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Imagination is more important than knowledge. For knowledge is limited to all

we now know and understand, while imagination embraces the entire world, and

all there ever will be to know and understand!

Albert Einstein
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CHAPTER

ONE

INTRODUCTION

The electric field effects in biological systems are of long-standing scientific interest.

The fact that electrical currents can affect the behavior of biological systems has

been known for more than 2000 years, and electric shocks have been used to treat

a wide variety of ailments off and on ever since.1 However, it is surprising how

incomplete our knowledge is today of the effects of direct current and low frequency

voltages and currents on biological systems. Electrical signals are clearly important

in the control of biological processes and in carrying information from one part

of the body to another. Nerve cells propagate electrical signals from sensors of

pressure, temperature, light, sound, etc., to the brain and return control signals

to muscles and other tissue.

Purpose of the description of basic interactions between biological cells and

electric fields is the understanding of specifying the general level or intensity of

fields, currents, temperatures where one can expect to observe a given class of

biological responses.2 Biological cells consist of complex physical subsystems. In

an attempt to understand them, the most elementary level will be described. Per-

haps the simplest level, which is already surprisingly complicated, is the effect of

electric fields on biological fluids. These fluids contain a large number of com-

ponents, including ions, polar molecules such as water, proteins, lipids, hormones

and colloidal particles. Current flow in these fluids is given by the sum of the drift

and diffusion currents for each component.

The next level of complexity involves the interaction of the fields with mem-

1



2 Chapter 1

branes that behave like porous solids for fields applied perpendicularly to their sur-

face, and like viscous liquids for fields in the plane of the membrane.3 Membranes

are inhomogeneous so that different portions of them may be affected differently

by the perturbing fields. Additionally, membranes are involved in active chemical

reactions that change their porosity to various ions selectively, so that both elec-

trical potentials and chemical signs may change the membrane’s conductivity by

orders of magnitude.

Electric fields affect the selective transport of ions or molecules through the

membrane.4 They change the build up of charged ion layers at the surface and

change the way new molecules are incorporated into the membrane or are bound

to its surface. Changes in the transport of molecules or ions across cell membranes

affect the performance of the cells and, in turn, of the organs of which they are a

part. For example, electric fields applied to the myocardium tissues, can modify

the frequency of discharge and so of the heartbeat and of the cardiac output.

Therefore, at the macromolecular level of the biological scale of complexity, the

cellular membrane and its substructures, such as receptors and ion channels, have

been identified as the most plausible target of interaction. Their shape, charge or

energy may be altered under exposure to exogenous electric fields, hence triggering

a chain of events that ultimate in a macroscopic observable effect. Although the

huge number of both theoretical and experimental investigations performed over

the years, at present the mechanisms at the basis of specific field-induced effects

are still not completely known and understood.

In this wide scenario, one of the purposes of this research activity is to study the

thermodynamic characterization of liquid water, ionic solutions under the effect

of an external (static) electric fields through both theoretical and computational

methods. There are several situations in which H-bonding molecules are subject

to electric fields, such as in the electrical double layer, around ionic species and in

externally applied electric fields. They influence many phenomena, such as gatting

of biological ion channels, solvation dynamics and folding of proteins. Understand-

ing of the behavior of H bonds in the presence of electric fields is an important

area of research.

There are some relevant theoretical studies of homogeneous H-bonded fluids

not subject to external electric field that are listed in succession. Stanley and

Teixeira5 used a simple correlated-site percolation theory to study the dependence
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of various dynamical and thermodynamical properties of water systems against

temperature and pressure variations, the dilution with D2O and the presence of

impurities. They obtained an expression for the distribution of water molecules

as a function of the number bonds to be a binomial distribution, and their results

were in excellent agreement with experimental data and computer simulations.

Sastry et al.6, 7 studied the thermodynamics of the supercooled water intro-

ducing a lattice model which does not exhibit any low temperature singular fea-

ture. The model assumes that each lattice cell can have its volume changed if

hydrogen bonds are taken into account. Their results captured qualitatively the

thermodynamical properties of the cooled water, and showed that the increase in

compressibility upon lowering temperature is not related to any singular behavior.

Suresh8 proposed a new lattice-based, mean-field theory for predicting align-

ment of molecular dipoles and hydrogen bonds in liquids subject to uniform electric

fields. This theory was applied to understand the internal structure of hydrogen

cyanide in the liquid state at different electric fields. They have found that elec-

tric field influences the internal structure of H-bonding fluids in a complex manner.

Electric field induces dipolar alignment, which in turn influences the bonding pat-

terns.

With the availability of large scale computers, Monte Carlo (MC) and Molec-

ular Dynamics (MD) simulations have been introduced and developed as powerful

methods to understand systems, such as the water, on a molecular level.

Several key aspects, such as, data concerning structural and dynamical prop-

erties of water and aqueous solutions, were revealed by MD simulations.

Two main results from the computer simulations of a chloride ion in water un-

der an applied external electrical field have been shown9: i) An enhancement of the

water structure with increasing strength of the electrical field has been deduced

from radial distribution functions, hydrogen bond distributions and tetrahedral-

ity deviations. ii) The self-diffusion coefficient decreases strongly with increasing

strength of the external electrical field as a consequence of the increased structure.

Simulations with the rigid TIP4P water model, with MD method, have been

used to investigate the structural change of liquid water induced under an exter-

nal electric field.10 It resulted an enhanced structural regularity generated by the

electric field in the process of simulations instead of obtaining solidified water.

Application of an external static electric fields to small water cluster11 induces sig-
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nificant structural and dynamic changes in a nonmonotonic way. These changes

affect the reactivity and solvation capacity of the cluster. MD simulations were

also used to study the influence of an external uniform electrostatic field on the

internal energy and polarization of a medium-sized water cluster, consisting of 40

molecules, at four temperatures.12 The system showed an abrupt change of its

properties at some critical value of the field, where a transition from a normal to

a superpolarized cluster state is observed. MD investigations13 at 258K of liquid

water, as a function of different strengths of an external electric field, and by em-

ploying the flexible simple point charge model (SPC), showed an enhancement of

the water hydrogen bond structure with increasing strength of the electric field.

With increasing field strenght, water system has a more perfect structure, which

is similar to ice structure.

Despite these extensive theoretical studies, direct experimental measurements

are sparse. Recently, using X-ray scattering, Toney et al.14 measured the water

density profile perpendicular to a silver (111) surface at two applied voltages.

They found that the water molecules are ordered in layers extending about three

molecular diameters from the electrode, and that the spacing between the electrode

and first water layer indicates an oxygen-up (oxygen-down) average orientation for

negative (positive) charge. Moreover, they also found that the first layer has a far

greater density than that in bulk water. This implies that the hydrogen-bonding

network is disrupted in this layer, and that the properties of the water in the

layer are likely to be very different from those in the bulk. In another study,15 the

same authors, using surface X-ray scattering, confirmed that the molecular water

arrangements in the inner layer are significantly different from bulk, due to the

strong electric field at the charged Ag(111) electrode.

In the present study, the characterization of the thermodynamic effects of exter-

nal electric fields in dilute ionic solution has been investigated by the combined use

of the quasi-Gaussian entropy theory and molecular dynamics simulations. Prin-

cipally, the thermodynamic variations induced by the applied electric field may be

very important, not only to understand the response of a complex system like a

liquid exposed to an external field, but also to obtain fundamental informations

for manufacturing and designing nano-technological devices.

Another purpose of the present thesis is the MD simulations of micelles under

the effect of a static external electric field.
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Numerous experimental and theoretical studies have been carried out to deter-

mine the nature of their structure and dynamics. Interpretation of experimental

results is often model dependent making theoretical studies of micelles relevant in

order to obtain a molecular interpretation of experimental observables.

Theoretical approaches, initially applied to micelles, employed lattice-based

chain models.16, 17 With increased computational resources, MD simulations have

recently been used, allowing for a more detailed microscopic understanding of

the micellar properties to be obtained.18, 19 MD studies have been performed on

a variety of systems, including dodecyl surfactants, sodium octoanate, lysophos-

phatidylethanolamine, and n-decyltrimethylammonium chloride, in environments

ranging from vacuum to fully solvated with counterions in the presence of pe-

riodic boundary conditions. For zwitterionic micelles, a short simulation of mi-

celle lysophosphatidylethanolamine20 and a 1.2-ns simulation of a dodecylphos-

phocholine micelle are available.21

Simulations of dodecylphosphocholine (DPC) micelles of three different sizes

(40, 54 and 65 lipids) in water for up to 15 ns have been reported.22 They were

analyzed in terms of energetics, structure of the water/lipid interface, structure

and dynamics of the lipid tails and overall size and shape of the micelles.

Micelles have been also exploited in experimental studies, due to their potential

as a model system for membrane bilayers. In fact, micelles are used as surrogates

for membranes because measurements of complexed peptides, proteins, or other

organic molecules are often more tractable than with bilayers. In recent years,

polymeric micelles have been the object of growing scientific attention. They have

emerged as a potential carrier for poorly water soluble drugs because they can

solublilize those drugs in their inner core.23

In the specific context of drug delivery mehods, another goal of the present in-

vestigation is the characterization of the thermodynamic effects of external electric

fields in micelles, using MD simulations. In particular the structural properties of

the micelle are studied and the effects induced by homogeneous electric field are

underlined

The thesis is organized as follows: in Chapter 2 will be described the method

computational used, Molecular Dynamics (MD), that is a sampling method of the

phace space where the dynamic behavior of the system is investigated evolving the

Newton’s second law equation in a proper statistical ensemble.
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In Chapter 3 will be described the quasi-Gaussian entropy theory (QGE)

where the basic statistical mechanical relations are rewritten in terms of the dis-

tribution of the fluctuations of a macroscopic property instead of the partition

function.

In Chapter 4, the theoretical and computational characterization of the ther-

modynamic effects of external electric fields in dilute ionic solutiond are reported.

In Chapter 5, the structural characterization of a water-micelle system under

the effect of external electric fields by the use of MD simulations are discussed.



CHAPTER

TWO

MOLECULAR DYNAMICS SIMULATIONS

2.1 Introduction

Some basic concept and methodologies of molecular simulations are introduced

here, with a particular attention devoted to the methods relevant to this thesis.

For further readings on these subjects, several books can be found with a deeper

insight into MD techniques 24, 25, 26. As the method used in the present thesis

to study the properties of dilute ionic solutions by the external electric field, is

classical Molecular Dynamics (MD, a brief description of its basic principles is

presented.

2.2 Classical Molecular Dynamics

The aim of computer simulations of molecular systems is to compute macroscopic

behavior from microscopic interactions. A model of the real world is constructed,

both measurable and unmeasurable properties are computed and the former are

compared with experimentally determined properties. If the model used is vali-

dated by the comparison, it could even be used to predict unknown or unmea-

surable quantities. A theoretical treatment of the motions and interactions of

molecules should be founded, rigorously speaking, on quantum mechanics princi-

ples, due to the microscopic nature of these objects. Unfortunately, first-principle

approaches are often unpractical because they require very large computational

7
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facilities and they are definitely prohibitive for systems containing thousands of

atoms. Hence, a certain level of approximation becomes necessary and it should

be chosen in such a way that those degrees of freedom that are essential to a

proper evaluation of the quantity or property of interest can be sufficiently sam-

pled. When excluding chemical reactions, low temperatures or details of hydrogen

atoms motion, it is relatively safe to assume that the system is governed by the

laws of classical mechanics.

In classical MD, a trajectory (configurations as a function of time) of the molec-

ular system is generated by simultaneous integration of Newton’s equations of

motions for all atoms in the system:

d2ri
dt2

= m−1
i Fi (2.1)

Fi = −∂V (r1, . . . , rN)

∂ri
(2.2)

The force acting on atom i is denoted by Fi, the mass by mi and time is denoted

by t. MD simulations require calculation of the gradient of the potential energy

V (r1, . . . , rN), which therefore must be a differentiable function of the atomic

coordinates ri. This potential energy function, or force field, is called an effective

interaction function since the average effect of the omitted (electronic) degrees of

freedom has been incorporated in the interaction between the (atomic) degrees of

freedom explicitly present in the model.

The choice of molecular model and force field is essential to a proper prediction

of the properties of a system. Therefore, it is of great importance to be aware of

the fundamental assumptions, simplifications and approximations that are implicit

in the various types of models used in the literature.

