structures along

the bisector of the plane in Figure 4.1, clearly indicate that the β-hairpin struc-

ture is relatively stable in GS6 in agreement with experimental data.165,166 The

Type II’ β-turns are stabilized by the intraturn hydrogen bond, involving the Lys

residues. Moreover, our MD simulations provide for the folded state the correct

(i.e., experimentally observed) arrangement of the residues in each β-turn with D-

Tyr and Pro residues in positions i+1 and i+2, respectively, and their side chains

relative arrangement in line with the so-called equatorial-axial rule. In the unfolded

state, the β-hairpin structure is completely disrupted with the main chain of the

peptide distorted and proline and tyrosine residues no more in the proper arrange-

ment of the β-turn. In Figure 4.5, the temperature dependence of the unfolding
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Figure 4.4: Distribution function (at 310 K) of the distance between the nitrogen
and the oxygen atoms involved in the hydrogen bonds. The left peak corresponds
to the folded structure while the right peak corresponds to the unfolded one.

chemical potential change and the isochoric internal energy change are reported,

∆uv = (∂β∆µ/∂β)v, as provided by the QGE model. In the Figure, the corre-

sponding values as obtained by the conformational probabilities and mean potential

energies given by the MD simulations are also reported.

To test severely the accuracy of the model prediction, in Figure 4.6 the isochoric

excess heat capacity change due to the peptide insertion into the solvent as obtained

by the QGE model with the corresponding values as provided by MD data were

compared (the latter were evaluated by using the mean square fluctuations of the

simulation box potential energy). Note that these MD-based values were not used

within the parametrization procedure of the model. From these figures, it is clear

the accuracy (within the noise) of the QGE model in describing and predicting the

peptide thermodynamics as provided by the MD simulations.

Interestingly, the unfolding chemical potential change shows a negative broad

maximum centered at 450 K indicating that the unfolded state is thermodynamically

more stable in the whole temperature range considered with an increased stability

for lower and higher temperatures. When considering the energetic and entropic

contributions to the unfolding chemical potential change, as provided by the QGE

model (see Figure 4.7), it clearly emerges that the unfolded state is characterized

by a lower entropy and energy than the folded state, hence indicating a reduction of

the peptide partial molar entropy coupled to an energetic optimization due to the

unfolding process. Such a counterintuitive thermodynamic behavior, observed and
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Figure 4.5: Plot of the unfolding chemical potential change (upper panel) and iso-
choric internal energy change (lower panel) as a function of temperature along the
isochore. In the Figure, the circles represent the values obtained by the direct use
of MD data with their relative error bar, while the solid line represents the corre-
sponding QGE model prediction.

described in details in a recent article for a completely different peptide,164 is driven

by the charged and/or polar groups solvent exposure occurring upon unfolding and

causing a relevant solvent rearrangement in the peptide first solvation shells leading

to the peptide partial molar volume reduction (electrostriction).

To characterize in a simple way the kinetics of the folding/unfolding transitions,

a single reaction coordinate q, defined by the bisector of the plane utilized to define

the conformational space (see Figure 1), was considered. The use of a Fokker-Plank

type equation to obtain the kinetic rate constants is appropriate only within the

approximation that all the other degrees of freedom may be considered as instanta-

neously relaxed along the reaction coordinate transition. As evidenced in the theory

section the reaction coordinate fluctuation as provided by the MD simulations (see

Figure 2) are incompatible with such an assumption, as clearly shown by the sig-

nificant overlapping of the distributions for the folded and unfolded q-fluctuation

regimes.

According to the method briefly outlined in section 4.2, the transition from one

fluctuation regime to the other (within our approximation, the folding/unfolding

transition) is defined as occurring when the reaction coordinate reaches the value

corresponding to the peak of the other regime. At 310 K, the unfolding mean lifetime

results of about 31 ns and the folding mean lifetime of about 59 ns (10 ns and 27 ns
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Figure 4.6: Plot of the excess isochoric heat capacity change due to the peptide
insertion into the solvent. In the Figure, the circles represent the values obtained
by using the mean square potential energy fluctuation of the simulation box with
the relative error bars, while the solid line represents the corresponding QGE model
prediction.

are the corresponding standard errors), in good agreement with the experimentally

measured values at 324 K (71 ns and 100 ns for the unfolding and folding mean

lifetime, respectively).167 Interestingly, the use of the Fokker-Plank type equation

for the single reaction coordinate considered, provides a significantly faster kinetics

(1.2 ns and 1.4 ns for the unfolding and folding lifetimes) indeed confirming its

inaccuracy due to the presence of kinetically coupled degrees of freedom involved in

the folding/unfolding transitions.

The nature of the hidden degrees of freedom coupled to the reaction coordinate

chosen is elusive, probably involving the peptide side chains and solvent molecules,

and beyond the scope of the present study. However, given the interest on the

folding/unfolding kinetic mechanism, the characterization of the coupled degrees of

freedom involved in the folding/ unfolding transitions will be addressed in future

works.

4.4 Conclusions

In the present study, the folding/unfolding process for the Gramicidin analogue GS6

has been extensively investigated by the use of MD simulations coupled to statistical

mechanical models to characterize the thermodynamics and kinetics of the process.
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Figure 4.7: Plot of the unfolding partial molar entropy change (upper panel) and
internal energy change (lower panel) of the peptide as a function of temperature
along the isochore as provided by the QGE model.

Such an approach allowed to quantitatively obtain the peptide folding/unfolding

partial molar thermodynamics and the corresponding kinetic rate constants. Re-

sults show that GS6 unfolded state is characterized by a lower entropy and energy

than the folded one, as a consequence of the peptide partial molar volume decrease.

Such a thermodynamic behavior driven by the charged and/or polar groups solvent

exposure (electrostriction), is in line with previous data on a completely different

small peptide.164 It is worth to note that the emerging electrostriction-driven fold-

ing/ unfolding thermodynamics as evidenced by the small peptides we studied, is

likely to be a specific feature of solvated small peptides where the effects of in-

tramolecular interactions and configurational freedom are relatively small compared

to the peptide-solvent thermodynamic coupling. However, the present data confirm

that the solvent exposure of charged and/or polar chemical groups typically results

in electrostriction effects, hence possibly implying that electrostriction may play a

significant role also in larger peptides and even in proteins. Characterization of the

folding/unfolding kinetics provided clear indications that a set of coupled degrees

of freedom is involved in the relaxation process, hence implying that a simple one-

dimensional Fokker-Plank type equation cannot be used to model accurately the

kinetics. The analysis of the reaction coordinate trajectory in terms of fluctuation

regimes (i.e., fluctuation distributions) allowed a simple identification of folding and

unfolding transitions, providing estimates of the corresponding mean lifetimes which

match rather well the experimentally determined values.
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FIVE

RECONSTRUCTION OF INFRARED

SPECTRA BY MEANS OF A QM/MD

PROCEDURE

The understanding of protein-mediated processes at the atomic level requires the

use of techniques monitoring protein structural changes. Infrared (IR) absorption

spectra of amide modes have long provided a tool for determining the secondary

structure of peptides and proteins due to the high sensitivity of amide vibrational

frequencies and intensities (particularly for the amide I mode, mostly corresponding

to the C=O stretching) on local atomic organization (e.g., hydrogen bonds, solvation

effects, hydrophobic interactions, etc.)175–177. However, the complexity of IR signals

of solvated peptides and proteins does not allow a detailed frequency-structure as-

signment to be determined experimentally.

In the last years many different theoretical-computational methods have been

proposed to model protein and peptide IR spectroscopic behaviors, the develop-

ment and parametrization of which is at present an active area of research. Rigor-

ous ab initio methods for the determination of the vibrational frequencies do not

allow to scale up to biologically relevant biomolecules and to properly include the

complexity of the solute-solvent interplay, which would require the construction and

diagonalization of the solute-solvent Hessian matrix of the quantum vibrational de-

grees of freedom at each representative liquid-state configuration. Therefore, hybrid

approaches are commonly used to reproduce the band positions and line shapes of

structurally well-defined molecules21,178–191.

