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In this paper we introduce a mean field method for simulating complex molecular systems like
liquids and solutions. Using well-established theoretical principles and models, we obtained a
relatively simple approach which seems to provide a reliable description of the bulk molecular
behavior of liquid water. Moreover, we have applied this approach to study simple solutes in
solution, like sodium and chloride ions and acetone. Comparison with standard simulations,
performed with periodic boundary conditions, shows that such a mean field method can reproduce
the same structural and thermodynamical properties at low computational costs and represents a
valid alternative for simulating solute-solvent systems, like solutions of large biomolecules. ©2005
American Institute of Physics. fDOI: 10.1063/1.1877172g

I. INTRODUCTION

The development and use of mean fieldsMFd or implicit
solvent methods for simulating realistic molecular systems is
continuously increasing.1–6 MF methods allow, in principle,
the correct treatment of molecular systems without the need
for simulating an extremely large amount of explicit mol-
ecules, and they are very well suited for solute-solvent sys-
tems and in particular for the simulation of biological mac-
romolecules. Also, they can be combined with quantum
mechanicssQMd and mixed quantum/classicalsQM/MM d
methods to include inexpensively the solvent contribution
ssee Ref. 7 and references thereind, which is in many cases
not negligible, and they could offer significant advantage
with respect to periodic boundary conditionssPBCd models
to performab initio molecular dynamics with localized basis
sets for the representation of the electronic wave function.8

It is worth noting that PBC methodologies, employed in
standard simulations, although widely used and efficient can
provide unphysical correlations due to the artificial periodic-
ity of the system.9–16 These correlations are quite negligible,
at least for the basic behavior of the system, when solids or
homogeneous fluids are considered, but are likely to become
more relevant in the case of solute-solvent systems, espe-
cially when a polar or charged solute is concerned. Such
spurious effects are clearly removed by the use of MF meth-
ods, which on the other hand are always affected by explicit
boundary effects due to the macroscopic character of the
approximations used in the derivation of the MF. However,

such boundary effects can be limited when rigorous MFs are
used, i.e., based on well sound theoretical principles, and
hence for a large assembly of molecules an extended inner
part of the simulation box could correctly reproduce the bulk
behavior, i.e., the same behavior of an equivalent subpart
embedded in a macroscopic system. In this paper we present
a MF model, based on well-established theoretical principles,
developed forNVT ensemblesimulations of molecular fluids.
In this model we consider the explicit molecules in their
simulation box to be embedded in a dielectric continuum.
The shape of the simulation box could be quite arbitrary, so
that it can be easily adapted to different systems, e.g., a large
macromolecule surrounded by solvent molecules. However,
because of the mathematical simplicity, in this paper we only
consider the special case of a spherical cavity. The MF is
composed of three parts:sad an electrostatic contribution or
“reaction field,” which accounts for the long-range interac-
tions between the explicit molecules and the dielectric;sbd a
van der Waals potential, which represents the short-range
dispersion-repulsion interactions, andscd a rigid boundary
surface that keeps the explicit molecules confined in the
spherical cavity.

Finally, it is important to remark once again that in this
model, as in other MF methods, the approximations used are
based on the macroscopic physical behavior and hence they
become more reliable as the simulation cavity gets larger.

This paper is organized as follows: In Sec. II, we de-
scribe the theoretical and computational details of the MF
model and we provide the technical details of the molecular
dynamicssMDd simulations performedsSec. II Ed. In Sec.adElectronic mail: brancato@caspur.it
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III, we compare the results of a set of MD simulations of
water using both MF and PBC methods. The same MF
model parametrized for pure water has been tested on solute-
solvent systems. In particular, we have studied aqueous so-
lutions of sodium and chloride ionsssee Sec. III Bd and ac-
etonessee Sec. III Cd. Conclusions are given in Sec. IV.