2.2.1 Force Field Models

A huge variety of force fields is currently used in the molecular dynamics com-

munity, sometimes differing for minor changes, e.g. CHARMM,27 AMBER,28

GROMOS.29 A typical molecular force field, or effective potential, for a system

of N atoms with masses mi (i = 1, 2, . . . , N) and Cartesian position vectors ri has

the following form:
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V (r1, r2, . . . , rN) =
∑
bonds

1

2
Kb(b− beq)2 +

∑
angles

1

2
Kθ(θ − θeq)2

+
∑

dihedrals

Kφ[1 + cos(nφ− δ)] +
∑

imp.dihedrals

1

2
Kξ(ξ − ξeq)2

+
∑
pairs

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
∑
pairs

qiqj
4πε0rij

(2.3)

The first term represents the covalent bond stretching interaction between two

atoms linked by a harmonic potential where beq is the minimum energy bond length

and Kb is the force constant changing with the particular bond type. The second

term is a three-body interaction corresponding to the valence angle, θ, deformation

expressed as a harmonic potential where θeq is the equilibrium valence angle and

Kθ the force constant. The third and fourth terms are used for the (four-body)

dihedral angle interactions: a harmonic term for improper dihedral angles, ξ, that

are not allowed to make transitions, i.e. to keep the aromatic rings planar, and a

sinusoidal term for all the other dihedral angles, φ. The last two terms are sums

over the pairs of non-bonded atoms and represent the effective non-bonded inter-

actions expressed in terms of van der Waals and Coulombic interactions between

atoms i and j at a distance rij. The parameters εij and σij are the typical con-

stants defining the Lennard-Jones potential, qi and qj are the atom charges and ε0

is the dielectric constant in vacuum.

The parameters used in the force field (Eq. 2.3) can be determined in different

ways. Generally two main approaches are followed. The first one is to fit them

with results obtained from ab initio calculations on small molecular clusters. The

alternative way is to fit the force field parameters to experimental data, like crystal

structures, energy and lattice dynamics, infrared or X-ray data on small molecules,

liquid properties like density and enthalpy of vaporization, free energy of solvation,

nuclear magnetic resonance data, etc. Whatever method is used, the resulting

model is far to be universal. It is worth to note that every force field is usually

well suited for specific general conditions, i.e. particular thermodynamic conditions

(temperature, density, pressure, etc.) and also boundary conditions. Moreover,

they are optimized for specific classes of molecules, such as inorganic molecules,
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organic molecules, biomolecules (DNA, proteins, lipids), etc.

2.2.2 The Boundary Conditions

An important characteristic of the molecular dynamics simulations is the way in

which the boundaries are treated. Due to computational limits, a typical simulated

system contains 104−105 atoms, and then is quite small compared to macroscopic

matter. This means that, if the molecules are arranged in a cubic box, a relatively

great part of them will lie on the surface and will experience quite different forces

from molecules in the bulk. The consequence of the finite size of the system is

that the boundary conditions may affect seriously the results of the simulations,

especially when the system of interest is a homogeneous liquid or a solution. Usu-

ally, periodic boundary conditions (PBC) 24 are adopted to reduce the surface

effects. This technique consists on simulating the system in a central cubic box

surrounded by an infinite number of copies of itself. During the simulation, the

molecules in the original box and their periodic images move exactly in the same

way. Hence, when a molecule leaves the central box one of its images will enter

through the opposite side. As a result, there are no physical boundaries neither

surface molecules. Note that other shapes of the box can be used as the truncated

octahedron or the rhombic dodecahedron.

2.2.3 Integration of Motion Equations

Newton’s equations of motion, a second-order differential equation, can be written

as two first-order differential equations for the particle positions ri(t) and velocities

vi(t) respectively:

dvi(t)

dt
= m−1

i Fi (2.4)

dri(t)

dt
= vi(t) (2.5)

A standard method for solution of the previous ordinary differential equations

is the finite difference approach. The general idea is the following. Given the

molecular positions, velocities and forces at time t, we attempt to obtain the
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positions, velocities and forces at a later time t + δt, to a sufficient degree of

accuracy. The equations are solved on a step-by-step basis; the choice of the

time interval δt will depend somewhat on the method of solution, but δt will be

significantly smaller than the typical time taken for a molecule to travel its own

length.

Many different algorithms fall into the general finite difference pattern, like

Verlet, and its computational efficient variant leap-frog,30, 31 Beeman 32 or the

Gear predictor-corrector.33

2.2.4 Enhanced efficiency methods

Since the first published application of MD to biomolecular systems,34 a little more

than 20 years ago, people have devised methods to increase the time scales of MD

simulations. When Newton’s equations of motion are integrated, the limiting

factor that determines the time step that can be taken is the highest frequency

that occurs in the system. In solvated biological macromolecules, the vibrations of

bonds involving hydrogen atoms form the highest frequency vibrations. The bond

stretching frequency of an O-H bond is typically about 104 Hz, so the average

period would be of the order of 10 fs.35 This limits the time-step to be taken

in MD simulations to about 0.5 fs (a rule of thumb exists that states that for a

reasonable sampling of a periodic function, samples should be taken at least twenty

times per period). The introduction of a method to constrain these bonds (or, in

fact, all covalent bonds) allowed to increase the time step to a typical value of 2 fs

(SHAKE).36 Since these bond vibrations are practically uncoupled from all other

vibrations in the system, constraining them does not notably alter the rest of the

dynamics of the system. This is not true, however, for bond-angle fluctuations,

which form the second-highest frequency vibrations. Constraining bond-angles has

a severe effect on many other fluctuations in the system, including even global,

collective fluctuations, limiting the use of methods that use bond-angle constraints

to only a few specific cases.35

The notion that a number of discrete classes of frequencies of fluctuations in

simulations of biomolecules can be distinguished, however, can be utilized to design

more efficient algorithms. Forces that fluctuate rapidly need to be recalculated at a

higher frequency than those that fluctuate on a much longer time scale. Although
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not trivial to implement, a number of successful applications of so-called multiple

time-step algorithms have been reported in the literature (for a review, see Schlick

et al. 35). Speed up factors of 4-5 have been claimed for such methods with

respect to unconstrained dynamics, making them only slightly more efficient than

simulations with covalent bond-length constraints.

Another approach to reach equilibrium conformational properties at an en-

hanced rate is by constraining the rotational and translational motions in poly-

atomic systems.37 This method is generally used to study biomolecules in solution.

In such a system, the internal motions of the solute are often more interesting than

its rotational and translational motions. This algorithm is implemented in a leap-

frog integration scheme coupled with SHAKE. The use of the roto-translational

constraint presents several advantages, like a reduction of the molecular relaxation

time and the possibility of reducing the amount of solvent molecules to be used.38

2.2.5 Long-range Interactions

One of the most challenging problems in molecular dynamics simulations is the

treatment of long-range interactions, which usually correspond to the electrostatic

forces between molecules. To reduce the computational cost, the size of the simu-

lated system is generally small and, as a consequence, a correct evaluation of the

intermolecular interactions is not trivial. Many different methods were developed

to reproduce reasonably the thermodynamics of bulk liquids. Here we consider

two of the most used techniques: the use of a cut-off radius and the Ewald sum.

The cut-off method is based on the truncation of the forces when the distance

between the interacting particles is greater than a specified value, called the cut-

off radius, rc. In this way, the only interactions felt by the i-th particle are those

due to the particles contained in a sphere of radius rc and centered at ri. This

method is doable only if the intermolecular forces decay rapidly with the distance.

In fact, when the forces are negligible at a distance ≥ rc, the main structural

and dynamical properties are correctly reproduced. Otherwise deviations from

the correct bulk behaviour are expected.

Another methodology in MD simulations is the use of a periodic lattice method

in which all the interactions between the molecular system in the central cubic cell

and its virtual replica are included. The Coulomb interaction energy in a periodic
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system of N charged particles is obtained by a sum over all pairs of which one

atom lies in the central box and the other is its periodic image:

E =
1

8πε0

∞∑
|n|=0

( N∑
i=1

N∑
j=1

qiqj
|rij + n|

)
(2.6)

The sum over n is a summation over all simple cubic lattice points n =

(nxL, nyL, nz

L), with L the side length of the cubic cell and nx, ny, nz integers. The case i = j

is omitted for n = 0. It was shown that the sum over n for such kind of potential

(r−1) is only conditionally convergent, then its limit may vary or even diverge if

the order of terms in the sum is changed. A solution to this problem was developed

following a physical idea:24 each point charge is surrounded by a charge distribu-

tion of equal magnitude and opposite sign, which spreads out radially from the

charge, ρG(r). This distribution has the effect to screen the interactions between

the neighbouring point charges and hence the interaction energy becomes short-

ranged. Commonly, the screening charges have a Gaussian form. The total charge

distribution is given by:

ρi(r) = ρqi (r) + ρGi (r) (2.7)

where ρqi (r) is the distribution of the point charge of the i-th particle and ρGi (r)

is the corresponding Gaussian distribution.

First, the interaction energy due to the distribution 2.7 is calculated in the real

space, then, in order to recover the original charge distribution, a canceling func-

tion is added in the reciprocal space, which is equal to −ρGi (r), realized by means

of a Fourier transform. Hence the final form of the total interaction energy is given

by:
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E =
1

8πε0

N∑
i=1

N∑
j=1

( ∞∑
|n|=0

qiqjerfc(α|rij + n|)
|rij + n|

+
1

πL3

∑
k 6=0

4π2qiqj
k2

exp(−k2/4α2) cos(k · rij)
)

− α

4π3/2ε0

N∑
i=1

q2
i +

|
∑N

i=1 qiri|2

2ε0L3(2ε′ + 1)
(2.8)

Here erfc(x) is the complementary error function, which falls to zero with in-

creasing its argument. Thus, if the parameter α is large enough, the sum over

n in the first term reduces to the only term n = 0. The second term is a sum

over the reciprocal vectors k = 2πn/L. Again, if α is large, a lot of terms in the

k-space sum are needed to get a convergence of the energy. The last two terms

are, respectively, a correction function, due to the fact that a self-interaction of the

canceling distribution is included in the recipe, and the energy contribution of the

depolarizing field, which is compensated by the effect of the external dielectrics.

Note that in the Ewald sum the virtual cubic cells are ordered as concentric spher-

ical layers starting from the central box. Clearly the infinite sum is truncated

at a certain point and the resulting spherical system is immersed in a continuum

dielectrics with dielectric constant ε′. The last term in equation 2.8 is the sum of

the contributions of the depolarizing field and the reaction field due to the exter-

nal dielectrics. If the sphere is embedded in a medium with an infinite dielectric

constant, this term vanishes because of a perfect compensation of the two effects.

Other periodic lattice methods are often used in computer simulations for their

computational stability and efficiency. These methods, like the Particle Mesh

Ewald (PME)39 method, can be considered of the same family of the method

shown here.

2.2.6 Constant Temperature/Constant Pressure Molecu-

lar Dynamics

When Newton’s equations of motion are integrated the total energy is conserved

(adiabatic system) and if the volume is held constant the simulation will gen-
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erate a microcanonical ensemble (NVE). However, this is not always very con-

venient. Other statistical ensembles, such as canonical (NVT) and isothermal-

isobaric (NPT) ensembles, better represent the conditions under which experi-

ments are performed than the standard microcanonical ensemble. Moreover, with

the automatic control of temperature and/or pressure, slow temperature drifts

that are an unavoidable result of force truncation errors are corrected and also

rapid transitions to new desired conditions of temperature and pressure are more

easily accomplished.

Several methods for performing MD at constant temperature have been pro-

posed, ranging from ad hoc rescaling of atomic velocities in order to adjust the

temperature, to consistent formulation in terms of modified equations of motion

that force the dynamics to follow the desired temperature constraint. The three

most utilized methods are described next.

The termal bath coupling method, or Berendsen coupling,40 has the great ad-

vantage of being simple. This algorithm simulates a coupling of the system with

an external termal bath at the temperature T0 and the interaction between this

bath and the system is modulated by a time constant τ . The coupling is obtained

multiplying for a constant λ the velocities. The temperature T is scaled to the

reference temperature T0 via an exponential law.

The isothermal , or isogaussian, method 41 allows to fix the temperature ex-

actly constant. Using this algorithm, a variable is added to the motion equations,

acting as a friction coefficient changing in time in order to keep the kinetic en-

ergy constant. This method correctly generates the configurational properties of

the canonical ensemble, while the momenta distribution is not canonical.37 Nosé-

Hoover thermostat is based on the use of an extended Lagrangian, i.e. a Lagrangian

that contains additional, artificial coordinates and velocities.42, 43 The conventional

Nosé-Hoover algorithm only generates the correct distribution if there is a single

constant of motion. Normally, the total energy, that includes the artificial vari-

ables, is always conserved. This implies that one should not have any other con-

served quantity. If we have more than one conservation law, we have to use the

Nosé-Hoover chains to obtain correct canonical distribution.44

The various methods for carrying out MD at constant pressure are based on

the same principles as the constant temperature scheme with the role of the tem-

perature played by the pressure and the role of the atomic velocities played by the
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atomic positions.