Recent methods178,179 combining electronic structure/molecular dynamics (MD)

calculations make use of an empirical relation providing the instantaneous frequency

of a solute as obtained by fitting ab initio vibrational frequencies of a solute-solvent

cluster either to a linear combination of the electrostatic potentials178 or to the com-

ponents of the electric fields179 acting on the solute atoms. Another approach180,181

is based on reconstructing the vibrational behavior via purely classical atomic mo-

57
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tions making use of the time autocorrelation function of the electric dipole. These

two classes of methods are limited to the size of the solute and have been applied to

rather small molecules such as trans-N-methylacetamide (trans-NMA),180 a model

system of the peptide group, or a tri-alanine peptide.181

For the study of peptides and small proteins, other methods have appeared in

the literature21,182–191. Many of these182–189 employ quantum mechanical (QM) cal-

culations to determine the vibrational frequencies and eigenstates for single amides

which are, then, transferred to the full peptides and/or proteins and coupled em-

pirically. An alternative approach21,190,191 makes use of Hessian calculations on the

whole isolated peptide/protein in a given configuration which are, then, used to re-

construct the local, single-residue, vibrational frequencies via the Hessian matrix re-

construction method.190 In these approaches coupling effects are included by adding

a simplified electrostatic interaction, typically based on dipole-dipole interactions

and commonly termed transition dipole coupling - TDC (coupling through space)

and an empirical term providing the frequency variations due to first-neighbors rel-

ative rotations (coupling through chemical bonds). The solvatochromic effect, when

included, is modeled via an empirical term relating the single-residue frequency to

the perturbing electric potential exerted by the solvent, as obtained by calculations

on solute/solvent clusters and MD simulation.

One of the most striking results emerging from a number of the above mentioned

studies183,186,191 is that the often used empirical secondary-structure/frequency cor-

relations are at best approximated and at worst misleading. The sub-bands from

helices, sheets, turns, and loops are much broader and more overlapped than is

commonly assumed.

A rather recent challenge, that goes beyond the application of the IR spec-

troscopy to structurally well-defined polypeptides, is its use to follow protein folding

kinetics. Time-resolved IR spectroscopies have been applied to a number of α-

helical192,193 and β-hairpin peptides,167,194 the basic secondary structural elements

of proteins. A common spectroscopic feature has been observed for both α-helices

and β-hairpins, i.e., the amide I band typically shifts to lower frequency in the

folded state with respect to the unfolded state, and therefore the absorption differ-

ence spectrum (unfolded−folded) shows a negative signal at ≈1620-1630 cm−1 and

a positive signal at ≈1660-1670 cm−1.

The observation that both α-helices and β-hairpins show the same negative-

positive spectral feature in the difference spectrum suggests that this characteristic

is not dependent on the type of secondary structure but, rather, more generally on

differences in the folded and unfolded conformations. Which is, then, its origin? Can

this spectral feature be safely used as a signature of the folding/unfolding process?

These are crucial, still open, questions that we address in the present work.

In this study the amide I bands of the folded and unfolded states of two β-hairpin

peptides, a 15-residue designed peptide termed peptide 1 and a 10-mer cyclic analog
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of Gramicidin S, GS10, are evaluated using a theoretical-computational approach

based on the Perturbed Matrix Method (PMM),134–138,195,196 a mixed QM/MD

method whose main aim is to keep the configurational complexity of the system

(peptide+solvent molecules) with a proper treatment of the quantum degrees of

freedom of a portion of the system to be explicitly treated at electronic level (the

backbone peptide group). Such a method has been already successfully applied to re-

produce the IR spectrum of aqueous carbon monoxide,136 of carbon monoxide within

Myoglobin 137 and of liquid water.138 The good agreement observed here between the

theoretical and experimental spectra of the two peptides shows the basic correctness

of the calculations. Therefore, the conclusions on the contribution of individual, or

subsets of, peptide groups to the spectra are considered to be meaningful, allowing

the structure-spectrum correlations in unfolded−folded amide I difference spectra

to be understood at atomic detail.

5.1 Methods

5.1.1 Unperturbed quantum chemical calculations

As a model of the peptide group, i.e., the quantum center to be explicitly treated at

electronic level, trans-NMA was chosen (Figure 5.1). Quantum chemical calculations

were carried out on the isolated trans-NMA molecule at the Time Dependent Density

Functional Theory (TD-DFT) with the 6-31+G(d) basis set.

Figure 5.1: Structure of trans-N-methylacetamide

This level of theory was selected because it represents a good compromise be-

tween computational costs and accuracy. The mass-weighted Hessian matrix was

calculated on the optimized geometry at the B3LYP/6-31+G(d) level of theory and

subsequently diagonalized for obtaining the unperturbed eigenvectors and related
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eigenvalues. The eigenvector corresponding in vacuo to the amide I mode was, then,

used to generate a grid of points (i.e., configurations) as follows: a step of 0.05 a.u.

was adopted and the number of points was set to span an energy range of 20 kJ/mol

(in the present case 31 points). For each point, six unperturbed electronic states

were then evaluated at the same level of theory providing the basis set for the PMM

calculations, i.e., the Φ0
k eigenfunctions (see section 2.4.1).

5.1.2 Molecular dynamics simulations

A series of 50 ns-long atomistic MD simulations of peptide 1 and GS10 were per-

formed in explicit solvent. For each peptide, three starting structures represent-

ing the unfolded state were extracted randomly from a simulation of 10 ns that

was started from a fully extended configuration, for peptide 1, and from a high-

Temperature generated structure for the cyclic GS10 peptide; three starting struc-

tures representing the folded state were taken from a simulation of 10 ns that was

started from the NMR structure. The MD simulations were performed with the

program GROMACS197 and the GROMOS96 force field95 was used for the pep-

tide. The solvent used was D2O, as to reproduce the experimental conditions, and

was modeled using the deuterated spc water model198. Each of the twelve start-

ing configurations was placed in a dodecahedral water box large enough to contain

the peptide and at least 1.0 nm of solvent on all sides at a water density of 55.32

mol/l. Periodic boundary conditions were used and the long range electrostatic in-

teractions were treated with the Particle Mesh Ewald method199. Coordinates were

saved at every 1 ps. Simulations were performed in the NVT ensemble with the

isokinetic temperature coupling200 to keeping the temperature constant at 300 K.

Three positive (Na+) and two negative (Cl-) counter ions for peptide 1 and GS10,

respectively, were added by replacing the corresponding number of water molecules

so as to achieve a neutral simulation box. A 20 ns-long atomistic MD simulation of

trans-NMA in aqueous solution was performed in explicit solvent (deuterated spc

water model198) using the same conditions and simulation protocol described above.

For the trans-NMA equilibrium structure, that was kept fixed during the simula-

tion, the DFT-based optimization as described above was used. Atomic charges

were calculated using standard fitting procedures201 on the optimized geometry at

the B3LYP/6-31+G(d) level of theory.

5.1.3 Theory

In PMM calculations,134–136,138,195,196 similarly to other QM/MM procedures,202–204

it is essential to pre-define a portion of the system to be treated at electronic level,

hereafter termed as quantum center (QC), with the rest of the system described at a

classical atomistic level exerting an electrostatic perturbation on the QC electronic

states (see section 2.4). An orthonormal set of unperturbed electronic Hamiltonian



Results and Discussion 61

(H̃0) eigenfunctions (Φ0
k) are initially evaluated on the QC structure of interest.

It could be then constructed for each QC-environment configuration (as generated

by MD simulation) the perturbed electronic Hamiltonian (H̃) (see Eq. 2.30): the

diagonalization of H̃ provides a set of eigenvectors and eigenvalues representing the

QC perturbed electronic eigenstates and energies.

Such a procedure, explained in details in section 2.4.2 and already used for de-

termining perturbed vibrational states for biatomic QCs,136,137 has been recently

shown to efficiently work for evaluating perturbed vibrational states also for poly-

atomic QCs.138 The basic approximation of the method is that for typical quantum

vibrational degrees of freedom the environment perturbation does not significantly

alter the vibrational modes (i.e., the mass-weighted QC Hessian eigenvectors) but

only the related eigenvalues. In the present study, this procedure has been applied

to study the amide I mode of trans-NMA, a model system for the peptide group, in

D2O solution. Subsequently, the same protocol has been adopted also for evaluating

perturbed amide I frequencies for the peptide groups (residues) belonging to the

N -residues β-hairpin peptides in D2O solution. Trans-NMA fitted to the peptide

group of each residue was used as the corresponding QC and hence its (unperturbed)

mass-weighted Hessian eigenvectors provide the vibrational modes of each peptide

group. The sidechain of the considered peptide group, the N -1 residues and the

solvent define the perturbing environment at each configuration generated by MD

simulation and the distribution of the oscillators perturbed-frequencies make up the

total amide I band.