II. METHODS

A. Basic equations

We consider a homogeneous macroscopicNVT system
where, say in the center, we define a spherical mesoscopic
subsystem where we can neglect the density fluctuations as
the average number of molecules is rather large. Hence, we
can decompose the overall system in two subsystems with
fixed volume and number of molecules. Considering a
Hamiltonian where no molecular polarization is present, as
in a typical simulations, we then have that thesHelmholtzd
free energy of a given phase space position of the molecules
in the cavitysexplicit moleculesd is

AsxI,pId = UIsxI,pId

− kT lnSQ−1E e−bfVsxI,xIId+UIIsxII ,pIIdg
dxIIdpII

hdII
D ,

s1d

where xI ,pI and xII ,pII are the coordinates and conjugated
momenta of the mesoscopic subsystem and of the remaining
part of the macroscopicNVT system smacroscopic sub-
systemd, UI and UII are the internal energies of the mesos-
copic and macroscopic subsystems,dII is the total number of
classical degrees of freedom in the macroscopic subsystem
andh is the Planck’s constant. Moreover,Q−1 is a constant
providing the quantum correction,V is the interaction energy
between the two subsystems andb−1=kT with k the Boltz-
mann’s constant andT the absolute temperature. If in the
reference state all the interactions between the two sub-
systems are set to zerosV=0d, we have for the free energy
difference,

DAsxI,pId = AsxI,pId − ArefsxI,pId

= − kT lnSe e−bfVsxI,xIId+UIIsxII ,pIIdgdxIIdpII

e e−bUIIsxII ,pIIddxIIdpII
D , s2d

which is also known as the “potential of mean force” or
shortly the “mean field”sMFd, WsxId;DAsxI ,pId. This is the
potential field experienced by the explicit molecules in a
given configuration due to the average interactions with the
environment. Continuum models differ in the wayW is
approximated.1–3

According to commonly used force fields for computer
simulationsse.g.,GROMOS,17

AMBER,18
CHARMM

19d, the non-
bonded interactions can be separated into long-range electro-
static and short-range van der Waals contributions. The latter
accounts for the dispersion and repulsive interactions. By
using this decomposition we have

VsxI,xIId = VelecsxI,xIId + VvdWsxI,xIId. s3d

Consequently, we can define two corresponding terms
for WsxId:

WsxId = WelecsxId + WvdWsxId, s4d

where

WelecsxId = − kT lnSe e−bfVelec+UIIgdxIIdpII

e e−bUIIdxIIdpII
D , s5d

WvdWsxId = − kT lnSe e−bfVelec+VvdW+UIIgdxIIdpII

e e−bfVelec+UIIgdxIIdpII
D . s6d

B. Electrostatic term „reaction field …

Generally, the electrostatic contribution,Welec, is derived
from macroscopic continuum theory.1,2 Given a molecular
charge distribution enclosed in a cavity of a dielectric me-
dium, the electric potential is obtained from the Poisson
equation,20

DfesrdDFsrdg = − 4prIsrd, s7d

whereFsrd is the electrostatic potential at pointr, rIsrd rep-
resents the molecular charge density andesrd is the position-
dependent dielectric constant.Welec can be considered as the
reversible work needed to charge the explicit molecules in
the dielectric cavity. It can be shown that

WelecsxId = o
i
E

0

ei

FRFsr iddei8 =
1

2o
i

eiFRFsr id, s8d

whereei is the ith atomic partial charge andFRFsr id is the
electric potential at the atomic siter i only due to the macro-
scopic subsystem, which implicitly depends on the charges
ei. FRFsr id is the so-called “reaction field” potential, that is
the electric field generated by the polarization of the dielec-
tric continuum induced by the molecular charge distribution.
Since the works of Bell21 and Onsager22 in the 1930s, many
different approaches have been developed to describe this
phenomenon.23,24 Within the continuum approximations, the
reaction field and its potential can be expressed analytically
using the multipole expansion of the charge distribution20

and the generalized Born theory25 or numerically by solving
the Poisson equation with either the finite difference
method26,27 or the boundary elementsBEd method.28–31

Although for the special case of a spherical cavity as
well as for other regular cavities an analytical solution of
FRFsr id based on multipole expansion of the charge distribu-
tion exists, in this work we have used a more flexible BE
method, which is based on the polarizable continuum model
sPCMd approach.28,32The details of this methodology can be
found elsewhere.32 Briefly, it consists on partitioning the cav-
ity surface in small elements called tesserae, which have
typically a triangular shape, of approximately equal areas
and then determining the “apparent surface charges,”qasc,
centered on each tessera for a given charge distribution of the
explicit molecules. The computation ofqasc requires the so-
lution of a system ofNtes linear equations,