2.2.7 Essential Dynamics

The Essential Dynamics (ED) analysis is a method to seek those collective degrees

of freedom that best approximate the total amount of fluctuation of a dynami-

cal system.45, 46 A brief description will be given here. ED is based on a principal

component analysis (PCA) of (MD generated) structures. A PCA is a multidimen-

sional linear least squares fit procedure. To understand how this is applicable to

protein dynamics, the usual three-dimensional (3D) Cartesian space to represent

protein coordinates (which is e.g. used to represent protein conformations in the

Brookhaven Protein Data Bank or PDB) needs to be replaced by another, multi-

dimensional space. A molecule of N particles can be represented by N points in

3D space. With 3 coordinates per point, this adds up to 3N coordinates. In a 3N-

dimensional space, however, such a structure can be represented by a single point.

In this space, this point is characterized by 3N coordinates. This representation

is convenient since a collection or trajectory of structures can now be regarded as

a cloud of points. Like in the case of a two-dimensional cloud of points, also in

more dimensions, always one line exists that best fits all points. As illustrated for a

two-dimensional example (Figure 2.1), if such a line fits the data well, the data can

be approximated by only the position along that line, neglecting the position in

the other direction. If this line is chosen as coordinate axis, then the position of a

point can be represented by a single coordinate. In more dimensions the procedure

works similarly, with the only difference that one is not just interested in the line

that fits the data best, but also in the line that fits the data second-best, third best,

and so on (the principal components). These directions together span a plane, or

space, and the subspace responsible for the majority of the fluctuations has been

referred to as the ’essential subspace’. Applications of such a multidimensional fit

procedure on protein configurations from MD simulations of several proteins has

proven that typically the ten to twenty principal components are responsible for

90% of the fluctuations of a protein.51−53 These principal components correspond

to collective coordinates, containing contributions from every atom of the (protein)

molecule. Summarised, a limited number of collective motions is responsible for a

large percentage of a protein conformational fluctuations.
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Figure 2.1: Example of Essential Dynamics in two dimensions. With a distribution
of points as depicted here, two coordinates (x,y) are required to identify a point
in the cluster in panel A, whereas one coordinate (x’) approximately identifies a
point in panel B
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If all atoms in a protein were able to move uncorrelated from each other,

an approximation of the total fluctuation by only a few collective coordinates

would not be possible. The fact that such an approximation is successful is the

result of the presence of a large number of internal constraints and restrictions

(’near-constraints’) defined by the interactions present in a given protein structure.

Atomic interactions, ranging from covalent bonds (the tightest interactions) to

weak non-bonded interactions, together with the dense packing of atoms in native-

state protein structures form the basis of these restrictions.

In the study of protein dynamics, only internal fluctuations are usually of in-

terest. Therefore, the first step in an Essential Dynamics analysis is to remove

overall rotation and translation. This is done by translation of the center of mass

of every configuration to the origin after which a least squares rotational fit of the

atoms is performed onto to a reference structure. The actual principal component

analysis is based on construction and diagonalisation of the covariance matrix of

positional fluctuations. Defining the 3N dimension column vector X(t) represent-

ing the atomic coordinates of the system at time t, the covariance matrix is built

up according to:

C = 〈∆X∆XT 〉 (2.9)

where ∆X = X(t)− 〈X〉 and the angle brackets represent a time or ensemble

average. Particles moving in a correlated fashion correspond to positive matrix el-

ements (positive correlation) or negative elements (negative correlation) and those

that move independently to small matrix elements. The orthogonal transformation

T that diagonalises this (symmetric) matrix contains the eigenvectors or principal

components of C as columns and the resulting diagonal matrix Λ contains the

corresponding eigenvalues:

Λ = TTCT (2.10)

The eigenvalues are the positional mean square fluctuations along the corre-

sponding eigenvectors. When the eigenvectors are sorted to decreasing eigenvalues,

the first eigenvectors are those collective motions that best approximate the sum of

fluctuations and the last eigenvectors correspond to the most constrained degrees

of freedom. The characteristics of these collective fluctuations can be studied by
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projecting the ensemble of structures onto single eigenvectors and by translation

of these projections to 3D space to visualize the atomic displacements connected

with that eigenvector. As stated above, analyses of MD trajectories of several pro-

teins have shown that few collective coordinates dominate the dynamics of native

proteins (together often referred to as the ’essential subspace’). In a number of

cases these main modes of collective fluctuation were shown to be involved in the

functional dynamics of the studied proteins.45, 47, 48

ED analyses can be applied to any subset of atoms of the ensemble of structures

and are not restricted to ensembles generated by MD simulation. Applications to

collections of X-ray structures,48, 49 NMR structures50 and structures derived from

distance constraints48 have been reported. Since collective (backbone) fluctuations

dominate the dynamics of proteins, usually only backbone or Cα coordinates are

used to save computation time and to prevent problems with apparent correlation

of side chain motions with backbone motions which are merely the result of poor

statistics. However, even when the method is applied to only Cα atoms, the

diagonalisation of the covariance matrix can still be an enormous computational

task.

2.3 Free energy calculations

In general terms, a microscopic description of a particular molecular system can

be given in the form of a Hamilton operator or function. This is often simply

expressed as the Hamiltonian H(p, q) of the generalized coordinates q and their

conjugate momenta p. For example, the Hamiltonian for a classical system of N

atoms, expressed in terms of the Cartesian coordinates r and momenta p of each

of the atoms, has the form H(p, r) = K(p) + U(r), where K is the kinetic and U

the potential energy. In the canonical ensemble the fundamental formula for the

Helmholtz free energy, A, is: 51

A(N, V, T ) = −kBT lnQ(N, V, T ) (2.11)

where the partition function Q is:

Q(N, V, T ) = h−3N

∫ ∫
e−H(p,r)/kBTdpdr (2.12)
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where V is the volume of the system, T the absolute temperature, kB Boltzmann’s

constant, h Planck’s constant, and it is assumed that the N atoms are distinguish-

able. The factor before the integral actually comes from quantum mechanics. The

essential difficulty in calculating the free energy of a system is evident from Eqn.

2.12, which is dipendent on a 6N -dimensional integral to be carried out over phase

space.

By means of statistical mechanics, free energy differences may also be expressed

in terms of averages over ensembles of atomic configurations for the molecular

system of interest. Such an ensemble can be generated by MC or MD simulation

techniques. If the ergodic hypothesis is verified, that is the simulated trajectory

will visit all possible microstates available to it, given an infinite amount of time

the following equivalence holds:

〈A(q(t),p(t))〉ensemble = 〈A(q(t),p(t))〉time (2.13)

that is the ensemble average of a generic physical observable, A(t), is equivalent to

its time average. In principle this equivalence offers a valid method, the time aver-

age, to obtain physical properties from our ”virtual” experiment, namely computer

simulations. However, despite its inherent simplicity, the computation of thermo-

dynamic properties from molecular simulations remains far from trivial due to the

limit of infinite sampling of phase space and to unavoidable numerical errors.

Within the framework of statistical mechanics, a variety of formulae for de-

termining the difference in free energy between two states of a system, or the

projection of such a difference in free energy along a spatial (reaction) coordinate,

have been derived. The different formulations available are all equivalent within

the limit of infinite sampling of phase space. In practice, as only a part of the

total phase space accessible to a realistic system can ever be sampled by molecular

simulations techniques, there are often significant differences in accuracy between

the free energy estimates obtained from different formulae. Below a list of the

most useful statistical mechanical formulae and computational methods to obtain

the difference in free energy ∆AA→B = AB −AA between a state B and a state A

of a molecular system in a canonical ensemble is provided.
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2.3.1 Probability ratio method

In equilibrium thermodynamics, free energy changes are related to the populations

(or probabilities) of states. Hence, the most straightforward way to determine the

difference in free energy between two states of a system is simply to count the

number of configurations in the two corresponding states. For example, in the

case of folding, this involves counting the number of folded conformations NF and

the number of unfolded conformations NU in an ensemble generated during a MD

or MC simulation, with the difference in free energy being given by

∆AU→F = −kBT ln
QF

QU

= −kBT ln
pF
pU

= −kBT ln
NF

NU

(2.14)

where kB is the Boltzmann constant, T is the temperature, QF and QU are the

partition functions of the folded and unfolded states, respectively, and pF and

pU are the probability densities of finding the system in the folded or unfolded

states, respectively. This technique is only appropriate when folded and unfolded

conformations occur with sufficient frequency in the ensemble to obtain reliable

statistics. Direct counting has the advantage that it does not depend on the

definition of a reaction coordinate and it is particularly well-suited to situations in

which the end states are themselves ensembles of structures, such as in the study

of protein/peptide folding.

2.3.2 Thermodynamic Integration

Integrations methods determine the change in free energy between two states of

a system from the integral of the work required to go from an initial state to a

final state via a reversible path. In Thermodynamic Integration (TI) method an

arbitrary coupling parameter, λ, is introduced in the the Hamiltonian H(p, q, λ).

The coupling parameter is chosen such that when λ = λA the Hamiltonian of the

molecular system corresponds to that of state A, i.e. H(p, q, λA)=H(p, q) and

when λ = λB the Hamiltonian of the system corresponds to that of state B, i.e.

H(p, q, λB)=H(p, q). If the Hamiltonian is a function of λ the free energy in Eqn.

2.11 will also be a function of λ, and the derivative of the free energy with respect

to λ will be given by
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dA(λ)

dλ
=

〈
∂H(λ)

∂λ

〉
λ

(2.15)

From this, it follows directly that the free energy difference between state A and

state B of a molecular system is given by

A(λB)− A(λA) =

∫ λB

λA

〈
∂H(λ)

∂λ

〉
λ

dλ (2.16)

which is the so-called thermodynamic integration formula.52 The ensemble average

〈∂H/∂λ〉 is most commonly determined from simulations at a series of λ values

between λA and λB and the integral in Eqn. 2.16 evaluated numerically. The

choice of λ is arbitrary and λ may equally refer to a spatial coordinate or to a non-

physical coordinate in parameter space. In either case, the functional dependence

of the system on λ effectively describes the pathway from the initial to the final

state.

2.3.3 Perturbation method

An alternative to the TI method is to adopt a perturbation approach. In the

perturbation method (PM) the free energy change is expressed by the following

relation:53

AB − AA = −kBT ln
QB

QA

= −kBT ln
〈
e∆H/kBT

〉
B

(2.17)

where QB and QA are the partition functions of state B and A respectively,

∆H = HB − HA is the energy difference, kB is the Boltzmann constant and T

the absolute temperature. The subscript on the brackets 〈...〉 indicates that the

ensemble average is performed with respect to the probability function representa-

tive of the final state, B, of the system. Thus, the free energy change is calculated

directly from one MD simulation of the state B averaging the quantity e∆H/kBT .

Usually, due to the known insufficient sampling of the tails of the distribution, this

method gives accurate results when the energies of the initial and final states of

the system differ by a relatively small amount (≤ 2kBT ). Otherwise, it is possible

to decompose the total free energy change by defining intermediate states along

a given path between the initial and final states, hence computing as a sum of

partial free energy changes.
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2.3.4 Potential of Mean Force

The difference in free energy between two states of a molecular system is a single

number. Often we would like to know how the free energy of a system, or the

potential of mean force (PMF), changes as a function of a particular coordinate

within the system, most commonly a spatial coordinate. Chosen this coordinate,

r, and considering the partial derivative of the free energy with respect to this

coordinate, we obtain:

∂A

∂r
= −kBT

1

Q

∂Q

∂r
= −kBT

1

Q

∫ ∫
−∂U(q)

∂r

1

kBT
e−H(p,q)/kBTdpdq (2.18)

Considering that −∂U(q)/∂r is the force acting along r, F (r), and that the average

value of a generic function, f(p, q), is given by:

〈f(p, q)〉 =
1

Q

∫ ∫
f(p, q)e−H(p,q)/kBTdpdq, (2.19)

Eqn. 2.18 becomes

∂A

∂r
= −〈F (r)〉 (2.20)

Hence, if we are interested in the free energy change between two positions rA and

rB, we get

AB − AA =

∫ rB

rA

−〈F (r)〉dr (2.21)

Usually the ensemble average −〈F (r)〉 is most commonly determined from

simulations at a series of r values between rA and rB and the integral in Eqn. 2.21

evaluated numerically.
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CHAPTER

THREE

THE QUASI-GAUSSIAN ENTROPY THEORY

3.1 Introduction

Accurate methods to obtain the statistical mechanics and thermodynamics of sim-

ulated condensed systems are clearly of great importance as they can provide

essential information for describing and predicting the behavior of a molecular

complex system. Despite of the great development of the simulation methods, the

evaluation of essential thermodynamic properties such as free energy and entropy,

and of many related observables, are very difficult and typically the methodologies

used can only provide limited ”local” information, i.e., a few thermodynamic prop-

erties at a given temperature and density, requiring a rather heavy computational

effort. Moreover, the basic theoretical principles underlining these methods, i.e.,

thermodynamic integration (TI) and perturbation method (PM), can be affected

by severe problems due to the slow convergence. It is therefore a challenge in

theoretical physical chemistry to develope and optimize more analytical methods,

based on sound theories, providing the thermodynamics of a simulated system at

relatively low computational costs. From a theoretical point of view, the key point

is the evaluation of the (configurational) partition function, which is in general a

high-dimensional integral over all coordinates. For complex systems with a realis-

tic Hamiltonian, it is virtually impossible to derive in this way rigorous but easy to

handle expressions for the various thermodynamic properties. Only for very spe-

cial Hamiltonians analytical solutions are available, e.g. for the (monoatomic) ideal

25
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gas, a set of quantum or classical harmonic oscillators or one and two-dimensional

Ising spin systems. However, in this chapter we will show that it is possible to

switch from the description in terms of this high-dimensional partition function in

the canonical ensemble to the one-dimensional internal energy distribution func-

tion of the system, which is a special projection of the Hamiltonian. The advantage

of this approach is the fact that these distributions, because of the macroscopic

character of usual systems, are almost Gaussian (“quasi-Gaussian”). Hence math-

ematically speaking, already relatively simple functions can be used to model the

real distributions, yielding very compact expressions for the corresponding ther-

modynamic functions. The theory based on this, which will be presented in this

chapter, will be denoted as the “quasi-Gaussian entropy theory” (QGE).