5.2 Results and Discussion

5.2.1 Infrared spectra of trans-NMA

The amide I experimental vibrational frequency of the isolated trans-NMA ranges

from 1707 cm−1 (in an argon matrix at 20 K205) to 1714-1731 cm−1 (in the gas

phase at ≈100 K206) depending on the experimental conditions. The computed un-

perturbed amide I frequency, evaluated here using standard geometry optimizations

and frequency calculations at the harmonic approximation (see Methods section), is

1754 cm−1, 47 cm−1 higher than the experimental one (we take as the reference ex-

perimental value the one recorded in the argon matrix at 20 K.205) This shift is rather

common for this kind of calculations205,207 and is usually attributed to various slight

inaccuracies of the quantum calculations including the harmonic approximation, as

indicated by a recent work.208

The experimental IR spectrum of trans-NMA in the amide I region in D2O

solvent at room temperature is presented in Figure 5.2 (the experimental data are

taken from Song et al..209) The maximum of the amide I peak in solution is at about

1622-1623 cm−1, i.e., downshifted by ≈80-85 cm−1 with respect to the frequency
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Figure 5.2: Comparison of the computed (black line) and experimental (red line)
infrared spectra in the amide I region of trans-NMA in D2O solution. For the
sake of comparison the computed frequencies have been uniformly shifted to lower
frequencies by 76 cm−1 in order to align the computed to the experimental peak
centered at 1622 cm−1

of the isolated trans-NMA178,206 (unperturbed frequency), with a full width at half

maximum (fwhm) of ≈30 cm−1. The amide I band of trans-NMA in D2O solution,

computed using the PMM/MD procedure (see section 5.1.3 and 2.4.2), provides a

spectrum with the maximum at 1698 cm−1 corresponding to a downshift of 56 cm−1

with respect to the unperturbed frequency and hence reproducing most of the large

negative frequency shift experimentally observed. Further, the spectrum shape and

width is very well reproduced by PMM/MD calculations (fwhm=30 cm−1) as clearly

shown in Figure 5.2.

It is worth noting that the missing 25-30 cm−1 of the PMM/MD-derived shift

with respect to the experimental one are due to a combination of higher order effects

possibly including the slight inaccuracies of the calculated dipoles involved in the

definition of the Z̃1 matrix (Eqs. 2.30 and 2.31 in section 2.4.1) and the fact that

we disregard any excitonic coupling and/or anharmonic behavior.

5.2.2 Infrared spectra of β-hairpins

The structures of the two β-hairpins studied here, peptide 1 (SESYINPDGTWTVTE)

and GS10 (VKLYPVKLYP), are presented in Figure 5.3. The peculiar feature of

these two peptides is that they show an opposite pattern of the aminoacids of the

β-sheet with the hydrogen-bonded C=O groups pointing inwards (in) or with the

C=O groups pointing towards the solvent (out), i.e., for GS10 the “in” residues are
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hydrophobic and the “out” residues are hydrophilic, while for peptide 1 the “in”

residues are hydrophilic and the “out” residues are mainly hydrophobic.

Figure 5.3: NMR-derived β-hairpin structures of peptide 1210 (A) and GS10165 (B).

In the experiments spectra at different Temperatures are collected to monitor

folded and unfolded populations (within the usual assumption that the higher the

Temperature, the higher the unfolded population). As the Temperature decreases

(i.e., folded state population increases), the amide I band shifts to lower frequency

and therefore the unfolded−folded absorption difference spectrum shows a negative

signal at ≈1632 cm−1 and a positive signal at ≈1664 cm−1, crossing zero at ≈1645

cm−1 (see Figure 5.4, panel A). Commonly, the contribution to these signals from

different structural elements is assigned on the basis of empirical rules, e.g. the

≈1665 band component is typically associated with turn or loop structures and

the negative-going feature centered at ≈1630 is considered characteristic of β-sheet

structures167,210,211. Nevertheless, the assignment is often not unique, e.g. several

α-helical peptides show the same negative-positive feature in the difference spectrum

centered at the same positions.192,193,212

To shed light into the structure/spectrum correlations, the spectra of the folded

and unfolded states are here calculated from simulation by applying the PMM/MD

procedure to the folded and unfolded state ensembles, respectively.

The experimentally-derived and computed (via the PMM/MD procedure de-

scribed in sections 2.4.2 and 5.1.3) difference spectra (unfolded−folded) of peptide 1
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Figure 5.4: Comparison between experimental (panels A and C) and computed
(panels B and D) difference spectra for peptide 1 (panels A and B) and GS10
(panels C and D). The experimental difference spectra were generated by subtracting
the spectrum collected at 3.0 ◦C from the one collected at 61.0 ◦C (A) and by
subtracting the spectrum collected at 2.0 ◦C from the one collected at 85.0 ◦C (C)
. The computed difference spectra (B and D) were generated by subtracting the
spectrum of the folded state from the spectrum of the unfolded state. For the sake
of comparison, the computed frequencies (panels B and D) have been uniformly
shifted to lower frequencies by 73 cm−1 (B) and 87 cm−1 (D) in order to align the
computed amide I peak to the experimental maximum. The absorbances are given in
arbitrary units. The error bars correspond to a standard error of the corresponding
property estimated over three independent sets of trajectories.

and GS10 are presented in Figure 5.4 and are in very good agreement with the exper-

imental ones, showing the characteristic negative-positive signature. The computed

frequencies of peptide 1 are upshifted by 73 cm−1 with respect to the experimen-

tal ones. This shift is consistent with the corresponding difference observed for

trans-NMA in D2O solution (76 cm−1 - see caption of Figure 5.2) and is, hence,
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largely determined by the slight inaccuracies of the estimated unperturbed proper-

ties, as discussed in the previous subsection. The computed frequencies of GS10 are

upshifted by 87 cm−1 with respect to the experimental ones.

One useful characteristic of our approach is that the amide I signal arising from

any desired peptide group of the polypeptide chain may be isolated. In Figure 5.5,

panel A the contributions from each peptide group (aminoacid) to the difference

spectrum are shown together, along with the total signal. Interestingly, it can be

seen that part of the residues shows the negative-positive signal, while others show

the opposite trend.

The questions arise to which is the origin of the two different trends for different

aminoacids and to why the total IR difference spectrum of peptides, both α-helices

and β-hairpins, appeared to date167,192–194,212 shows the negative-positive signature.

In what follows we investigate the role played by two factors: the position of the

residue in the folded β-hairpin, i.e., “in”, “out” or “turn” residue, and the nature

of the side chain, i.e., hydrophobic (phobic) or hydrophilic (philic).

The contributions to the difference spectrum arising from these different factors

were evaluated by summing up the signals of the individual residues belonging to

the given category. These are shown in Figure 5.5 panel B and Figure 5.5 panel

C. It can be seen that the role played by the position in the folded structure is not

unique in the two peptides, i.e., for peptide 1 the “in” residues show a positive-

negative signal and the “out” residues a negative-positive signal, while the opposite

is true in the GS10 peptide. Instead, the nature of the side chain, regardless of

its position in the folded structure, shows the same trend in both peptides, i.e., all

residues with a hydrophobic sidechain show a negative-positive signal giving rise to a

pronounced negative-positive contribution to the total signal, while residues with a

hydrophilic sidechain show both trends giving rise to a weak positive-negative overall

contribution (Figure 5.5 panel C). Hence, the global negative-positive spectroscopic

feature, typical of peptides, arises from the overcompensating contribution of the

hydrophobic sidechains.

Why do the hydrophobic sidechains provide a negative-positive signal in the un-

folded−folded difference spectrum, i.e., why is the unfolded amide I peak shifted

to higher frequencies with respect to the folded band? To answer this question, we

study the effect of the electric field, E, exerted by the environment on the different

vibrating C=O dipoles. The component of the electric field along the vibrating C=O

dipole, EC=O, for a representative hydrophobic aminoacid in the unfolded and folded

states is reported in Figure 5.6, panel A. It can be seen that for the hydrophobic

sidechains EC=O is lower in the unfolded state, giving rise to the observed shift to

higher frequencies of the amide I band with respect to the folded state (negative-

positive signal in the unfolded−folded difference spectrum) (see scheme in Figure

5.6 panel B).