D ·qasc= − Em,' s9d

with
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Em,'ssid = Emssid ·nssid, s10d

wheresi is the position vector of theith tessera,nssid is the
corresponding normal vector pointing outward the cavity,Em
is the electric field only due to the molecular charges,qasc is
the array of the “apparent surface charges,” andD is a matrix
that depends only on the surface topology and on the dielec-
tric constant,

Dii =
1

ai
F 4pe

e − 1
− o

jÞi

DjiajG , s11d

Dij =
ssi − sjd ·ni

usi − sju3
, s12d

whereai is the area of theith tessera ande is the continuum
dielectric constant. This is an accurate approximation in the
limit of a macroscopic cavity and an infinite number of
tesseraesNtes→`d.

In this work, a spherical cavity of radius 2.0 nm has
been used to confine the explicit molecules, as described in
Sec. II D. Consequently, the dielectric continuum radius,Rc,
which is the distance where the dielectric begins, has been
optimized in order to reproduce correctly bulk properties of
watersRc=2.188 nmd. Also, we have found thatNtes=1500 is
a good compromise between efficiency and accuracy, corre-
sponding to an average tessera area of 4.0 Å2. We did not
observe significant differences in our results with a much
larger number of tesseraesNtes=3840d. The cavity surface
has been partitioned using an improved GEPOL procedure.33

Finally, it should be noted that Eq.s9d can be solved by
inverting theD matrix only once at the beginning of the
simulation and then by recomputing at each step the electric
field due to the molecular system.

C. van der Waals term

The dispersion-repulsion or van der waalssVdWd term,
WvdW, has been determined empirically using a new method-
ology from a test simulation of liquid water, in this case
SPC34 waterssee details in Sec. II Ed. As a result, the form of
the VdW potentialssee Fig. 1d depends on the specific mo-
lecular system and thermodynamic conditions adopted in this
study. Nevertheless, we think that our approach can be easly
extended to deriveWvdW potentials for a large number of
solvents at different physical conditions, i.e., density, pres-
sure, and temperature. The idea of our method is somehow
inspired by the approach of Laio and Parrinello35 to estimate
the free energy surface of a complex many-body system.
First, we have assumed that the potentialWvdWsrd is a radial
function acting on each explicit water molecule embedded in
the cavity and, in particular, on the oxygen atoms according
to the SPC model, which has a Lennard-Jones site centered
on the oxygen. Second, we have expressedWvdWsrd as the
sum of a set ofNg Gaussian functions,gi, whose centers,r i,
are equally spaced over a radial direction of the spherical
cavity,

WvdWsrd = o
i

gisr − r id = o
i

li expS−
sr − r id2

2s2 D . s13d

Eachgisxd function has the same spread,s, but a differ-
ent height,li, which is a multiple of a fixed amountsli

=nihd. During the test simulation, the Gaussian heights are
allowed to change in order to keep constant the local density
of the liquid to its overall value,rsr id=r0.

The method works as follows: after a certain time inter-
val, t, the local densitiesrsr id are computed and their values
compared to the constant overall densityr0. If rsr id.r0, the
corresponding Gaussian height is increased by one unith
sni,new=ni,old+1d, otherwise, ifrsr id,r0, the height is de-
creasedsni,new=ni,old−1d. In few nanoseconds theWvdWsrd
potential converges to an optimal form, that is, it does not
change significantly anymore. To obtain a reliableWvdWsrd
function in an efficient manner, care should be taken in the
choice of the Gaussian parametersNg, s, andh. In this work,
we have obtainedWvdW from a 4 ns simulation, updating the
Gaussian height,li, every 20 ps and performing an average

TABLE I. Simulation conditions and input parameters.

No. molecules Boxstype; dimensiond Long-range int er
ext

MF 1116 Sphere; 2.0 nmsradiusd All pairs 78
Cutoff 2180 Cubic; 4.021 86 nm 1.5 nma

¯

GRF 2180 Cubic; 4.021 86 nm 1.5 nm+RFb 78
PME 2180 Cubic; 4.021 86 nm Grid 35335335; Fourth orderc `

PME2 7280 Cubic; 6.023 3 nm Grid 52352352; Fourth orderc 70

aRadius of cutoff.
bRadius of cutoff plus reaction fieldsRFd.
cNumber of grid points; order of spline functions.