3.2 The quasi-Gaussian entropy theory in canon-

ical ensemble

In this section the derivation of the basic theory for the temperature dependence

of thermodynamics properties in the canonical ensemble is presented. Chosing

a proper reference state, the excess entropy S∗ can be expressed in terms of the

moment generating function of the excess internal energy distribution function

ρ(∆U ′). For a macroscopic system the application of the central limit theorem

demonstrates that this distribution function can be modeled as a unimodal func-

tion, close to a Gaussian (”quasi-Gaussian”). Hence, from the statistical mechan-

ical definition of ρ(∆U ′), the generalized Pearson system of distributions can be

used to generate and classify unimodal distribution of increasing complexity. The

parameters of these distributions and hence of the excess entropy can be expressed

in terms of the isochoric heat capacity and a limited set of its temperature deriva-

tives.

3.2.1 Definition of the system

The Helmholtz free energy of a system at fixed volume, temperature and number

of molecules is

A = −kT lnQ (3.1)
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where Q is the overall partition function. For a system of n identical molecules in

the classical limit

Q =
(2πkT )d/2

n!hd(1 + γ)n

∑
l

∫
e−β(Φ+ψ+εl)

n∏
j=1

(det M̃j)
1/2dx (3.2)

where x are the semiclassical atomic coordinates, Φ is the (classical) intermolecular

potential energy, ψ is the (classical) intramolecular potential energy, εl is the

overall lth quantum energy (in general a function of the coordinates which typically

only refers to vibrational states), β = 1/kT and the sum runs over all accessible

quantum states {l} of the system in the temperature range of interest. Moreover

d is the total number of semiclassical degrees of freedom of the system, 1 + γ is

the symmetry coefficient of the molecule, h is the Planck constant and M̃ is the

(classical) mass tensor of the molecule. We can simplify Eq. 3.2, considering that

in general for systems where the (quantum) vibrational energies have a significant

dependence on the coordinates, such a dependence is typically observed only up to

temperatures where the molecules are largely confined in the vibrational ground

state. In such systems, as the temperature is increased to values where the first

excited states become significantly populated, the vibrational energies converge to

a coordinates independent value, usually close to the ideal gas ones. For these

kind of systems we can rewrite Eq.3 as

Q ∝
∑
l

∫
e−β(Φ+ψ+εl) +

n∏
j=1

(det M̃j)
1/2dx (3.3)

=
∑
l

e−βEl

∫
e−β(Φ+ψ)e−β(εl−El)

n∏
j=1

(det M̃j)
1/2dx (3.4)

with El a reference quantum energy of the lth state. We assume, at least for

all the terms in Eq. 3.4 significantly different from zero (i.e., βEl not too large),

that∫
e−β(Φ+ψ)e−β(εl−El)dx

n∏
j=1

(det M̃j)
1/2 ∼=

∫
e−β(Φ+ψ)e−β(ε0−E0)

n∏
j=1

(det M̃j)
1/2dx

(3.5)
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Hence

Q ∼=
∫
e−βU

′
n∏
j=1

(det M̃j)
1/2dx (3.6)

Qref
qm =

∑
l

e−βEl (3.7)

Θ =
(2πkT )1/2Qref

qm

n!hd(1 + γ)n
(3.8)

with U ′ = Φ + ψ + ε0 − E0 and where E0 and Qref
qm can be typically obtained

by quantum calculations of the isolated molecule, i.e. in ideal gas conditions. It

is easy to see that Eq. 3.6 is always exact if the system is completely confined

in the vibrational ground state, or if no vibrations are present (e.g. monatomic

molecules) or when the vibrational energies can be considered independent of the

coordinates, and therefore from the temperature, hence being identical to the ideal

gas ones. If moreover, at least in the whole temperature range of interest, only

a part of the configurational space is energetically accessible (i.e., the system is

confined within a part of the configurational space) we can rewrite Eq. 3.6 as

Q ∼= Qqm
ref

∫ ∗
e−βU

′
n∏
j=1

(det M̃j)
1/2dx (3.9)

where now the star denotes an integration in the accessible part of the config-

urational space only. It should be noted that the unaccessible configurations not

necessarily correspond only to the ones which are forbidden by a simple excluded

volume concept, where it is assumed that the pair potential energy has an infinite

barrier as in a hard sphere liquid. In fact, according to the total intermolecu-

lar potential energy, even configurations with non penetrating molecules might be

energetically excluded up to very high temperatures. Clearly in the infinite tem-

perature limit every finite energy configuration will be accessible implying that

only the confinement due to the infinite energy configurations can be considered

exact, i.e., really temperature independent. Eq. 3.9, which reduces to Eq. 3.6 in

case the whole configurational space is available, is a very general expression that

can be used for many different types of molecules.



The quasi-Gaussian entropy theory in canonical ensemble 29

3.2.2 Definition of the reference states and excess proper-

ties

For all the systems where Eq. 3.9 can be used, we can define a reference state

at the same temperature and density, but without inter (Φ) and intramolecular

potential energy (ψ). We have

Aref = −kT lnQref (3.10)

Qref = Θ
∫ ∏n

j=1(det M̃j)
1/2dx (3.11)

Therefore the excess Helmholtz free energy is

A′ = A− Aref (3.12)

A′ = A∗ − kT ln ε (3.13)

A∗ = −kT ln
〈
e−βU

′
〉

= −kT ln
〈
e−βU

′
〉
ref

(3.14)〈
eβU

′
〉

=

∫ ∗
e−βU

′ ∏n
j=1(det M̃j)

1/2eβU
′
dx∫ ∗

e−βU ′ ∏n
j=1(det M̃j)1/2eβU ′dx

(3.15)

〈
e−βU

′
〉
ref

=

∫ ∗
e−βU

′ ∏n
j=1(δM̃j)

1/2dx∫ ∗∏n
j=1(det M̃j)1/2dx

(3.16)

ε =

∫ ∗∏n
j=1(det M̃j)

1/2dx∫ ∏n
j=1(det M̃j)1/2dx

(3.17)

Then we can write the internal energy, heat capacity, pressure and entropy as

U ′ = −
(
∂

∂β
ln
Q

Q ref

)
V

= 〈U ′〉 (3.18)

C ′V =

(
∂U ′

∂T

)
V

=

(
∂〈U ′〉
∂T

)
V

(3.19)

S ′ = −(A′ − U ′)
T

= S∗ + k ln ε (3.20)

S∗ = −k ln
〈
eβ(U ′−〈U ′〉)

〉
(3.21)
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and

p′ = −
(
∂A′

∂V

)
T

= p∗ + Tξ (3.22)

p∗ = −
(
∂A∗

∂V

)
T

(3.23)

ξ = k

(
∂lnε

∂V

)
(3.24)

Finally, from these equations follow the excess enthalpy and the Gibbs free

energy

H ′ = U ′ + p′V (3.25)

G′ = A′ + p′V (3.26)

3.2.3 The potential energy distribution

Eq. 3.21 can be explicitly expressed as

S∗ = −k lnG∆U ′(β) = −k ln

∫
eβ∆U ′

ρ(∆U ′)d∆U ′ (3.27)

∆U ′ = U ′ − 〈U ′〉 (3.28)

where G∆U ′(β) is the moment generating function 54, 55 of the potential energy

distribution function ρ(∆U ′) ( note that ρ is in general temperature dependent).

From the fact that a macroscopic system can be considered as a very large collec-

tion of identical, independent subsystems (elementary systems), we can conclude

that because of the central limit theorem 54, 56 the corresponding potential energy

distribution function can be regarded as uninormal. In fact the possible deviations

from the uninormal shape in the far tail of the distribution are in general negli-

gible because of the very sharply peaked behavior of the curve around its mode

(maximum of probability), also due to the macroscopic nature of the system 57, 51,

and therefore the integrand in Eq. 3.27 can be modeled considering ρ as a quasi-

Gaussian distribution. In general we can express the potential energy distribution
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as 57, 58

ρ(∆U ′) =
Ω(∆U ′)∫ ∗

e−β∆U ′ ∏n
j=1(det M̃j)1/2dx

e−β∆U ′
(3.29)

with

Ω(∆U ′) =

∫ ∗
δ(∆U ′(x)−∆U ′)

n∏
j=1

(det M̃j)
1/2dx (3.30)

and hence

dρ

d∆U ′
= −ρ(∆U ′)

[
β − d ln Ω

d∆U ′

]
(3.31)

Using a Padé approximant 59, 60, instead of a usual Taylor series, to expand

the function between brackets in Eq. 3.31 around the mode of the distribution, we

finally obtain a general differential equation, equivalent to the one of the general-

ized Pearson system of curves 61, 62, 63, which can be used to obtain the possible

potential energy distribution functions:

dρ

d∆U ′
= −(∆U ′ −∆U ′m) ρ

Pm(∆U ′)

Gn(∆U ′)
(3.32)

where ∆U ′m is the value of ∆U ′ where ρ has its mode and Pm(∆U ′) and

Gn(∆U ′) are some arbitrary polynomials of order m and n:

Pm(∆U ′) =
m∑
i=0

ai(∆U
′)i (3.33)

Gn(∆U ′) =
n∑
j=0

bj(∆U
′)j (3.34)

where without loss of generality a0 = 1. The solutions of Eq. 3.32 are therefore

fully defined by the parameters ∆U ′m, {ai} and {bj} which can be expressed 61 in

terms of the central potential energy moments Mn. Hence with the use of physical-

mathematical restrictions 61 we can select the physically acceptable distributions,

fully defined by a limited set of central moments, and then order them according to

their increasing complexity. We also showed that these potential energy moments
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can be expressed as a function of the isochoric heat capacity and a limited number

of its temperature derivatives 61

M2(T ) = kT 2C ′V (3.35)

M3(T ) = (kT 2)2

(
∂C ′V
∂T

)
V

+ 2(kT )2TC ′V (3.36)

· · ·

Mk(T ) = Mk

(
T,C ′V ,

(
∂C ′V
∂T

)
V

,

(
∂2C ′V
∂T 2

)
V

, · · · ,
(
∂k−2C ′V
∂T k−2

)
V

)
(3.37)

where Mk = 〈(∆U ′)k〉 is the kth central potential energy moment and we used

the fact that C∗V = C ′V . If the functional shape of ρ is defined by the first n central

moments, from Eqs. 3.27 and 3.37 it follows that

S∗ = S∗
(
T,C ′V ,

(
∂C ′V
∂T

)
V

,

(
∂2C ′V
∂T 2

)
V

, · · · ,
(
∂n−2C ′V
∂T n−2

)
V

)
(3.38)

3.2.4 The thermodynamic master equation

We define the intrinsic entropy function as 61

α =
S ′

C ′V
=
S∗

C ′V
+
k ln ε

C ′V

= α∗
(
T,C ′V ,

(
∂C ′V
∂T

)
V

,

(
∂2C ′V
∂T 2

)
V

, · · · ,
(
∂n−2C ′V
∂T n−2

)
V

)
+
k ln ε

C ′V
(3.39)

with α∗ = S∗/C ′V the confined intrinsic entropy function, and using the gen-

eral thermodynamic relation (∂S ′/∂T )V = (∂S∗/∂T )V = C ′V /T , we obtain the

thermodynamic master equation 61(TME)

C ′V
T

= C ′V

(
∂α∗

∂T

)
V

+ α∗
(
∂C ′V
∂T

)
V

(3.40)

This is a completely defined differential equation where its unique, always ex-

sisting solution gives the temperature dependence of the ideal reduced isochoric

heat capacity C ′V , once the values of C ′V , · · · , (∂n−2C ′V )/(∂T n−2))V at one arbitrary

temperature T0 are known. Note that in Eqs. 3.39 and 3.40 we used a generalized
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expression of the intrinsic entropy function, treating explicitly the possible con-

finement of the system, which reduces to the usual one when ε = 1 and therefore

α = α∗. From the solution of the master equation we can obtain the confined

entropy S∗ via Eq. 3.38, and then the excess internal energy and free energy at

fixed density via

U ′(T ) = U ′(T0) +

∫ T

T0

C ′V (T )dT (3.41)

A∗(T ) = U ′(T )− TS∗(T ) (3.42)

It is interesting to note that, since

α∗ =
S∗

C ′V
= − S∗/β

(∂S∗/∂β)V
(3.43)

the confined intrinsic entropy function is the ratio between the average slope of

S∗ versus β (remembering that S∗ = 0 when β = 0) and the instantaneous slope

(∂S∗/∂β)V . One can moreover prove that 61, 64

lim
T→∞

α∗(T ) = −1

2
(3.44)

which implies that the (confined) thermodynamics of every system in the infi-

nite temperature limit tends to a Gaussian one, see section 3.3.1.