Such electric field variations mainly arise from the fact that the sidechain of
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Figure 5.5: Contribution of the single peptide groups to the computed
unfolded−folded amide I difference spectrum for peptide 1 (left) and GS10 (right).
A) All the peptide groups are shown separately. B) The signals arising from “in”,
“out” and “turn” peptide groups are grouped into three separated groups. C) The
signals from “phobic”, “philic” and aminoacids not included into any category (pro
and gly) are grouped into three separated groups. The absorbances are given in
arbitrary units.



Results and Discussion 67

Figure 5.6: Effect of the hydrophobic sidechains on the amide I band. A) Component
of the electric field along the vibrating C=O dipole of the peptide group, EC=O, for
a representative hydrophobic residue in the unfolded and folded states. B) Scheme
summarizing the effect of the hydrophobic sidechain on the amide I mode vibrational
frequency of the peptide group, to which the sidechain is attached, in the folded and
unfolded states.
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Figure 5.7: Distributions of the sidechain-carbonyl distance (distance between the
corresponding centers of mass) (A) and radial distribution functions of the polar
atoms around the peptide carbonyl group (B) for the unfolded (solid line) and folded
(dashed line) states of a representative hydrophobic residue. It can be noted that
in the unfolded state the population at shorter distances is increased, thus implying
that the sidechain is closer to its peptide group in the unfolded state than in the
folded one.

the hydrophobic aminoacids of the studied peptides is on average closer to its own

peptide group in the unfolded state with respect to the folded configurations (see

Figure 5.7).

In the unfolded configurations, the hydrophobic sidechains provide a less polar

environment to the vibrating amide I mode (mainly C=O stretching) (Figure 5.6,

panel B). Therefore, such decreased local electrostatic interactions lead to a shift

of the unfolded peak toward higher frequencies, i.e., towards the amide I band of

the isolated peptide group (the trans-NMA in vacuo). The global negative-positive

signal in the unfolded−folded amide I difference spectrum, being made up of all

the peptide groups, is hence dominated by the effect of the hydrophobic sidechains

(Figure 5.6, panel B).
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5.3 Conclusions

In recent folding-kinetics experiments, changes in the IR difference spectrum (unfol-

ded−folded) is being used to monitor time changes in unfolded/folded populations.

Given the increasing amount of these experiments, an understanding at the atomic

level of the structural features underlying the spectral differences is due.

Here, by means of theoretical-computational methods, the IR spectra in the

amide I region of two β-hairpin peptides, peptide 1 and GS10, for which the exper-

imental spectra are available were studied. The peptides show the common pattern

observed in the unfolded−folded difference spectrum of peptides studied to date,

i.e., the amide I peak of the unfolded state is shifted toward higher frequencies with

respect to the folded peak, leading to the characteristic negative-positive signal. The

amide I bands are computed using a QM/MD methodology, the Perturbed Matrix

Method (PMM), which provides results in good agreement with the experiments.

Particular attention is given to the effect arising from the position of the different

residues, i.e., forming or not inter-strand hydrogen bonds in the folded state, and

from the nature of the sidechains, i.e., hydrophobic or hydrophilic.

The results show that the main determinant to the negative-positive signal in

the unfolded−folded difference spectrum arises from the hydrophobic sidechains.

In the unfolded configurations the hydrophobic sidechains are on average closer to

their own peptide group with respect to the case of folded configurations, hence

providing a less polar environment to the vibrating amide I mode (mainly C=O

stretching). A less polar environment gives rise to a shift of the unfolded peak

toward higher frequencies, i.e., toward the amide I band of the isolated peptide

group, with respect to the folded peak. This effect is seen for hydrophobic residues

both involved and not in inter-strand hydrogen bonds, thus overwhelming possible

effects arising from the different position of the aminoacids in the secondary structure

of folded configurations.

The good quantitative reproduction of the experimental IR spectral changes

upon folding of the studied peptides, as obtained by the PMM/MD procedure used

in this paper disregarding any excitonic coupling (see the SI), indicates that the

main features of the unfolded−folded difference spectrum may arise from peptide-

solvent interactions without really requiring higher order effects. Therefore, the

amide I excitonic coupling might be less relevant to IR spectral differences upon

folding than it is often assumed176,213–215.

These results show that a physically coherent procedure, not involving the use of

empirical, adjustable parameters, may provide an efficient tool to characterize and

interpret IR spectra of peptides and, possibly, proteins in solution in terms of their

atomistic behavior. One possible outlook is a further development of the method to

include higher order effects, such as anharmonic correction and excitonic coupling,

in order to study and interpret 2D IR spectra which are recent tools used to probe
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structures and dynamics in complex systems177,214,215.



CHAPTER

SIX

ANALYSIS OF IR SPECTRA OF GRAMICIDIN

S ANALOGS

In this chapter, the study of IR spectra by means of theoretical-computational tech-

niques started in chapter 5.1 is expanded by reconstructing the IR temperature

dependent spectra of GS6 and GS10. GS6 has been already studied from a thermo-

dynamic and kinetic point of view (see chapter 4), and the unfolded-folded spectrum

of GS10 were presented in the previous chapter. Here, the analysis of IR spectra

of β-hairpin peptides is deepened in order to shed light in the interpretation of

experimental IR spectra.

β-hairpin peptides are particularly interesting model systems because, despite

their small size (typically less than 20 residues), they exhibit various properties that

are typical in globular proteins, e.g. they may contain a hydrophobic core and/or

exhibit a cooperative thermal folding/unfolding transition.216,217

Although experimental measurements of the folding kinetics of β-hairpins are

scarce, 87,89,167,210,216,218 in the past decade a remarkable number of theoretical and

computational studies have been conducted to investigate hairpin structure, stability

and folding transitions.217,219–227 Molecular dynamics (MD) simulations have proven

to be a powerful tool for the investigation of the atomistic behavior of solvated β-

hairpin peptides, including structural/conformational transitions228–230 and, more

recently, even folding/unfolding kinetics and thermodynamics.163,231,232

Fourier transform infrared (FTIR) spectroscopy has been widely used to study

peptides and proteins secondary structures under equilibrium conditions19,233 (see

chapter 5.1). Despite its diffusion to obtain structural information of numerous

peptides and proteins in solution, this method has the limitation that the band

shapes for different secondary structures may be similar to one another and highly

congested,21 thus leading to spectra which are difficult to understand in terms of

structures and conformational changes. IR spectra interpretation is typically based

on empirical rules and widely accepted assumptions which general validity cannot

be always demonstrated (e.g., IR spectra at different temperatures are collected in

71
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order to monitor the unfolding process within the assumption that the higher the

temperature the higher the unfolded population).

Here, the IR spectra of two β-hairpin analogs of Gramicidin S, for which ex-

perimental spectra were available (see chapter 4, are computationally reconstructed

by means of a theoretical-computational approach based on the Perturbed Matrix

Method (PMM),134,135,195,196 in order to clarify the relationship between conforma-

tional and spectroscopic features and to shed light on folding/unfolding transitions.

The structure of the 6-meric (GS6) and a 10-meric (GS10) analogs of Gramicidin

S are presented in Figure 6.1. The results obtained, in combination with previous

theoretical-computational data on folding/unfolding thermodynamics and kinetics

of GS6 (see chapter 4),232 are finally compared to the available experimental data

obtained by means of temperature dependent FTIR spectroscopy.167

Figure 6.1: Snapshots of the β-hairpin structure of GS6 (panel A) and GS10 (panel
B) extracted from MD runs. Hydrogen bonds are represented with dotted lines.