FIG. 1. van der Waals potential determined for a spherical box of SPC water
at ambient conditionssr=55.32 mol/ l ;T=300 Kd.
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over the last 2 ns. We have found thatNg=80, s
=0.0125 nm, andh=0.01 kJ/mol are appropiate values for
the liquid system considered.

D. Boundary treatment

The treatment of the cavity boundaries, rather than gen-
eral, is to be regarded as an ad hoc method satisfying two
main requirements:s1d keeping the molecules confined into a
spherical cavity of fixed radius ands2d moderating the un-
wanted boundary effects that any physical surface necessar-
ily implies. Also, it should be noted that the method pro-
posed is the result of an optimization process for simulations
of SPC water at normal conditions and hence, different
choices could be more appropriate for other molecular sys-
tems and/or physical conditions, e.g., density and tempera-
ture. The confinement is realized by means of a rigid cavity
surface, with a radius ofRs=2.0 nm, on which molecules
undergo elastic collisions. The trajectory of a colliding mol-
ecule is then modified with respect to its center of mass
motion to avoid any effect on the molecular rotational mo-
tions. Inside the cavity, 1116 SPC water molecules have been
placed, corresponding to a density ofr=55.32 mol/ l. Note
that the presence of this “constraint” will not alter the statis-
tical mechanical consistency of the whole system as defined
in the previous sections.

Other options were examined to avoid strong deviations
from the bulk behavior close to the cavity boundary, such as
the use of multiple rigid surfaces that keep trapped the outer
layers of molecules or the addition of a surface tension term
to the mean field. However, the proposed solution gave the
most satisfactory results and, besides, we observed that the
properties of the inner part of the molecular system are not
really affected by a different treatment of the boundaries.

E. Simulation details

A set of NVT molecular dynamics simulationssr
=55.32 mol/ l; T=300 Kd of SPC34 water were performed
using the MF model and three periodic boundary conditions
methodologies. The latter are: a method based on simple

cutoff radiussCutoffd, a generalized reaction fieldsGRFd,36

and a particle-mesh Ewald methodsPMEd37 ssee Table I for
detailsd. The dielectric constant of the external medium in
GRF and PME simulations,er

ext, was chosen in agreement
with the values reported in literature: 78 for GRF and infinite
for PME. An additional PME simulationsPME2d with er

ext

=70, which is the relative dielectric constant as obtained by
PME simulation of SPC waterssee Sec. III Ad was also per-
formed. For the MF simulations, we have chosener

ext=78.
All simulations are 10 ns long. Furthermore, aqueous solu-
tions of Na and Cl ions and acetone have been studied with
MF modelsusing the same cavity sized, and GRFsionsd and
PME sacetoned. In particular, three charge states,q=0.0, q
=0.5, andq=1.0, for Na and two,q=−0.5 andq=−1.0, for
Cl have been examined.

All simulations have been performed, in double preci-
sion, with a modified version of theGROMACS

38 simulation
package, which includes, for the purpose of this work, the
MF model and the Gaussian isokinetic thermostat.39 Also,
the GROMACS

38 force field has been adopted with the excep-
tion of the acetone intra and intermolecular potentials.40

III. RESULTS AND DISCUSSION

A. Pure water

Here we present the results of a comparative study on
liquid water between MF and PBC methods. We have
adopted the SPC water model at the typical liquid density
and temperature, but it should be noted that the MF approach
is not limited to a specific molecular model and could also be
implemented inab initio molecular dynamics.

In the following, physical properties are evaluated glo-
bally as well as locally, in order to show the effect of differ-
ent boundary conditions. In the latter case, we have extracted
inner spherical regions of growing dimension, starting from
the center of the simulation box.

First, we have examined the average local density and
the molecular dipole orientation in the MF simulation. In
general, deviations from liquid bulk behavior are expected
only in proximity of the physical boundaries. In Fig. 2, the

FIG. 2. Average local density. The horizontal dashed line is the density of
the overall systems55.32 mol/ ld and the two dotted lines indicate a devia-
tion of 0.5%. Error bars correspond to a single standard deviation.