3.2.5 The conjugated pressure equation

From Eq. 3.38 it is moreover possible to obtain the excess pressure of the system

p′ as a function of the temperature. In fact from the basic thermodynamic relation(
∂S∗

∂V

)
T

=

(
∂p∗

∂T

)
V

(3.45)

we obtain

1

T

(
∂C ′V
∂V

)
T

=

(
∂2p∗

∂T 2

)
V

(3.46)

and hence in general
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(
∂f0

∂V

)
T

= T

(
∂2p∗

∂T 2

)
V

(3.47)(
∂f1

∂V

)
T

=

(
∂2p∗

∂T 2

)
V

+ T

(
∂3p∗

∂T 3

)
V

(3.48)

· · · (3.49)(
∂fl
∂V

)
T

= l

(
∂l + 1p∗

∂T l + 1

)
T

+ T

(
∂l + 2p∗

∂T l + 2

)
V

(3.50)

where

f0 = C ′V ; f1 =

(
∂C ′V
∂T

)
V

; fl =

(
∂lC ′V
∂T l

)
V

(3.51)

Therefore from Eqs. 3.38, 3.39 and 3.45 we finally obtain another closed dif-

ferential equation at fixed density for the temperature dependence of the confined

pressure p∗, the conjugated pressure equation (CPE)

(
∂p∗

∂T

)
V

= Tα∗(T )

(
∂2p∗

∂T 2

)
V

+ C ′V

(
∂α∗

∂V

)
T

(3.52)

or, equivalently, using Eqs. 3.38 and 3.46-3.51(
∂p∗

∂T

)
V

=
∑
l

[(
∂S∗

∂fl

)
T,fl

,

(
∂fl
∂V

)
T

]

=
∑
l

[(
∂S∗

∂fl

)
T,fl

,

{
l

(
∂l+1p∗

∂T l+1

)
V

+ T

(
∂l+2p∗

∂T l+2

)
V

}]
(3.53)

with l′ 6= l and l = 0, · · · , (n − 2). Eq. 3.52 or 3.53 can be solved once the

first n − 1 temperature derivatives of the confined pressure are known at one

arbitrary temperature T0. Its solution provides the temperature dependence of

(∂p∗/∂T )V for a system at fixed density and, if the excess pressure is known at

one temperature as well, also the temperature dependence of the excess pressure,

enthalpy and Gibbs free energy via
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p′(T ) = p′(T0) +

∫ T

T0

(
∂p∗

∂T

)
V

dT + ξ(T − T0) (3.54)

H ′(T ) = U ′(T ) + p′(T )V (3.55)

G′(T ) = A′(T ) + p′(T )V (3.56)

Note that it is not necessary to explicitly solve the conjugated pressure differ-

ential equation if the temperature dependence of A∗ is already known from the

thermodynamic master equation, since p∗(T ) = − (∂A∗(T )/∂V )T . As A∗(T ) is an

explicit function of T only, with U ′0, C ′V 0, (∂C ′V 0/∂T )V , · · · as parameters (i.e.,

the values of U ′ etc. at the reference temperature T0) depending only on the

volume, the resulting volume derivatives at T0 can be related to p∗0, (∂p∗0/∂T )V ,

(∂2p∗0/∂T
2)V , · · · , according to Eqs. 3.47-3.51 (see also the description of the

Gamma and Inverse Gaussian states).

Hence the knowledge of the potential energy distribution function at one tem-

perature, as well as the knowledge of ε and ξ fully defines the whole excess ther-

modynamics of a system at every temperature at fixed density. Every potential

energy distribution function therefore defines a different statistical state of the sys-

tem with a thermodynamical complexity given by the number of the heat capacity

temperature derivatives, necessary to define the corresponding type of potential

energy distribution function.

3.2.6 Phase-space confinement

A very simple model for the phase-space confinement as introduced in Eq. ??

is excluded volume due to “hard body” interactions. If, because of the strong

Pauli repulsions at close contact, it is possible to define for (almost) spherical

molecules like water an interparticle distance σHS = 2rHS at which the two-particle

interaction energy is virtually infinite in the temperature range of interest, the

confined ideal reference state can be described as a hard sphere (HS) system 51, 65.

Using the Carnahan-Starling equation of state (EOS) 66,

pHS = ρNkT

[
1 + η + η2 − η3

(1− η)3

]
(3.57)
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with pHS the pressure, η = vρN , ρN the number density, v = πσ3
HS/6 the hard-

sphere volume per molecule and σHS the hard-sphere diameter, we obtain 65 for

the excess Helmholtz free energy, Eq. ??

A′ref = −NkT
[

3η2 − 4η

(1− η)2

]
= −NkT ln ε̄HS (3.58)

where ε̄HS = ε
1/N
HS is the hard sphere phase-space fraction per molecule. Hence

ε̄HS = exp

{
3η2 − 4η

(1− η)2

}
(3.59)

and

ξHS = Nk
d ln ε̄HS
dV

= −Nk
V

[
2η2 − 4η

(1− η)3

]
(3.60)

which is always positive since η < 1. Within this model, p∗ is the pressure of

the system with respect to a HS fluid at the same temperature and density. For

more complex molecules deviating from an almost spherical shape a simple HS

description may not be sufficient. For non spherical molecules several equation of

state have been proposed.

3.3 Description of different statistical states

In this section the temperature dependence of thermodynamic properties for dif-

ferent statistical states are presented. In particular, the simplest solutions of the

Generalized Pearson systems, the Gaussian and Gamma states, are discussed in

details.

3.3.1 Gaussian state

The symmetric Gaussian distribution corresponds to {m = 0, n = 0} in the gen-

eralized Pearson system, Eq. 3.32. The distribution is given by

ρ(∆U ′) =
1√

2πb0

exp

{
−∆U ′2

2b0

}
(3.61)
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with b0 = M2. Using the fact that the moment generating function of a Gaus-

sian is simply 61, 54, 67

G∆U ′(β) = exp

{
b0β

2

2

}
(3.62)

and expressingM2 in terms of C ′V (Eq. 3.35), we obtain for the confined intrinsic

entropy function

α∗ = −1

2
(3.63)

The thermodynamic master equation (TME), Eq. 3.40, therefore reduces to(
∂C ′V
∂T

)
V

= −2
C ′V
T

(3.64)

the solution of which provides for a confined Gaussian state 61

α∗(T ) = −1

2
(3.65)

C ′V (T ) = C ′V 0

(
T0

T

)2

(3.66)

S ′(T ) = −1

2
C ′V 0

(
T0

T

)2

+ k ln ε (3.67)

U ′(T ) = U ′0 + T0C
′
V 0

(
1− T0

T

)
(3.68)

and

A′(T ) = U ′0 + T0C
′
V 0

(
1− T0

2T

)
− kT ln ε (3.69)

where U ′0 and C ′V 0 are the values of U ′ and C ′V at an arbitrary reference temper-

ature T0. Since (∂α∗/∂V )T = 0, the conjugated pressure equation (CPE), Eq. 3.52

is in this case a simple first order differential equation(
∂p∗

∂T

)
V

= −1

2
T

(
∂2p∗

∂T 2

)
V

(3.70)

The solution is
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p∗(T ) = p∗0 + T0

(
∂p∗0
∂T

)
V

(
1− T0

T

)
(3.71)

where p∗0 and (∂p∗0/∂T )V are the values at the reference temperature T0. The

excess pressure p′(T ) follows from Eq. 3.71, using p′ = p∗ + Tξ and (∂p′/∂T )V =

(∂p∗/∂T )V + ξ (Eq. 3.22):

p′(T ) = p′0 + T0

{(
∂p′0
∂T

)
V

− ξ
}(

1− T0

T

)
+ ξ(T − T0) (3.72)

It must be noted that only for the confined properties the infinite temperature

limits are always physically meaningful.

3.3.2 Gamma state

The Gamma distribution, given by 61, 64, 54

ρ(∆U ′) =
b1(1/b2

1)
b0/b21

Γ(b0/b2
1)

(b0 + b1∆U ′)b0/b
2
1 − 1 exp

{
−b0 + b1∆U ′

b2
1

}
(3.73)

with Γ(·) the Gamma function ?, b0 = M2 and b1 = M3/(2M2), corresponds to

the {m = 0, n = 1} solution of the generalized Pearson system, Eq. 3.32.

The moment generating function of this Gamma distribution is 61, 54, 67

G∆U ′(β) = exp

{
−β b0

b1

}
(1− βb1)−b0/b

2
1 (3.74)

and expressing the central moments M2 and M3, appearing in b0 and b1, in terms

of C ′V and (∂C ′V /∂T )V (Eqs. 3.35-3.36), the confined intrinsic entropy function is

in this case given by 61

α∗ =
1

δ
+

1

δ2
ln(1− δ) (3.75)

with

δ =
M3

2kTM2

=
T (∂C ′V /∂T )V

2C ′V
+ 1 (3.76)

The expression of α∗, combined with the general thermodynamic master equation
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Figure 3.1: The Gamma distribution
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(Eq. 3.40), yields

T

(
∂α∗

∂T

)
V

+ 2(δ − 1)α∗ − 1 = 0 (3.77)

where (∂α∗/∂T )V = (dα∗/dδ) (∂δ/∂T )V and (dα∗/dδ) follows from Eq. 3.75. After

straightforward algebra we obtain as a simple form of the TME(
∂δ

∂T

)
V

= −δ(1− δ)
T

(3.78)

The solution provides δ(T ), which can be expressed in terms of C ′V and (∂C ′V /∂T )V .

Hence this gives rise to a new differential equation in C ′V , the solution of which

yields for a confined Gamma state 61, 64

δ(T ) =
T0δ0

T (1− δ0) + T0δ0

(3.79)

α∗(T ) =
1

δ(T )
+

1

δ2(T )
ln {1− δ(T )} (3.80)

C ′V (T ) = C ′V 0

(
δ(T )

δ0

)2

(3.81)

S ′(T ) =
C ′V 0

δ2
0

[
δ(T ) + ln {1− δ(T )}

]
+ k ln ε (3.82)

U ′(T ) = U ′0 + (T − T0)C ′V 0

δ(T )

δ0

(3.83)

A′(T ) = U ′0 −
T0C

′
V 0

δ0

− TC ′V 0

δ2
0

ln {1− δ(T )} − kT ln ε (3.84)

with δ0 the value of δ at T0. Note that (∂C ′V /∂T )V is always negative, like in

the Gaussian state. Since for a Gamma state the pressure differential equation

(Eq. 3.52) is very complicated, it is more convenient to obtain the p∗ via the

volume derivative of A∗(T ), using Eq. 3.84. Thus, with the usual notation where

(∂U ′0/∂V )T etc. are the derivatives evaluated at T0

p∗(T ) = −
[
∂A∗

∂U ′0

(
∂U ′0
∂V

)
T

+
∂A∗

∂C ′V 0

(
∂C ′V 0

∂V

)
T

+
∂A∗

∂δ0

(
∂δ0

∂V

)
T

]
(3.85)
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where from general thermodynamic relations we have(
∂U ′0
∂V

)
T

= T0

(
∂p∗0
∂T

)
V

− p∗0 (3.86)(
∂C ′V 0

∂V

)
T

= T0

(
∂2p∗0
∂T 2

)
V

(3.87)

and (
∂δ0

∂V

)
T

=
1

C ′V 0

(
dα∗0
dδ0

)−1 [(
∂p∗0
∂T

)
V

− α∗0T0

(
∂2p∗0
∂T 2

)
V

]
(3.88)

as follows from the CPE at T0, with (dα∗0/dδ0) following from Eq. 3.75. The

derivatives ∂A∗/∂U ′0, ∂A∗/∂C ′V 0 and ∂A∗/∂δ0 follow from Eq. 3.84. After tedious

but straightforward algebra we finally obtain

p∗(T ) = p∗0 +B∗0 +B∗1
T

T (1− δ0) + T0δ0

+B∗2
T

T0

ln

{
T (1− δ0)