6.1 Methods

For the following analysis, the same trajectories used in chapter 4, obtained as

explained in section 4.1, are used for GS6. The same simulation protocol was used

to obtain for GS10 the following trajectories:

200 ns at 280 K, 900 ns at 330 K, 980 ns at 360 K, 490 ns at 400 K.
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The folded and unfolded conformation for the two peptides are defined via the

hydrogen bonds (H-bonds) that characterize the hairpin. In the case of GS6 there are

two H-bonds and, as previously described in details (see section 4.2), the secondary

structure states are defined by projecting the MD trajectories onto the plane defined

by the two distances between the oxygen and nitrogen atoms involved in the two

H-bonds. The folded and unfolded conformational states are identified: in the folded

state both H-bonds are formed and in the unfolded state none of the two H-bonds

is formed.

In the case of GS10 there are four hydrogen bonds. Coherently with the defini-

tion used for the smaller peptide, the folded and unfolded conformations are defined

by the projection of the MD trajectories along the eigenvector corresponding to the

largest eigenvalue obtained by diagonalizing the covariance matrix of the distances

between the oxygen and nitrogen atoms involved in the four H-bonds. Such an

eigenvector defines a conformational coordinate (q) providing the largest concerted

H-bonds fluctuations and hence well describing the peptide folding/unfolding tran-

sitions. In Figure 6.2 it is shown the time course of the q conformational coordinate

as obtained from the MD trajectory at 330 K, clearly indicating the folded and

unfolded states.

Figure 6.2: Time evolution of the projection of the MD trajectory at 330 K on the
first eigenvector of the covariance matrix of the distances between the oxygen and
nitrogen atoms involved in the four H-bonds of GS10.
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6.2 Results and Discussion

In chapter 4 the thermodynamics and kinetics of GS6 has been quantitatively char-

acterized by means of MD simulations and a statistical mechanical model based

on the Quasi Gaussian Entropy (QGE) theory.162,234–236 The results obtained can

be summarized as follows: i) the unfolded state is thermodynamically more stable

than the folded one in the whole temperature range considered (280 K-600 K) with

an increased stability at lower and higher temperatures; ii) the unfolded state is

characterized by a lower entropy and energy than the folded one; iii) the unfolding

and folding mean life-times were of the order of tens of nanoseconds.

Figure 6.3: Temperature-dependent FTIR spectra for the 6-meric cyclic peptide
GS6 obtained by Maness et al..167 (A) Absorbance spectra in the amide I region;
the temperature of the individual traces range from 2oC to 85oC. (B) Difference
spectra obtained by subtracting the spectrum at 2oC from the spectra at higher
temperatures.
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The results concerning the structural features of the folded conformation of the

peptide, the order of magnitude of the folding/unfolding chemical potential change

and the folding/unfolding kinetic rates were in good agreement with the available ex-

perimental data.165,167 However, the calculated folding/unfolding entropy and energy

change, according to ii), showed an opposite sign with respect to the correspond-

ing experimental estimates as derived by IR temperature dependent spectra, thus

leading to increasing folded state population as temperature increases within the

experimental temperature range (280 K-360 K). Starting from these observations,

the IR temperature dependent spectra are here reconstructed from the simulated

trajectories and compared with the experimental ones, in order to clarify both the

thermodynamic data and the experimental spectra.

The IR spectrum of GS6 obtained by Maness et al.167 shows a peak centered

at ≈ 1630 cm−1, corresponding to the amide I band. This peak is experimentally

studied at different temperatures (from 2 ◦C to 85 ◦C) by means of equilibrium FTIR

spectroscopy in order to estimate the folded and unfolded state thermodynamics,

assuming that at the extreme temperatures the population is either fully folded (2
◦C) or fully unfolded (85 ◦C), in contrast to the theoretical-computational results.

As the temperature increases, the peak shifts to higher frequencies and its intensity

decreases: consequently, the difference spectra obtained by subtracting the spectrum

at the lowest temperature from the ones at higher temperatures exhibit a negative-

positive trend along the frequency axis. The experimental spectra obtained by

Maness et al. are reported in Figure 6.3.

The corresponding computed spectra obtained at 6 different temperatures (280

K, 310 K, 360 K, 400 K, 500 K and 600 K) are presented in Figure 6.4 (panel

A). In the same Figure (panel B) the temperature difference spectra obtained by

subtracting from the spectra at 360 K and 310 K the spectrum at 280 K is also

shown. Comparison of this Figure with the corresponding experimental data,167

clearly indicates that the PMM/MD procedure well reproduces the experimental

results, properly providing the spectrum shape (fwhm, ≈ 35 cm−1 in the computed

spectrum vs ≈ 40 cm−1 in the experimental one) and the temperature trend (see

panel B). Note that the spectra in Figure 6.4 have been uniformly shifted to lower

frequencies by ≈ 95 cm−1 in order to align the computed amide I band with the

experimental maximum. Such a shift, largely due to the inaccuracies of the ab-initio

calculations, has been applied to all the computed GS6 IR signals reported in this

paper.

The spectra at different temperatures are experimentally studied to monitor

folded and unfolded populations in order to elucidate the folding/unfolding kinetics

and thermodynamics of β-hairpins, within the usual assumption that the unfolded

population raises with the temperature. The PMM/MD procedure is then applied

to the folded and unfolded ensembles as derived from the analysis of the MD tra-

jectories (see Methods) and the spectra of the folded and unfolded states are re-
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Figure 6.4: Panel A: Computed IR spectra in the amide I region of GS6 in D2O
solution at 280 K, 310 K, 360 K, 400 K, 500 K and 600 K. Panel B: Difference
spectra obtained by subtracting the spectrum calculated at 280 K from the spectra
calculated at 310 K and 360 K. For the last one error bars are reported corresponding
to the standard error evaluated over three independent trajectories.

constructed. In Figure 6.5 (panel A) the computed GS6 unfolded−folded difference

spectra evaluated at 280 K, 310 K and 360 K are reported (it is worth to note that

such difference spectra are, within the noise, essentially indistinguishable). These

spectra show a positive-negative trend as the frequency increases, that is an opposite

trend with respect to the experimental and computed temperature difference spec-

tra. This is in agreement with the thermodynamic results232 which showed that the

folded state population increases as the temperature raises in the range between 280

K and 360 K (according to i)) and consequently the temperature difference spectra
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should provide an opposite trend with respect to the unfolded-folded difference one.

The spectroscopic effect of the increasing folded state population in temperature is

shown in panel B of Figure 6.5, where it is reported the folded and unfolded state

contribution to the IR spectrum at each of the three considered temperatures.

Figure 6.5: Panel A: Difference spectra of GS6 obtained by subtracting the spectrum
of the folded state from the spectrum of the unfolded state at 280 K (black line);
310 K (red line) and 360 K (blue line). Error bars are reported corresponding to
the standard error evaluated over three independent trajectories for the spectra at
310 K. Panel B: Contribution to the IR spectra of the folded state (black lines) and
unfolded state (red lines) at 280 K, 310 K, and 360 K.
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The temperature dependent spectrum of GS10 is also reconstructed: in Figure

6.6 (panel A) the spectra obtained at 280 K, 330 K, 360 K, 400 K are reported.

There is a good agreement between the experimental and the calculated spectra,

both in the temperature trend (see panel B and the corresponding experimental

data167) reported in Figure 5.4 and in the full width at half maximum ( ≈ 40 cm−1

in the experimental spectrum and ≈ 44 cm−1 in the calculated one).

Figure 6.6: Panel A: IR spectra in the amide I region of GS10 in D2O solution at
280 K, 330 K, 360 K and 400 K. Panel B: Difference spectra obtained by subtracting
the spectrum calculated at 280 K from the spectra calculated at 330 K, 360 K and
400 K. For the first one error bars are reported corresponding to the standard error
evaluated over three independent trajectories.
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In this case too, the computed spectra have been shifted to lower frequencies

by ≈ 87 cm−1 in order to align the obtained amide I band with the experimental

maximum.

From the Figure, it can be seen that in this case both the temperature difference

spectrum (panel B ) and the unfolded−folded difference spectrum (inset, already

shown in Figure 5.4), show a common negative-positive signal, thus implying that

for this peptide an increasing unfolded state population is present as temperature

increases.

In order to better understand the results concerning GS6, the contribution to

the total spectrum of each residue belonging to that peptide is examined. The

total trend results from the contribution of both negative-positive and positive-

negative signals. In Figure 6.7, the contribution to the total difference spectrum

of hydrophobic, hydrophilic and neutral residues is reported for GS6 and , for the

sake of comparison, also for GS10 (data already shown in Figure 5.5). In the case of

GS10 (Figure 6.7, panel A), as previously discussed, the hydrophobic side chains are

characterized by a negative-positive signal that is much more intense with respect

to the one of neutral and hydrophilic residues.