FIG. 3. Average molecular orientation with respect to the radial direction.
kul=0° corresponds to a completely random orientation.
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average local density computed in spherical layers of 1 Å
width is reported. It is evident that the density is within the
statistical errors equal to the overall densitys55.32 mol/ ld,
and in any case the deviations are smaller than 0.5%. This
result supports the effectiveness of theWvdW potential in
moderating the unwanted boundary effects on the solvent.
Another effect due to the spherical boundaries, which is
more relevant for a strongly associative liquid like water, is a
partial reorientation of the outer molecules with respect to a
radial direction: the tendency to form a favorable hydrogen-
bonding pattern results in a not completely random orienta-
tion of the molecules close to the boundaries. The average
angle,kul, between the water molecular dipole and the radial
distance vector pointing to the molecule center of mass from
the center of the cavity is plotted in Fig. 3. It is clear that the
deviations from the optimal behaviorskul=0°d are quite lim-
ited andkul reaches a maximum value of about 4°.

Our comparison of the four methodologiessMF, Cutoff,
GRF, PMEd starts by considering a structural property, such
as the radial distribution function. We have observed virtu-
ally identical oxygen-oxygen RDFs in all casesssee Fig. 4d,
which means that structural properties are almost indepen-
dent of the treatment of long-range interactions. Also, we
have analyzed the spatial density correlations via the covari-
ance matrix of the density fluctuations for 20 concentric
spherical layers and, by its diagonalization, the correspond-
ing eigenvalues have been computed and are reported in Fig.
5. The layers are chosen with the same volumesapproxi-
mately the same average number of moleculesd up to a radius
of 2.0 nm. All the different simulations provide a good gen-
eral agreement. Note that the last eigenvalue of the MF simu-
lation is zero because of the constraint on the total number of
molecules. In Fig. 6, the normalized autocorrelation function
of the molecular dipole moment is reported. Within the sta-
tistical errors, which are omitted in the plot for clarity, the
same behavior is observed with the exception of the Cutoff
simulation.

In order to compare the different simulation methods and
to understand the reliability of the MF approach proposed,
we have evaluated other typical properties such as the aver-

age molecular potential energysmolecular excess internal
energyd, Upot, the molecular heat capacitysmolecular excess
heat capacityd, CV, the diffusion coefficient,D, and the inter-
nal dielectric constants,er

int, as obtained from total dipole
fluctuations.41 The results for all methods are summarized in
Table II. The effect of the mean field is taken into account
exactly in Upot, i.e., including the average interactions be-
tween the explicit molecules and the dielectric outside the
cavity. CV has been computed via the fluctuations ofUpot,
which is a physically rigorous method for PBC simulations
and just an approximation for MF. Nevertheless, we think
that such an approximation is negligible compared to the
statistcal noise.

The excess internal energies are comparable as reported
in Table II, showing a higher energy for Cutoff, −42.2, and a
smaller energy for MF, −40.4, with respect to GRFs−41.6d
and PMEs−41.5d which are almost equal. The MF result is
mainly affected by the approximations in the computation of
the reaction field free energy,Welec, as stated in Sec. II B.
Briefly, the short-range interactions between the explicit mol-
ecules close to the boundary and the dielectric continuum are

FIG. 4. Oxygen–oxygen radial distribution functions of water. FIG. 5. Eigenvalues of the spatial density covariance matrix built from 20
concentric spherical layers up to a radius of 2.0 nm.

FIG. 6. Molecular dipole moment autocorrelation functions.
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underestimated to some degree. An higher energy value, in
agreement with GRF and PME, can be obtained by increas-
ing the number of tesserae partitioning the cavity surface at
the expense of a greater computational effort. However, it is
worth to note that a value of −41.5 is obtained if we consider
an internal region of radius 1.8 nm, that is, excluding the first
most external water layer.