T (1− δ0) + T0δ0

}
(3.89)

where

B∗i = Ai1T0

(
∂p∗0
∂T

)
V

+ Ai2T
2
0

(
∂2p∗0
∂T 2

)
V

i = 0, 1, 2 (3.90)

with

2A01 = −2(1− δ0) ln(1− δ0) + δ0

D
(3.91)

A02 =
1

δ0

(1− δ0) ln(1− δ0) + δ0

D

A11 =
δ0

D
(3.92)

A12 = − 1

δ0

ln(1− δ0) + δ0

D
(3.93)

A21 =
2(1− δ0)

D
(3.94)

A22 =
1

D

and

D = 2(1− δ0) ln(1− δ0) + δ0(2− δ0) (3.95)

The excess pressure p′(T ) follows from Eq. 3.89, using p′ = p∗ + Tξ, (∂p′/∂T )V =
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(∂p∗/∂T )V + ξ and (∂2p′/∂T 2)V = (∂2p∗/∂T 2)V (Eq. 3.22):

p′(T ) = p′0 +B0 +B1
T

T (1− δ0) + T0δ0

+B2

(
T

T0

)
ln

{
T (1− δ0)

T (1− δ0) + T0δ0

}
+ ξT

(3.96)

where

B0 = A01T0

(
∂p′0
∂T

)
V

+ A02T
2
0

(
∂2p′0
∂T 2

)
V

+ A03T0ξ (3.97)

Bi = Ai1T0

{(
∂p′0
∂T

)
V

− ξ
}

+ Ai2T
2
0

(
∂2p′0
∂T 2

)
V

i = 1, 2 (3.98)

and

A03 = −δ0(1− δ0)

D
(3.99)

As pointed out previously 64, since the Gamma distribution has a limited do-

main, it can be defined either from −∞ to some upper limit or from some under

limit to +∞. The first case corresponds to a distribution with an asymmetric tail

on the left (defining the negative Gamma state Γ−, with δ < 0 and −1
2
< α∗ < 0),

the second case corresponds to an asymmetric tail on the right (defining the pos-

itive Gamma state Γ+, with 0 < δ < 1 and α∗ < −1
2
). Note that for δ = 0

the distribution is a Gaussian. The properties of and differences between the two

Gamma states have been described in detail 64.

Basically, the Γ+ state is physically acceptable in the whole semi-classical tem-

perature range, whereas the Γ− state must be considered as an approximation to

a more complicated statistical state within some temperature interval. Because of

the finite upper energy limit in a Γ− distribution, the approximation will be worse

for increasing temperature. One other difference is the low temperature limit:

while a Γ+ state may be extrapolated to T → 0 (although of course in that limit

the semi-classical description is not valid any more), for a Γ− state there exist a

temperature

T∗ = −T0δ0/(1− δ0) > 0 (3.100)

at which the solution encounters a singularity.



CHAPTER

FOUR

THEORETICAL AND COMPUTATIONAL

CHARACTERIZATION OF THE THERMODYNAMIC

EFFECTS OF EXTERNAL ELECTRIC FIELDS IN

DILUTE IONIC SOLUTIONS

Summary

In this chapter we use the quasi-Gaussian entropy theory in combination with

molecular dynamics simulations to provide a detailed description of the thermo-

dynamic variations due to an external electric field. Results show that water po-

larization as induced by the external (homogenous) electric field, while essentially

providing a simple mean energy shift in pure liquid water, determines a complex

response in ionic solutions involving entropic variations as a consequence of the

competing ion and external fields.

43
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4.1 Introduction

Characterization of liquids and solutions under the effect of external (static) elec-

tric fields is a long standing and challenging field of investigation for both the-

oretical and experimental physical chemistry. In particular, the thermodynamic

and kinetic variations induced by the applied electric may be of extreme interest,

not only to understand the response of a complex system like a liquid exposed

to an external field, but also to obtain essential informations for designing nano-

technological devices for chemical industry.

In the last decade indeed an increasing number of papers 68, 9, 12, 11, 10, 14, 15

has been devoted to such type of research, providing many relevant data mostly

concerning structural properties. However, almost no investigation on the thermo-

dynamic response to an external electric field is available in literature, although

the thermodynamic variations due to an applied field may be of great importance

in fundamental as well as applied research. In a previous paper 69, combining

molecular dynamics simulations and the quasi-Gaussian entropy (QGE) theory

(essentially an extension of statistical mechanical fluctuation theory) we quanti-

tatively characterized the thermodynamics of liquid water, including its dieletric

properties, as a function of temperature and external electric field intensity.

In this paper, following our previous articles 70, 71, 72 we construct a theoretical-

computational detailed model for the thermodynamics of ionic solutions (i.e. aque-

ous sodium and chloride ion solutions at ionic infinite dilution) in the presence of

an external static electric field of increasing intensity, characterizing its thermo-

dynamic effects on the ion partial molar properties.

4.2 Theory and Computational Methods

In the quasi-Gaussian entropy (QGE) theory 61, 73, 74, 75 the fundamental expres-

sions of statistical mechanics are rewritten in terms of the distribution function

of the fluctuations of a macroscopic propery, as the potential energy (excess en-

ergy), expressing the thermodynamics of the system, including the partial molar

properties in solutions 70, 71, via analytical models fully defined by the fluctuations

distribution.

In a previous paper 69 we characterized the thermodynamic effect, in particu-
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lar the dieletric response, due to the presence of increasing external electric fields,

clearly showing that the use of the gamma-state level of the QGE theory is accu-

rate.

Similar models, based on the combination of the QGE theory with Molecular

Dynamics (MD) simulations, have been also used to provide an accurate descrip-

tion of the thermodynamics of many solutes at infinite dilutions 70, 71 in usual

thermodynamic conditions (i.e. no applied external fields). In a recent paper
72 we extended the QGE method to treat conformational transitions in solvated

molecules (multi-Gamma-state model) by defining different states along a given

set of conformational coordinates. Such a procedure may be utilized not only for

conformational transitions, but in principle for any state transition as defined by a

set of parameters of the system’s Hamiltonian. Therefore, following our previous

paper 72, we may express the chemical potential change due to the external (ho-

mogenous) electric field (with respect to the zero field state) at isochoric condition

(i.e. the system’s volume is constant) via

∆µ(T,E0) = ∆u
′

0 −∆c
′

V 0T0∆(T ) + ∆[p
′
(T )v]−RT ln γ (4.1)

where ∆u
′
0 and ∆c

′
V 0 are the partial molar excess internal energy and isochoric

heat capacity shifts as obtained at the reference temperature T0, hence depending

only on the external electric field E0, p
′

is the excess pressure of the system, v is

the partial molar volume that within the model used is temperature independent
70, 71, 72 and therefore a function of the external field only, γ is a temperature

independent factor essentially given by the ratio of the fractions of accessible phase

space 72 and

Λ(T ) =
1

δ0

+
T

T0δ2
0

ln

[
T (1− δ0)

T (1− δ0) + T0δ0

]
(4.2)

with δ0 a dimensionless constant.

Note that within solute infinite dilutions conditions, p
′

and Λ, being intensive

properties, are fully determined by the solvent, that is they are identical to the

corresponding pure solvent (Gamma state) properties 70, 71, 73. Moreover, in a

homogeneous liquid both δ0 and the fraction of accessible phase space may be

considered as field independent 69, and hence for pure water γ ' 1, ∆v = 0

(isochoric conditions) and for an infinitely diluted solute δ0 is given by the zero
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field pure water system (note that, in general, for the solute condition γ 6= 1).

According to the previous equations and following again our previous paper 72 we

may also express the partial molar entropy and internal energy shifts by

∆s(T,E0) =
T0∆c

′
V 0

T

[
T − T0

T (1− δ0) + T0δ0

+ Λ(T )

]
+R ln γ + ρsR∆v (4.3)

∆u(T,E0) = ∆u
′

0 +

[
(T − T0)T0∆c

′
V 0

T (1− δ0) + T0δ0

]
(4.4)

with ρs the solvent molar density.

In order to parametrize the QGE model outlined above, we followed the proce-

dure described in our previous paper 72 utilizing three sets of (isochoric) molecular

dynamics (MD) simulations in the 280–1000 K temperature range: for the first

set of simulations we used a cubic box of 256 simple point charge (SPC) 76 water

molecules, at 55.32 mol/l; in the other sets of simulations we used the same SPC

system adding a single sodium or chloride ion kept fixed at the centre of the box

( note that for solute infinite dilution the solute-solvent thermodynamics can be

obtained considering a single solute molecule embedded in a large amount of sol-

vent molecules). Note that the use of the SPC to describe liquid water instead of

the more recent SPC/E model 77, improving the reproduction of the self diffusion

coefficient, radial distribution and dielectric constant, is motivated by the worst

accuracy of SPC/E with to respect SPC in reproducing liquid water partial molar

thermodynamic properties such as the chemical potential, the entropy etc 70, 78, 79.

All the simulations were performed using the GROMACS 80, 81 software package

modified to use the isokinetic temperature coupling 82. For all the simulations

the number of steps was 3000000 with three different time steps: 2 fs for simula-

tions in the temperature range 280–370 K, 1 femtosecond in the temperature range

420–800 K and 0.5 fs at T = 1000 K, respectively. Hence the corresponding simu-

lation temporal lengths are about 6, 3 and 1.5 ns. Short range interactions were

evaluated within 0.9 nm cut off radius and the long range electrostatics was calcu-

lated using the Particle Mesh Ewald (PME) method 83. It is worth to note that

within our simulation procedure the interaction between the ion and its replica

is removed, and hence the simulation box defined by 256 water molecules and a



Results and discussions 47

single ion provides a good description of high dilution condition 70. Each set of

simulations contains MD trajectories performed at 8 different temperatures and

using 4 external electric fields conditions (0 1 3 5 V/nm). Note that for the present

case we obtained from the MD simulations the chemical potential variations to be

used in the QGE model parameterization via:

∆µ(T,E0) =

∫ E0

0

[M(T,E
′

0)−Mw(T,E
′

0)]dE
′

0 (4.5)

With M,Mw the mean electric moment along the external field direction for the

solute-solvent and pure solvent system respectively. In addition, we also performed

other MD simulations at 300 K, utilizing electric field intensities in the range

0.04–5 V/nm.

4.3 Results and discussions

As evidenced in our previous paper 69, the main effect due to a homogenous ex-

ternal field of increasing intensity for liquid water, as obtained by the QGE model

based on MD simulations, consists in an almost temperature independent linear

shift of the chemical potential (see figure 4.1), implying that the increasing water

polarization has little effect on the system’s entropy.

In figure 4.2 it is shown the same effect for the water molar excess energy

(essentially the mean potential energy), indeed indicating an almost temperature

independent polarization effect. Note that in the figure we compare the molar

excess energy as obtained by MD data with the curves provided by the QGE

models, clearly illustrating the accuracy of the Gamma-state level of the theory in

quantitatively describing the liquid behavior.

In figures 4.3 and 4.4 we report the chemical potential variation due to the

field intensity as provided by the QGE models for solvated sodium and chloride

ions at infinite dilution. From the figures it is evident that now water polarization

effects provide a more complex response with a clear temperature dependence of

the chemical potential change, hence indicating a significant field and temperature

dependence of the ion partial molar internal energy and entropy (see figures 4.5-

4.8).

It is worth to note that for both ions a clear transition in thermodynamic
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Figure 4.1: The excess chemical potential shift of pure SPC water with
respect to the reference state (without the electric field).

Figure 4.2: Comparison of the molar excess internal energy of pure SPC
water as obtained by the QGE model (solid lines) and MD data (sym-
bols) for different electric field intensities.
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Figure 4.3: Excess chemical potential shift of sodium ion.

Figure 4.4: Excess chemical potential shift of chloride ion.
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Figure 4.5: Partial molar energy shift of sodium ion.

Figure 4.6: Partial molar energy shift of chloride ion.
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Figure 4.7: Partial molar entropy shift of sodium ion.

Figure 4.8: Partial molar entropy shift of chloride ion.
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behavior must occur beyond 1 V/nm field strength, as evidenced by the change in

the concavity of the chemical potential, partial molar energy and entropy due to

the sign variation of three key model parameters (∆c
′
V 0,∆v,R ln γ, see tables 4.1

and 4.2).

Table 4.1: Parameters of the QGE theoretical models for the sodium ion partial
molar properties.