In the case of GS6, no hydrophobic residues are present and the positive-negative

trend of the unfolded−folded difference spectrum results from the contribution of

both positive-negative and negative-positive signals (Figure 6.7, panel B). The ab-

sence of hydrophobic residues in GS6 peptide seems hence essential to determine

the inversion of the spectral trend. Furthermore, the unusual thermodynamic be-

havior of GS6, being driven by electrostriction (see section 4.3, i.e. the charged

and/or polar groups solvent exposure during unfolding leads to the rearrangement

of the solvent molecules,is likely to be determined by the presence of hydrophilic

side chains only in the peptide.

The apparent discrepancy between some calculated and experimental data for

GS6 has been clarified, residing in the peculiar thermodynamic behavior of the

peptide which doesn’t allow nor the common assumption that the higher the tem-

perature, the higher the unfolded population, neither the usual empirical rules that

assign a spectral contribution to a particular structural element.

6.3 Conclusions

IR temperature-dependent spectra have been widely used in order to characterize

folding/unfolding transitions in peptides and proteins and, more recently, also to

characterize folding/unfolding kinetics. In this paper, the experimental temperature

dependent spectra of two small β-hairpin peptides, GS6 and GS10, are reconstructed

by means of all-atoms MD simulations and a theoretical-computational approach

based on the PMM method. The temperature difference spectra are analyzed as

well as the unfolded−folded difference spectra. The temperature difference spectra
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Figure 6.7: Contribution of hydrophilic, hydrophobic and proline to the total
unfolded-folded difference spectrum of GS10 (panel A) and GS6 (panel B).

are in good agreement with the experimental ones, showing the usual negative-

positive trend. The unfolded−folded difference spectra, on the contrary, result to

be different for the two peptides. For GS10 the unfolded−folded difference spectrum

shows the same features of the temperature difference spectra, hence indicating the

usual unfolded population increase as temperature raises. In the case of GS6 an

opposite trend, that is a positive-negative signal, is observed for the unfolded−folded

difference spectrum. This can be attributed to the absence of hydrophobic side

chains which constitute the main contribution to the IR unfolded−folded difference

spectrum, showing an intense characteristic negative-positive signal. The inversion
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between the temperature difference spectrum and the unfolded-folded one, indicates

that in the considered temperature range the folded state population increases as

the temperature is raising from 280 K to 360 K, confirming the previous data on

GS6 thermodynamics232 as obtained by means of the statistical mechanical model

based on the QGE theory (see chapter 4). Consequently, for GS6 peptide it is

not possible to interpret the experimental temperature difference spectra obtained

by subtracting the spectrum at the lowest temperature from the spectra at higher

temperatures, as representative of the unfolding process.

The use of PMM/MD procedures in order to reconstruct IR spectra, providing

the possibility to separate the contribution of each side chain to the total spectrum,

highlights the importance of the hydrophilic or hydrophobic nature of residues in

determining the IR signal of peptides. It can be then a useful tool to interpret

experimental IR spectra and also to better understand the folding/unfolding process.
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CHAPTER

SEVEN

STRUCTURE OF THE LIPODEPSIPEPTIDE

SYRINGOMYCIN E

Syringomycin is the most studied member of the family Lipodepsipeptide com-

pounds that characterize the secondary metabolism of the plant associated bacterial

species Pseudomonas syringae pv. syringae. It is a nine amino acids containing

lactone ring, with the N-terminal residue N-acylated by a 3-hydroxyacyl moiety

with 10, 12 of 14 carbon atoms in the three homologous forms, called SRA1, SRE

and SRG respectively237–239. The lipopeptide is cyclised through an ester linkage

between the side chain hydroxyl of 1-Serine and the backbone carboxyl group of

C-terminal residue, 4-chlorothreonine (Figure 7.1). These structural features are

shared by other lipodepsinonapeptides (LDNPs) produced by various strains of P.

s. pv. syringae: syringotoxin (ST)240, syringostatins238, pseudomycin241, where the

N-terminal residue, Ser, and the C-terminal tripeptide 3-(OH)Asp-Dhb-4 -(Cl)Thr,

are conserved.

Syringomycin was shown to play a role in plant-microbe interactions by enhanc-

ing the bacterial virulence 242 and it also displays a phytotoxic activity in vitro and

a prominent fungicidal activity.243 Moreover, the activity of LDNPs against human

pathogens, as well as against causal agents of life threatening infections, stimulated

the interest for possible medical applications of these compounds. 244,245 However,

the primary target of SRE in plant, microbial and animal cells is the plasma mem-

brane and the toxic activity is due to the formation of pores acting as non selective

ion channels; the resulting membrane depolarization and non controlled ion flux

leads to cell death.246

The interesting and not fully exploited activities of SRE, led us to investigate

its conformation in the membrane-mimicking environments, in order to gain an

insight into the structural determinants of the membrane interaction. In perspective,

such information could be useful in designing structural analogues with the aim to

enhance the selectivity towards membranes of different compositions. Previously a

structural investigation of SRE based on NMR spectroscopy has been reported.247
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Figure 7.1: The chemical formula of SRE. Chiralities are as follows: 1-(L)Ser; 2-
(D)Ser; 3(D)Dab; 4(L)Dab; 5(L)Arg; 6(L)Phe; 7Dhb, 8OH-(L)Asp, 9Cl-(L)Thr

The authors determined the structure in water solution by NMR and that structure

was then translated into an octane medium by computer molecular dynamics (MD)

simulations (octane is used to mimic the membrane environment).

In this study, 1NMR spectra of SRE bound to negatively charged SDS mi-

celles have been recorded and MD simulations have been performed in octane so-

lution.A subset of NOEs were used and the three-dimensional structure of SRE in

the membrane-like environment was obtained. The following discussion will focus

on the computational part of the study, citing the relevant experimental results in

the results and discussion sections (7.2 and 7.3).

7.1 Methods

The initial structure of SR-E was created using Pymol version 0.99 (DeLano Scien-

tific), on the basis of the experimental chemical structure and stereochemistry.238,239

Geometry optimization of that structure was done by using the empirical potential

energy function of the GROMOS96 force field168 that contains terms representing

covalent bond stretching, bond angle bending, harmonic dihedral angle bending,

sinusoidal dihedral torsion, van der Waals and electrostatic interactions. As SRE

contains some residues that were undefined in the GROMOS96 force field, the cor-

responding parameters of the potential energy function were taken from similar

functional groups. To obtain the structure in an apolar solvent and in analogy with

previously reported simulations,247 the molecule was solvated in a periodic cubic box

of dimensions 3.41x3.41x3.41 nm with 147 molecules of octane in order to reproduce

the density of liquid octane at 20oC (702.52 g/l). The system was then equilibrated
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Atom Pair Intensity ri,j
(nm)

NH(Ser 2)-CH2(Tail) weak 0.55
NH(Dab 3)-CH(OH-Asp 8) strong 0.37
CH(Dab 3)-NH(OH-Asp 8) weak 0.55
NH(Dab 4)-NH+

3 (Dab 4) weak 0.50
NH(Arg 5)-NH+

3 (Dab 4) weak 0.50

Table 7.1: Distance restraints (rij) applied between each atom pair during the equi-
libration procedure with the corresponding intensity of the NOE signal

and a first MD simulation at a temperature of 300 K was performed for 500 ps. All

MD simulations, in the NVT ensemble, with fixed bond lengths103 and a time step of

2 fs, were performed with the GROMACS software package.248 A non bond pairlist

cutoff of 9 Åwas used and the long range electrostatic interactions were treated

with the particle mesh Ewald method.199 The isokinetic temperature coupling200

was used to keep the temperature at the desired value. Six snapshots of the system

were extracted from the trajectory of the first simulation at regular time intervals

of 100 ps. Each configuration was simulated at 600 K with the gradual addition of

the interproton distance restraints estimated from two-dimensional NOESY spectra

obtained in SDS micelles. Only five of the experimentally detected NOEs were ap-

plied during the simulation as distance restraints (see Table 7.1). All NOEs were

classified into three groups as strong, medium or weak and given upper limits ri,j =

0.32, 0.40 and 0.50 nm, respectively,249 according to previous calculations on other

lipodepsipeptides.250–252

As the united-atom representation was used, in which protons attached to aliphatic

groups were treated implicitly, an additional distance term of 0.05 nm was added to

the upper distance bounds when the distance restraint involved an implicit proton.