Also, the excess heat capacities,CV, show a reasonable
agreement for all methods. Note that the same property
evaluated as derivative of the temperature gives a value of
54.7 J/mol K for MF, which is not different from 55.6 within
the statistical errors, and supports the internal consistency of
this methodology. We have observed a very similar mobility
of the water molecules in all simulations, as shown by the
diffusion constant values. Remarkably, the diffusion constant
of MF computed from the overall system,D=4.3, agrees
well with that evaluated only in an outer region of the cavity
between 1.6 and 2.0 nm,D=4.5, which means that the dy-
namical behavior of water is homogeneous throughout the
whole spherical box.

The dielectric constants,er
int, as derived from the dipole

moment fluctuations,41 are reported on the last column of
Table II. It should be noted that in the case of MF,er

int de-
pends somewhat on the definition of the volume which en-
closes all the explicit charges, not just the center of mass of
the water molecules. For such a reason, we decided to use

simply the volume of a sphere of radius 2.0964 Å, which
corresponds to the largest distance observed during the entire
simulations by an atom from the center of the cavity. In any
case, we are confident that other possible choices of this
volume will not lead to a deviation from the reported value
s69.1d larger than the statistical error. As expected, the Cutoff
value, 43.0, is unrealistic, due to the approximations in-
volved in such a model, whereas GRFs67.3d and PMEs69.2d
give similar results to previous studies42–44 and agree quite
well with MF value, 69.1.

Finally, the local dipole fluctuations per molecule are
plotted against the distance from the center of the box in Fig.
7. Note that the data refer to subsystems contained in spheri-
cal regions of increasing radius, and not in spherical layers as
used previously. Cutoff results are again completely mean-
ingless and, hence, are omitted for clarity. The use of GRF
improves the regularity of the plot, but the values obtained
are significantly lower than MF and PME, and are approxi-
mately constant in the range between 0.6 and 1.4 nm. The
MF model provides an initial increase of the dipole fluctua-
tions, followed by a rangesfrom about 1.2 to 1.8 nmd where
the curve is basically flat within the statistical noise. Finally,
significant deviations are observed when the molecules be-
longing to the outer layers are included in the statistics. In
particular, the lack of short-range interactions decreases dra-
matically the friction between molecules and, as a result, the
dipole fluctuations are considerably enhanced. In the case of

TABLE II. Thermodynamic properties of water.

Upot
a skJ/mold CV

b sJ/mol Kd Dc s10−5 cm2/sd er
intd

MF −40.4 55.6±2 4.3 69.1±2.0
Cutoff −42.2 54.4±2 4.4 43.0±18
GRF −41.6 51.2±2 4.5 67.3±2.0
PME −41.5 50.1±2 4.3 69.2±2.0

aThe average molecular potential energy.
bMolecular heat capacity.
cDiffusion constant.
dThe internal dielectric constants.

FIG. 7. Dipole moment fluctuations per molecule. The values refer to aver-
age fluctuations computed in spherical region of increasing size. Last points
sboxd are the overall dipole moment fluctuations. Error bars correspond to a
single standard deviation.

FIG. 8. Sodium–oxygen radial distribution functions. The sodium ion
charge is:sad qsNad=0.0, sbd qsNad=0.5, andscd qsNad=1.0.

154109-6 Brancato et al. J. Chem. Phys. 122, 154109 ~2005!
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PME, we observe a similar initial trend, though no apparent
plateau, as seen in the MF simulation, is present. Instead, the
dipole fluctuations increase monotonically until all the box is
consideredslast pointd. Such a behavior could be the effect
of the external dielectric medium, which virtually acts as a
conductor because ofer

ext is set to infinite. In such conditions,
both the global and, consequently, the local dipole fluctua-
tions are enhanced. Two possible alternatives can be fol-
lowed to deal with this problem. One is to enlarge the box
such as the local properties can be regarded as indistinguish-
able from those of a macroscopic liquid system. The second
is to set a finite dielectric constant for the external medium.
As a compromise, we performed a simulation of a larger
systemsPME2d, with 7280 molecules and 6.0233 nm edge,
and we set the value ofer

ext=70, which roughly corresponds
to the dielectric constant previously obtained with PMEssee
the last column in Table IId. In this new PME simulation, the
calculated dielectric constant, 68.8, is, within the statistical
noise, the same as the previous PME values69.2d and, as

expected, it is not affected by the change ofer
ext. On the other

hand, the plot of the dipole fluctuations is in very good
agreement with MF, as reported in Fig. 7, at least up to
1.8 nm: it shows the same plateau from about 1.2 nm. This
result suggests that the external medium can influence sig-
nificantly the internal local dipole fluctuations as well as the
system size. Further, it is worth noting that the global dipole
fluctuations value for PME2, 13.6 D2, is higher than the pla-
teau value, 12.0 D2. Such a discrepancy could be determined
by the limited size of the simulation box as well as by the
long range correlation effects due to the periodicity of the
model. However, further studies are necessary to clarify this
point.