T0= 300 K ∆u′0 ∆c′V 0 ∆v R ln γ δ0

(kJ/mol) (kJ/mol K) (l/mol) (kJ/mol K)
1(V/nm) 15 - 0.095 - 0.057 - 0.101 0.6565
3(V/nm) 62.9 0.021 0.025 0.083 0.6565
5(V/nm) 110 0.022 0.082 0.167 0.6565

Table 4.2: Parameters of the QGE theoretical models for the chloride ion partial
molar properties.

T0= 300 K ∆u′0 ∆c′V 0 ∆v R ln γ δ0

(kJ/mol) (kJ/mol K) (l/mol) (kJ/mol K)
1(V/nm) 7.5 - 0.202 - 0.016 - 0.147 0.6565
3(V/nm) 56 ∼ 0 0.021 0.043 0.6565
5(V/nm) 119 0.109 0.090 0.216 0.6565

In fact at 1 V/nm the ion partial molar (isochoric) heat capacity variation with

respect to the zero field condition is negative, resulting in a partial molar entropy

and energy decrease as temperature increases. Such heat capacity behavior is asso-

ciated to the partial molar volume (∆v) and confinement entropy (R ln γ) decrease

with respect to the zero field condition, indicating more compact and ordered first

solvation shells. At higher field intensity the enhanced watre polarization clearly

provides less compact and ordered first solvation shells, resulting in increasing par-

tial molar energy and entropy as temperature raises (i.e. positive partial molar

heat capacity, volume and confinement entropy variations).

These thermodynamic results evidenced from the QGE model based on MD

simulations, clearly point out that a relevant transition of the solvent molecular

organization must occur in the range 1–3 V/nm.
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In figure 4.9 we illustrate such solvent transition in the first solvation shells (i.e.

within a 0.8 radius sphere centered on the ion) by showing the mean molecular

electric moment along the external field direction as a function of the increas-

ing field strength. The figure clearly shows that for all the cases considered the

0–1 V/nm range corresponds to a very efficient solvent polarization (i.e. a limited

field increase provides a large polarization increase) while for field intensities be-

yond 3 V/nm a much less efficient polarization regime appears. Note that for both

ions the switching the two polarization regimes occurs in the 1–3 V/nm range, well

matching the thermodynamic switching range provided by the QGE model (see

tables 4.1 and 4.2).

Figure 4.9: Mean solvent molecular dipole along the external field direc-
tion, as obtained in the 0.8 nm radius sphere centered on the ion.

4.4 Conclusions

The combined use of MD simulations and QGE theory allowed the construction of

a detailed quantitative model of the thermodynamics of ionic solutions (chloride

and sodium ion solution) in presence of an applied external (homogeneous) electric
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field.

Results showed that for both ionic solutions the 1–3 V/nm range corresponds to

a switching between two thermodynamics regimes (see tables 1 and 2): a first one,

within the 0–1 V/nm range, characterized by negative variations (with respect to

the zero-field condition) of the ion partial molar volume, heat capacity and entropy

and a second one, beyond 3 V/nm, associated to positive ion partial molar volume,

heat capacity and entropy variations.

Such a behavior, reflecting a similar switching between two polarization regimes

of the ion first solvation shells (see figure 9), reveals the effects of the balance

between the ionic and external fields. When the external field is unable to destroy

the (zero-field) solvent organization around the ion (within the 0–1 V/nm range),

the solvent polarization provides more compact and ordered first solvation shells.

On the other hand the opposite behavior arises when the external field is strong

enough to significantly break the solvent organization around the solute.



CHAPTER

FIVE

THEORETICAL AND COMPUTATIONAL

CHARACTERIZATION OF THE EFFECT OF

HOMOGENEOUS ELECTRIC FIELDS IN

ZWITTERIONIC MICELLE

Summary

Micelles belong to the class of promising colloidal nanocarriers for the targeting

of poorly water soluble and amphilic drugs. In the present study, a zwitterionic

micelle has been choosen as a simple molecular vector tipically used in nano-

medicine applications. We specifically investigate the behavior of the micelle (N,N-

dimethyl-tetradecylamine-N-oxide) in water under the effect of an external electric

field by using Molecular Dynamics simulations. Such an approach allows to study

the structural properties of the micelle and to underline the thermodynamic effects

induced by homogeneous electric field.

55
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5.1 Introduction

The atomic-scale and cutting edge field of nanotechnology which is considered to

lead us to the next industrial revolution is likely to have a revolutionary impact

on the way things will be done, designed and manufactured in the future.84 Nan-

otechnolgy is entering into all aspects of science and technology including, but

not limited, to aerospace, agriculture, bioengineering, biology, energy, the envi-

ronment, materials, manufacturing, medicine, military science and technology. It

is based on bottom-up (atomic and molecular) approach, which starts from nano-

or sub-nanoscale objects (namely, atoms or molecules) to build up nanostructures.

Nanotechnology is an area of science devoted to the design, construction,

and utilization of functional structures on the nanometer scale (often 100 nm

or smaller). At the nanoscale, the properties of materials often differ from those

of the corresponding bulk materials. In fact, fundamental characteristics of a

given material can be precisely controlled by nanotechnology without changing its

chemical composition such as melting point, magnetic properties, or even a char-

acteristic as basic as color.85 There are numerous applications for nanotechnology.

Among them, the treatment, diagnosis, monitoring and the control of biological

systems has recently been referred to as ”Nanomedicine” by the National Institute

of Health.86

Nanomedicine may involve a number of different types of nanodevices, in-

cluding nanoparticles, nanomachines, nanofibers, sensors, and other nanoscale

microfabrication-based entities.87 The nanomedicine-based diagnostics developed

to date include gold nanoshells, iron oxide nanocrystals, and quantum dots. In-

deed, although these nanoparticles have provided new opportunities for diagnosing

cancer, their practical application has been limited by problems with toxicity, in-

stability, and lack of selectivity for the disease site.

In recent years, researchers have sought to overcome these limitations by phys-

ically or chemically anchoring biocompatible polymers on the surfaces of diag-

nostic nanomedicines. The surface modification of nanoparticles with hydrophilic

polymers such as poly(ethylene glycol) (PEG) reduces the interfacial energy in

an aqueous environment, thus preventing unwanted aggregation due to secondary

interactions between nanoparticles. In addition, the surface decoration of nanopar-

ticles with hydrophilic polymers may minimize recognition by proteins and cells
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in the body, allowing the nanomedicine to circulate in the blood for a longer pe-

riod of time and increasing the possibility that it will reach the target site. In

the context of nanomedicine-based therapeutics, effective cancer therapy requires

drug delivery to cancer tissues, meaning that a drug delivery system should hold

the anticancer drug in the blood and then allow a burst or continuous drug release

at the cancer.88 For this purpose, a variety of lipid-based drug delivery systems

have been developed in the form of liposomes and lipid-core micelles.

Over the past decade, researchers have sought to develop cancer therapeutics

involving drug delivery by a combination of nanotechnology and polymer chem-

istry. Most of the polymers used for these systems are biocompatible and/or

biodegradable. The drug is typically either dispersed within the polymeric nanopar-

ticle or conjugated to the polymeric back-bone.23

Among polymers used, polymer micelles have received a great deal of attention

as colloidal carriers of poorly water-soluble and amphiphilic drugs. Polymeric mi-

celles, which were introduced by Ringsdorf in 1984,89 are formed by amphiphilic

block copolymers in aqueous solution. The capacity of polymeric micelles to in-

crease the solubility of hydrophobic drugs stems from their unique structural com-

position, which is characterized by a hydrophobic inner core sterically stabilized

by a hydrophilic shell. A polymeric micelle can serve as a nanosized container into

which drugs can be incorporated by chemical, physical, or electrostatic interac-

tions.

The use of polymeric micelles as drug carriers offers several advantages over

conventional dosage forms: they protect drugs from harsh biological environments

(e.g. low pH and hydrolytic enzymes), and the small size of polymeric micelles

(10-100 nm in diameter) should facilitate drug targeting and reduce the side ef-

fects of chemotherapy. The stability of the drug is also increased through micelle

incorporation. Furthermore, undesirable side effects are lessened, as contact of

the drug with inactivating species, such as enzymes present in biological fluids, are

minimized, in comparison with free drug. They can be prepared in large quantities

easily and reproducibility. By far the most important feature of micellar deliver

systems, which distinguish them from other particulate drug carriers, lies in their

small size (∼ 10 to 30 nm) and the narrow size distribution. Another beneficial

aspect of polymeric micelles for drug delivery is their relatively lengthy retention

time in circulation.
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Another type of drug delivery systems could be possibly based on stimuli-

responsive polymers, which sense a change in a specific variable (as for example an

electric field) and activate the delivery. Harada et al.90 have found a remarkable

elevation of the lysozyme activity through the inclusion into the polyion complex

(PIC) micelles, thus achieving for the first time the drastic switching of enzymatic

reactivity synchronizing with the application of a pulse electric field.

In this specific context, we have studied as model system the zwitterionic mi-

celle (N,N-dimethyl-tetradecylamine-N-oxide) by using molecular dynamics simu-

lations (MD).

Micellar aggregates have been probed by a number of experimental methods,

such as NMR,91 EPR,92 small angle neutron scattering,93 light scattering,94 and

diffusion measurements.95 None of these methods provide enough information to

deduce a complete structure or even provide conclusive evidence about a proposed

structure. However, they can rule out certain suggestions and they give direct evi-

dence about certain structural and dynamic properties of the system. Theoretical

methods, among which Monte Carlo and MD, have the advantage that they can

provide a more detailed information than experiments. Since these systems are

complicated, however, any successful theoretical treatment involves simplifications

that are not immediately justifiable. It is therefore important to compare with

experimental results and adjust the model if it fails to reproduce them.

Aim of the present study is to thermodynamically characterize the zwitterionic

micelle under the effect of an external static electric fields by using MD simulations.

The chapter is organized as follows: The construction of the model system

and the simulation run are outlined. A brief description of methods utilized to

extrapolate geometrical informations from simulated system are given. Finally,

we report an accurate structural description of the micelle as provided by MD

simulations and the evaluation of electric field effects.

5.2 Methods

The model system in the present study comprises 55 amphiphilic monomers of

TDDNO (N,N-dimethyl-tetradedecylamine-N-oxide), and 14123 (simple point charge)

SPC water molecules. This large number of water molecules allows a more accurate

simulation of the environment of the micelle. The aggregation number of 55 has
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been determined experimentally by the ”critical micelle concentration” (CMC),

that is defined as the concentration of surfactants above which micelles are spon-

taneously formed. The micelle was constructed so that the innermost methyl

group in each of the hydrophobic tails was placed close to the center of a sphere

with a radius of ∼ 2 nm, and the remainder of the monomer extending outward.

The chemical structure of the TDDNO surfactant molecule is shown in Figure 5.1.

Partial charges on the atoms of the headgroup are shown in Table 5.1.

Table 5.1: Surfactant headgroup charges

atom charge
(atomic units)

CH2 0.0268
N 0.6164
CH3 0.0314
O -0.7062

Figure 5.1: TDDNO surfactant used in MD simulations. (hydrogen atoms
not shown)

Molecular Dynamics simulations, in the NVT ensemble, were performed using

the GROMACS software package96 and with the GROMOS96 43a1 force field.29

Water was modeled by the SPC model.76 A nonbonded cutoff was fixed at 9.0 Å and

all long-range electrostatic forces were calculated using the Particle Mesh Ewald

method.83 The temperature was kept constant by using the isokinetic temperature

coupling.97
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The system was then subjected to further energy minimization and thermal-

ization, letting the micelle to reach a stable condition, a more compact structure

and also to allow the water molecules to relax around the lipids (Figure 5.2).

In this step roto-translational movements of the micelle were allowed, leading

to a slight geometrical shift with respect to the center of the simulation box.

Thermalization was carried out in three steps: 1) a sequence of simulations of 60 ps

up to a temperature of 200 K; 2) a simulation of 600 ps at 250 K; 3) a simulation

of 600 ps at 300 K. The final density of entire system was 1000 g/l and the final

periodic cubic box of dimensions 76.6 × 76.6 × 76.6 Å. Finally, a set of simulations

were carried out using LINCS98 to constrain the bond lengths in the lipids, with

a time step of 2 fs, and with a time length of 50 ns, considered as a suitable time

to study the dynamical properties of the system. Simulations were performed

at room temperature (T = 300 K) and using 5 external electric fields conditions

(103 − 104 − 105 − 106 − 107 V/m), typical of the micro and nano-pulses electric

field applications. A reference simulation was performed at 300 K, with a temporal

lenght of 50 ns, without an external electric field applied. During the production

time, free rotation of the micelle was allowed while its centre of mass was frozen.