An attractive half-harmonic restraining potential was applied to force the molecule

to satisfy selected NOE distances. The gradual addition of the NOEs restraints

was achieved by performing a series of 200 ps length MD simulations at 600 K

of each configuration with the following values of the half-harmonic force constant

k : 0 .05k0 , 0 .3k0 , 0 .5k0 , 0 .8k0 , k0 , with k0 = 1000kJmol−1nm−2.

The temperature was then lowered again to 300 K and a 200 ps length run was

performed with force constant k0 for the distance restraints. The distance restraints

were then set to zero and the productive MD run with no distance restraint was

performed for 15 ns at 300 K for each of the six configurations. The 3JHN−CαH

coupling constants were obtained from the simulation, by the Altona equation:253

3JHN−CαH = 6.4cos2θ−1.4cosθ+1.9 where θ is the dihedral angle between HN-CαH.
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7.2 Results

The MD simulations after a first equilibration step were run in the presence of a

number of NOE restraints (see Table 7.1) and a stepwise procedure of simulated

annealing, as reported in section 7.1. The distance restraints were then removed

and a productive run of 15 ns was performed. It resulted only one conformation of

SRE in octane, a membrane-like environment, in agreement with the experimental

NOEs. This structure, reported in Figure 7.2, retains the NOE distances also in

the absence of the restraining potential during the 15 ns productive simulation, and

is also consistent with the NOE distances obtained by NMR and measured on the

model but not included as restraints.

Figure 7.2: Representative snapshot of the structure of SR-E in octane. Black
dots represent hydrogen bonds. The insert shows the backbone conformation that
resembles the seam of a tennis ball.
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The analysis of the trajectories reveals that the conformation of SRE in the

membrane-like environment (Figure 7.2) is stabilized by three hydrogen bonds: the

first one, involving residues NH-Dab3 and CO-z-Dhb7, induces the bending of the

chain, while the other two, formed respectively between NH-Arg5 and CO-Dab3

and between NH-Ser1 and CO-4(Cl)-Thr9, define the structure of the loop. Figure

7.3 (panels A-C) shows the trajectories of the nitrogen-oxygen distances, involved

in each of the three H-bonds. The three H-bonds are stable during the whole sim-

ulation, thus confirming the stability of the structure. The bending of the chain,

induced by the hydrogen bond between the Dab3 and zDhb7 residues, involves five

residues (Figure 7.2). It is worth noting that this bending is coherent with the strong

NOE signal experimentally observed between the NH-Dab3 and CαH-3(OH)-Asp8

groups that is reproduced during the entire simulation and monitored through the

distance between the Dab3-NH hydrogen atom and the H-Cα atom of 3(OH)-Asp8,

as shown in Figure 7.3 (panel D). No stable hydrogen bonds between the acyl chain

and the peptide ring were detected from the analysis of the trajectories, suggesting

that the lipid tail remains elongated and does not fold above the peptide ring, as

shown in Figure 7.2.

Figure 7.3: Time evolution of the distance between the nitrogen and the oxygen
atoms involved in the three backbone-backbone hydrogen bonds (first three panels)
and of the distance between the hydrogen and the α-carbon atom involved in the
strong NOE signal (last panel).

It can be observed that the conformation of the backbone resembles the seam

of a tennis ball, a pattern found for the first time in the bioactive lipodepsipep-
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Residue
Averaged dihedral angles

Φ (degrees) Ψ (degrees)

1Ser -49±12 133±15
2Ser 70±12 -100±11
3Dab 121±11 73±9
4Dab 65±8 -51±14
5Arg -70±12 87±15
6Phe 58±11 105±17
7Z-Dhb
8OH-Asp -103±17 -33±11
9Cl-Thr -63±11

Table 7.2: Averaged Φ/Ψ dihedral angles. The errors correspond to the standard
deviation obtained by the dihedral angle distribution.

tide WLIP, produced by Pseudomonas reactans254,255 and subsequently in many

of lipodepsipeptide molecules in a membrane-like environment ( TFE from 20 to

40% v/v) determined by NMR data and MD simulations like pseudomycin, sy-

ringopeptin 25-A, syringotoxin and cormycin.241,250–252 In particular, the structure

of SRE is characterized by the presence of four consecutive turns, involving residues

Ser2, Dab4, Phe6 and the lactone bond region, respectively. In Table 7.2 the mean

values of the dihedral angles φ and ψ with their standard deviations are reported.

The sequences Ser1-Ser2-Dab3 and Dab3-Dab4-Arg5 form two γ-turns although

φ/ψ torsion angles slightly deviate from the usual values, being φ2 and ψ2 70o and

-100o (with standard deviations of 12o and 11o) and φ4 and ψ4 65o and -51o (with

standard deviations of 8o and 14o). The third turn, corresponding to the sequence

Arg5-Phe6-zDhb7, cannot be classified since it is characterized by unusual torsion

angles: φ6 and ψ6 values of 58o and 105o, respectively; this effect might be ascribed

to the proximity of the unsaturated residue zDhb7. Finally, the last turn involves

the region connecting residues Ser1 and 4(Cl)-Thr9. The length of the tail is about

15 Å and the distance between N(Phe6) and Cβ(Ser1), roughly representing the

length of the ring, is about 10 Å.

In Table 7.3 are reported the mean value of the 3JHN−CαH coupling constants ob-

tained by Altona equation from the dihedral angles as indicated in section 7.1251,253

together with their standard deviations, σ, and compared with the experimental

values in the NMR spectra. Calculated and experimental values are in agreement,

with the exception of Ser1 and (Cl)-Thr9 3JHN−CαH . This suggests that only the

Ser1-(Cl)-Thr9 conformation is not well reproduced. It is worth noting that this

discrepancy is in the molecular region around the residue (Cl)-Thr9 involved in the

lactone linkage with the N-terminal Ser1, which is, in turn, acylated by the fatty

acid residue.

Previous studies247 reported that SRE adopts in octane two different conforma-
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Residue
3JHN−Hα (Hz)

NMR (SDS) MD

1Ser 8.4 3.2±0.9
2Ser 6.4 5.5±1.4
3Dab 7.9 9.4±0.4
4Dab 8.1 6.7±0.2
5Arg 5.3 5.4±1.4
6Phe
7Z-Dhb
8OH-Asp 8.8 8.7±1.4
9Cl-Thr 8.0 4.7±1.3

Table 7.3: 3JHN−Hα coupling constants as measured by NMR spectroscopy and
calculated from the simulated trajectories. The errors on the calculated constants
correspond to the standard deviation obtained by the 3JHN−Hα distribution.

tions referred to as “open” in which the acyl chain is elongated and “closed” in

which the acyl chain is bent toward the peptide backbone. Considering the position

of the acyl chain, the position of the Phe6 residue in the loop and the orientation

of the peptide ring plane, our SRE structure reported in Figure 7.2 resembles the

open conformation. However, a rather different pattern of hydrogen bonds and salt

bridges was observed in the two structures. Thus, the three-dimensional structures

of the lipopeptide obtained by MD simulations using the NMR data obtained in

water solution or in phospholipid bilayer are different. In addition, an approxi-

mate charge distribution of the SRE molecules in the membrane-like environment,

and then, likely, in membranes, was determined as shown in Figure 7.4. It can

be observed that there is a small negatively charged region and a somewhat larger

positively charged one. Both are linked to a neutral region and a lateral fatty acid

chain. This arrangement can be considered as a building block that would account

for the interactions of the syringomycin molecules with one another and with the

charged and hydrophobic regions of the micelles in the self assembling in the pore.