5.3 Results and Discussion

5.3.1 Analysis of the Micelle Structure in absence of elec-

tric field

In previous studies99, 100, 101 the size and shape of micelles were evaluated by their

radius of gyration and principal moments of inertia. In the present study the

geometrical structure of the micelle and fluctuations are studied by means of the

principal geometric axes obtained by diagonalization of the 3*3 Covariance Ma-

trix of the system at each MD frame, whose elements are the covariances of the

x, y and z atomic cartesian coordinates of the lipidic ensemble. The eigenvectors

correspond to the geometrical principal axes of the micelle (geometrically approx-

imated by an ellipsoid), while the squares root of the three eigenvalues provide a

measure of axes lengths. The results are consistent with the conventional static

picture of a spherical micelle with hydrophilic heads out and hydrophobic core

inside. The relative magnitude of the three principal components, 1.33:1.14:1, in
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Figure 5.2: Structure of the micelle. (water molecules are not shown)
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absence of external electric field, implies that the micelle is roughly spherical with

individual surfactant molecules adopting various nonlinear conformations, mainly

in the hydrophilic segment, thereby leading to the overall compact globular shape

of the micelle aggregate.

The time-behaviour of the micelle eigenvalues, shown in Figure 5.3, indicates

that the micelle structure maintains its ellipsoidal shape and a good structural

stability over the whole 50 ns time-length: the mean distance between the micelle

centre of mass and micelle heads results 1.825±0.026 nm. It is also possible to

obtain the size of the conformational space of the micelle by representing the

projection of the equilibrated trajectory on the plane of the first and second (or

third) eigenvalue. Figures 5.4 and 5.5 show that the structure remains stable and

confined in a single closed region with well defined border, high diffusivity, and

high energy barriers.

Figure 5.3: Eigenvalues trend during all the simulation.
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Figure 5.4: Projection of the equilibrated trajectory on the plane of the
first and second eigenvalue.

5.3.2 Density of components in absence of electric field

In this section a description of the water-micelle ensemble is presented in order to

characterize the micelle in absence of external electric fields. This has been carried

out by studying the density distribution of the selected atoms in the system that

also provides informations about its composition. A radial density plot (Figure 5.6)

was constructed by calculating the distance of the selected atoms from the micelle

center of mass. The figure shows that hydrophobic tails density rapidly decreases

between 13 and 22 Å, while the hydrophilic heads density rapidly decreases between

18 and 25 Å. Moreover the water density is zero within 12 Å from the micelle center

of mass and gradually increases up to 23 Å. This is followed by a broad plateau

up to 35 Å, during which a gradual decrease in the density occurs. The gradual

decrease in the water density from 23 to 35 Å suggests an influence of the micelle

on the adjacent bulk solvent. The hydrophilic heads, as shown in Figure 5.6, are

distributed between 12 and 25 Å. Both the hydrophilic head and water go to zero at

∼ 12 Å from the micelle center of mass. This result also agrees with those reported
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Figure 5.5: Projection of the equilibrated trajectory on the plane of the
first and third eigenvalue.

by MacKerrell.102 This analysis shows that the micelle can be subdivided in three

zones (Figure 5.7): an internal zone (< 1.6 nm), containing the hydrophobic core,

an external zone (> 1.8 nm) containing water molecules and a transition zone,

where polar heads are distributed.

5.3.3 Electric potential profile in absence of electric field

It is also interesting to investigate the electric potential profile along micelle’s

radial direction, whose gradient represent the local field acting on the water-micelle

system. This has been carried out by the classical law of Coulomb, calculating

the sum of electric potentials on all atoms of the box, starting from the micelle

center of mass and moving radially toward the left box. Firstly we estimated the

electric potential profile along three principal axes of the micelle as a function

of the distance from the micelle center of mass, but without the application of

an external electric field. The figures clearly show a direct measure of potential

difference of about 0.8 V, always the same along three axes of the micelle, between
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Figure 5.6: Density of selected atoms as a function of distance from the
micelle center of mass.
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Figure 5.7: The micelle subdivides in three zones.
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the inner core of the micelle and the external environment (Figures 5.8-5.10).

Figure 5.8: Electric potential profile along principal axis of the micelle.

5.3.4 Analysis of the Micelle Structure in electric field

To analyse the structural properties of the micelle with respect to the perturbed

state, we have been carried out the same kind of analysis. From Figures 5.11 and

5.12 it is possible to observe such as the trajectory of the eigenvalues remains also

unchanged with the presence of increasing external electric fields. Subsequently

we calculated mean of three eigenvalues for different electric field intensities by

comparison with the zero state field. In Figure 5.13 it is worth to note that for

all the external electric fields intensities we obtained, within the thermal noise,

an identical behaviour without evident structural changes. While Figures 5.14

and 5.15 show the size of the conformational space of the micelle at 105 V/m and

Figures 5.16 and 5.17 show the size of the conformational space of the micelle at
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Figure 5.9: Electric potential profile along medium axis of the micelle.
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Figure 5.10: Electric potential profile along minor axis of the micelle.
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106 V/m. These figures confirm again the stability of the micelle in presence of an

applied external electric field.

Figure 5.11: Eigenvalues trend during all the simulation in E field.

5.3.5 Density of components in electric field

A more exhaustive analysis seems to be interesting in regard to the density dis-

tribution of the system under strong external fields. Only fields of 105 V/m or

larger were able to provide decrease in the water density profile that is observable

in Figure 5.18. From the figure it is possible to see that the water density is zero

within 14 Å from the micelle center of mass compared to the unexposed water

density that is zero within 12 Å, resulting in a reduction of water molecules inside

the micelle’s hydrophobic core. Focusing the attention on interaction mechanisms

among the imposed external electric fields and the water inside the micelle (i.e.

for distance < 1.8 nm), in Figure 5.19 we report the water density ratio between
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Figure 5.12: Eigenvalues trend during all the simulation in E field.



72 Chapter 5

Figure 5.13: Average number of three eigenvalues as a function of the
increasing field strength.
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Figure 5.14: Projection of the equilibrated trajectory on the plane of the
first and second eigenvalue in E field.

exposed and unexposed conditions, showing clearly a decrease of the water density

in the presence of external electric fields.

It is worth to note that the presence of external electric fields greater than

104 V/m involves an evident variations in the thermodynamic behavior of the wa-

ter: an overall shift in Helmholtz free energy up to 4− 5 kJ/mol is obtained with

these exposures via: A = −kT log ρ. Such results suggest that water molecules

and, in principle, also other type of solute molecules, are pushed away from the

micelle’s hydrophobic core when an external electric field is applied. On the other

hand, in unexposed conditions, water molecules stay inside the micelle’s core. To

gather informations about the total number of water molecules within a given dis-

tance from the micelle centre of mass and its variations when an external electric

field is applied, we can integrate the density curves hence obtaining the values

reported in Figure 5.20. To prove as the electric field influences the behavior of

water molecules we report another Figure 5.21 where it is possible to see the dis-

tribution of the water molecules number inside the micelle core in the presence or

in the absence of the electric field. It is interesting to observe that electric fields
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Figure 5.15: Projection of the equilibrated trajectory on the plane of the
first and third eigenvalue in E field.

beyond a certain threshold (105 V/m) produce up to 20 % variation in the number

of water molecules inside the micelle core. To note that the electric field influences

on water molecules displacement up to a distance of 1.6 nm ( the border region

between the hydrophilic part of micelle monomers and the external environment)

is statistically significant (t and Wilcoxon tests for trend and two way Anova with

p<0.05).

5.3.6 Electric potential profile in electric field

In Figures 5.22-5.24 we calculated the electric potential profile along three axes of

the micelle, under the influence of an external electric fields at various intensity,

but essentially the profile of the electric potential remains always the same with

a difference of potential of about 0.8 V between the core of the micelle and the

external medium. The other way round this result cannot provide a clear pic-

ture of the external field influence on atomic charge displacement, except for very

high exposure condition (107 V/m). The latter case corresponds, experimentally
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Figure 5.16: Projection of the equilibrated trajectory on the plane of the
first and second eigenvalue in E field.

speaking, to the application on biological sample of high electric pulses typical

of nano-poration techniques. Nevertheless the presence of a positive electrostatic

potential in the interior micelle and the fast transition toward negative values as

the external environment is reached. This kind of result could be important for

describing the transmembrane transport of small (charged) solute molecules (i.e.

drug molecules).

5.4 Conclusions

In the present study, a structural characterization of a water-micelle system in

presence of an external electric field has been extensively investigated by the use

of MD simulations coupled to a molecular detailed approach. In the course of a 50

nanosecond molecular dynamics simulation, it has been determined that a zwit-

terionic micelle composed of 55 amphiphilic monomers TDDNO (N,N-dimethyl-

tetradedecylamine-N-oxide), and 14123 SPC water molecules is stable. Of the

micellar characteristics evaluated in this work, none had significant deviation over
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Figure 5.17: Projection of the equilibrated trajectory on the plane of the
first and third eigenvalue in E field.

time of the simulation except for the water molecules distribution inside the mi-

celle’s environment. All micellar structural quantities were stable throughout the

simulation. Evaluation of the micelle shape by investigation of the 3*3 Covariance

Matrix of the system revealed that the micelle is not completely spherical, but

is slightly ellipsoidal. This result is always the same with no evident structural

modifications when an external electric field of increasing intensities is applied. On

the other hand a direct effect on water molecules distribution inside the micelle’s

core and a change of thermodynamic properties of the system is evidenced: for

an external electric field of high intensities (E=105 V/m) is observed a significant

leak of water molecules on the outside of the micelle, hence leaving a ’more’ hy-

drophobic core. The opposite behavior arises at the zero field condition, resulting

in a capture of water molecules inside the micelle’s core. Another preliminary

result is the calculation of the electric potential profile along the micelle’s radial

direction that furnishs a measure of the potential difference of about 0.8 V between

the micelle’s core and the external environment without or with the external elec-

tric field. These findings, in principle, could be exploited, in the diverse fields
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Figure 5.18: Density of selected atoms as a function of E field.
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Figure 5.19: Density ratio between unexposed and exposed density pro-
files.
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Figure 5.20: Mean number of water molecules at different distances from
the micelle centre of mass.
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Figure 5.21: Distribution of the water molecules number inside the mi-
celle core induced by the electric field.
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Figure 5.22: Electric potential profiles along principal axis of the micelle,
for different electric field intensities.
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Figure 5.23: Electric potential profiles along medium axis of the micelle,
for different electric field intensities.
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Figure 5.24: Electric potential profiles along minor axis of the micelle,
for different electric field intensities.
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of nano-medicine applications, to modelize engineered nano-structure capable to

reversibly entrap small amounts of drug solute(i.e. increase the solubility of hy-

drophobic drugs) dispersed in the water.



CHAPTER

SIX

CONCLUSIONS

In the present research activity, the external electric field action on microscopic

structures was studied by both theoretical and computational methods, in order

to obtain a deeper insight into the interaction occurring at the molecular and

macromolecular levels of the biological scale of complexity.

The comprehension of the basic molecular mechanisms is indeed extremely

important in biophysical research, since it is evident that whatever observable

effect at the macroscopic scale is the result of electric interactions that take place

at atomic level.

Molecular simulations have been used to investigate the dynamic behavior and

functioning of molecules in their own realistic environment, both in physiological

condition and under exposure to external electric field. Such an approach allowed

the observation of electric field action on microscopic structures in an accurate

and rigorous way, providing a realistic description of the interaction occurring at

the atomic level.

The theoretical approach of the quasi-Gaussian entropy (QGE) theory has been

applied in order to treat molecular systems of biological interest under the effect

of external electric fields. Such a theory, characterizing the complete thermody-

namic behavior by the distribution function of a macroscopic property, tackles the

long standing problem of the calculation of the configurational (multidimensional)

partition function, which is a high-dimensional integral, from a different viewpoint.

In the first part of this thesis we extended and used the QGE theory with

85
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classical molecular dynamics (MD) simulations in order to obtain an accurate de-

scription of the thermodynamics of dilute ionic solutions (chloride and sodium

ion solutions) under the effect of external (static) electric fields. Results showed

that for both ionic solutions the 1–3 V/nm range corresponds to a switching be-

tween two polarization regimes of the ion first solvation shells: a first one, within

0–1 V/nm, characterized by a very efficient solvent polarization that provides more

compact and ordered first solvation shells; while a second one, beyond 3 V/nm,

characterized by a less efficient solvent polarization that breaks the solvent orga-

nization around the solute.

In the second part of this thesis a structural characterization of a water-micelle

system in the presence of an external electric field has been extensively investigated

by the use of MD simulations. Evaluation of the micelle structure by investigation

of the 3*3 Covariance Matrix of the system revealed that the micelle is stable and

slighly ellipsoidal in both the unexposed and exposed conditions. Finally another

important result is the loss of water molecules from inside the micelle, following

the application of the external electric field. This effect of the electric field on the

micelle could be relevant to design engineered nano-structures for the veicolation

of drugs.
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P. Krüger, A.E. Mark, W.R.P. Scott, and I.G. Tironi. Biomolecular Simu-

lation: The GROMOS 96 Manual and User Guide. Hochschulverlag AG an
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