7.3 Discussion

The results of this study indicate that the interaction of syringomycin with phospho-

lipids is accompanied by a significant conformational modification of the lipopeptide

molecule and provide an insight into the structural determinants of the membrane

interaction. The model of the three-dimensional structure of SRE was obtained by

MD simulations in octane solution, using NMR data measured in SDS micelle which

showed that SDS micelles are suitable as a mimic of the phospholipid bilayer. In

fact, CD spectra of SRE in phospholipid liposomes and in SDS micelles were nearly

superimposable, indicating a conformational equivalence of SRE in these two me-
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Figure 7.4: van der Waals surface of SR-E in octane as determined by molecular
dynamics simulation. Neutral residues are in white, positive residues in red, negative
residues in blue.

dia, at difference with the conformation displayed in water.247 The SDS micelle, in

fact, captures the essential features which modulate peptide-membrane interaction:

the presence of a strongly hydrophobic core, and a flexible polar interface capable

of forming H-bonds and salt bridges with solvent and the peptide. Moreover, the

advantage of the SDS micelles is that they tumble faster in solution than the large

phospholipid vesicles, resulting in narrower NMR signals and, consequently, higher

spectral resolution which enables the determination of detailed three-dimensional

structures by conventional proton NMR techniques.

The conformation of the membrane-bound syringomycin obtained in this study

is in line with several experimental data on SRE induced ion channels deriving from

biophysical investigations. For example, the extended conformation comprising the

15 Ålong acyl moiety and a macrocycle of about 10 Å, considering the distance

between N(Phe6) and Cβ(Ser1), is coherent with a model in which two trimers are
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aligned along the membrane.256 Moreover, the surface charge distribution conceiv-

ably plays an important role in the formation of ion channels. The assembly of these

supramolecular structures, which requires the interactions between the lipopeptide

molecules as well as interactions with the membrane components, whose involvement

in the SRE channel structure has been demonstrated, is guided by molecular recog-

nition. The structural model of SRE presented in this study shows three distinct

electron density regions: neutral, a smaller negatively charged and a larger posi-

tively charged region. It could be hypothesized that, depending on the lipid species,

different macromolecular arrangements could be formed. For example, it could be

expected that with negatively charged lipids SRE molecules would arrange in a way

to minimize the exposure of the negatively charged parts of the molecule. Conversely,

with zwitterionic lipids, a more extensive interaction between SRE molecules and

the membrane components could be envisaged. The correlation between the type

of the membrane lipid and the channel structure and functions has been proven

by different approaches. EPR experiments257 indicated an active role of the lipid

molecules, aligned in ordered, motionally constrained structure, in the architecture

of the pores created in the presence of syringomycin. Moreover, the number of lipid

molecules involved in one pore, estimated as at least 40, can depend on the lipid

composition of the membrane. These evidences on the lipid involvement in the pore

structure complement those obtained by conductivity measurements.256,257

The results of the present study can help to gain an insight into the complex

network of molecular recognition events that is important for the structure and

functions of the SRE ion channels. In fact, knowing how a peptide folds and interacts

with target molecules is a unique requirement for the interpretation of its mode of

action on the molecular level. Furthermore, it is also a starting point for the planning

of structural modifications aimed at the improvement of selectivity.

Modeling studies are under course to envisage these intermolecular interactions

and propose a molecular model for the pore. Further studies are planned in the

future and, in particular, the effects of sterol or sphingolipid components both on

the membrane on the SRE behavior - i.e. conformational modifications - such to

facilitate their aggregation and therefore eventually the pore formation will be stud-

ied.
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CHAPTER

EIGHT

CONCLUDING REMARKS

As summarized in the methods section of the present thesis, recent developments

in computer simulations of biological macromolecules have enhanced the range of

applicability of these techniques in the study of folding processes. The methods used

in this thesis form another contribution to this field and the applications to peptide

model systems have yielded interesting results. The major problem with molecu-

lar dynamics (MD) simulations of the folding process of macromolecular systems,

such as proteins, is due to the conformational sampling efficiency. This difficulty

is also present in systems with a lower complexity, such as peptides, but is more

tractable than for proteins. Experimentally, peptides fold at very fast rates, requir-

ing probing on the nanosecond-microsecond time resolution, hence offering a unique

opportunity to bridge the gap between theoretical and experimental understanding

of protein folding. Thus MD simulations become an extremely powerful tool not

only to understand and interpret the experiments at the microscopic level, but also

to study regions which are not accessible experimentally.

In the present thesis, three cyclic peptides served as model systems for the study

of the structure and dynamics of turns, a very common and important feature of the

secondary structure of proteins. In particular, two β- hairpin peptides have been

deeply studied, and their folding/unfolding transitions have been characterized.

In Chapter 4 the folding process for the Gramicidin analogue GS6 has been ex-

tensively investigated by the use of MD simulations coupled to statistical mechanical

models to characterize the thermodynamics and kinetics of the process. Such an ap-

proach allowed to quantitatively obtain the peptide folding/unfolding partial molar

thermodynamics and the corresponding kinetic rate constants. Results showed a

very interesting and peculiar thermodynamic behavior of GS6, characterized by an

unfolded state with lower entropy and energy than the folded one. This behavior, al-

ready observed for another peptide, is likely to be a specific feature of solvated small

peptides where the effects of intramolecular interactions and configurational freedom

are relatively small compared to the peptide-solvent thermodynamic coupling.

93
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In Chapter 5, by means of a novel theoretical-computational methods, the IR

spectra in the amide I region of trans-N-methylacetamide and of the folded and

unfolded states of two β-hairpin peptides, peptide 1 and GS10, for which the ex-

perimental spectra are available, were reconstructed. The method used, based on

mixed QM/MM calculations, proved to be able to reproduce rather well the exper-

imental data and the analysis of the computed spectra revealed interesting features

unachievable by means of experimental techniques. The results showed indeed that

the main determinant to the characteristic signal of the unfolded−folded difference

spectrum, experimentally observed for a wide variety of peptides and proteins, arises

from the hydrophobic sidechains. In the unfolded configurations the hydrophobic

sidechains are on average closer to their own peptide group with respect to the case

of folded configurations, hence providing a less polar environment to the vibrating

amide I mode (mainly C=O stretching). A less polar environment gives rise to a

shift of the unfolded peak toward higher frequencies, i.e., toward the amide I band

of the isolated peptide group, with respect to the folded peak, thus leading to a

negative-positive difference spectrum.

This methodology to reconstruct IR spectra is thus very promising, as it provides

the opportunity to analyze the contribution of single secondary structures and even

of single residues to the total infrared spectra of peptides and proteins, shedding light

in the interpretation of experimental spectra which is mostly based on empirical

rules and widely accepted assumptions which general validity cannot be always

demonstrated.

In Chapter 6 the same methodology explained in Chapter 5 was used to reproduce

the experimental temperature dependent spectra of two small β-hairpin peptides,

GS6 and GS10, giving results in good agreement with the experimental ones. The

unfolded−folded difference spectrum of GS6 has been also reproduced, showing a

peculiar trend, in agreement with its thermodynamic behavior: the unfolded−folded

difference spectrum showed an opposite trend with respect to the temperature dif-

ference one. This can be attributed to the absence, in the primary sequence of this

peptide, of hydrophobic side chains which constitute the main contribution to the

IR unfolded−folded difference spectrum, showing an intense characteristic negative-

positive signal. The inversion between the temperature difference spectrum and the

unfolded-folded one, indicates that in the considered temperature range the folded

state population increases as the temperature is raising and so that it is not pos-

sible to interpret the temperature difference spectra obtained by subtracting the

spectrum at the lowest temperature from the spectra at higher temperatures, as

representative of the unfolding process as it has been done in experimental studies.

Molecular Dynamics simulations, together with the other theoretical methods used,

have thus shown to be very helpful in the interpretation of experimental infrared

spectra.

In Chapter 7 a MD simulation of the Lipodepsipeptide Syringomycin E was per-
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formed and the results were compared with NMR experimental spectra in order to

understand the structure of the peptide in the membrane environment. The results

of this study indicate that the interaction of syringomycin with phospholipids is ac-

companied by a significant conformational modification of the lipopeptide molecule

and provide an insight into the structural determinants of the membrane interac-

tion. Moreover, The conformation of the membrane-bound syringomycin obtained

by means of the MD simulation is in line with several experimental data on SRE

induced ion channels deriving from biophysical investigations.
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P. Krüger, A. E. Mark, W. R. P. Scott, and I. G. Tironi. Biomolecular Sim-

ulation: The GROMOS96 Manual and User Guide. Hochschulverlag AG an
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