B. Ion solutions

The MF model parametrized for pure water as described
in Sec. II has been applied to study aqueous solutions of
sodium and chloride ions at ambient conditions. In particular,
we have performed three simulations of the Na–water system
with different ion charges,qsNad=0.0, qsNad=0.5, qsNad
=1.0, and two Cl–water simulations withqsCld=−0.5 and
qsCld=−1.0. In all cases, the ion position has been fixed at
the center of the spherical cavity. In order to compare MF
results with standard PBC methods we have simulated the
same systems using the generalized reaction fieldsGRFd
method. In Figs. 8 and 9, the Ion–Owat radial distribution
functions are reported for both MF and GRF. As expected,
the structural properties are not affected by the choice of the
MD boundary conditions and all the simulations give very
similar results. Furthermore, we have examined the ion sol-
vation energy by computing the intermolecular interactions
between the ion and the explicit water molecules contained
in a sphere of radius 2.0 nm centered at the ion position. In
Table III, we report the densityr ssNwat+1d /Vd, the electro-
static potential f with its fluctuations s2sfd, and the
Lennard-Jones interaction energyUlj . Note that the density is
fixed for MF simulations, e.g., all water molecules are in-
volved in the calculations, whereas it can slightly vary for
GRF, where a spherical sample is extracted from the rectan-
gular box. Also, we have neglected the mean field contribu-
tions tof andUlj , in such a way to compare these properties

FIG. 9. Chloride–oxygen radial distribution functions. The chloride ion
charge is:sad qsCld=−0.5 andsbd qsCld=−1.0.

TABLE III. Comparison between MF and PBC results for sodium and chloride ion solutions.
r ssNwat+1d /Vd, f, s2sfd, andUlj are, respectively, the density, the electrostatic potential at the ion site, the
fluctuations and the Lennard-Jones ion-water interaction energy. All results refer to a subsystem included in a
spherical region of radius 2.0 nm centered at the ion site. The estimated errors from block averages forf,
s2sfd, andUlj are, respectively, 5, 100, and 0.3.

Solute Chargesed Method r snm−3d f skJ/mol ed s2 sfd Ulj skJ/mold

Na 0.0 MF 33.273 −20.9 1990 −0.16
Na 0.0 GRF 33.343 −32.2 1990 0.2
Na 0.5 MF 33.273 −414.8 2170 11.8
Na 0.5 GRF 33.353 −425.5 2600 12.2
Na 1.0 MF 33.273 −865.8 2200 47.8
Na 1.0 GRF 33.374 −868.9 2240 46.3
Cl −0.5 MF 33.273 280.5 2020 −1.8
Cl −0.5 GRF 33.290 267.7 2010 −1.8
Cl −1.0 MF 33.273 660.6 1910 −2.3
Cl −1.0 GRF 33.312 635.1 2060 −2.2
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consistently. We observe an overall good agreement between
MF and GRF results within the statistical errors. The devia-
tions in s2sfd are probably due to the slowly convergent
behaviour of this property.

C. Acetone

The MF model has also been used in a simulation of an
aqueous solution of acetone, as a test model for a more com-
plex solute. The acetone molecule was placed at the center of
a spherical cavity of the same dimension seen above and
solvated with 1111 SPC water moleculesssNwat+1d /V
=33.184 nm−3d. The roto-traslation motions of the solute
have been removed during the dynamics using the method
described in Ref. 45. Analogously, we have performed a
simulation of the same system in periodic boundary condi-
tions with PME method. In Fig. 10, the Oact–Owat and
Oact–Hwat RDFs are reported for comparison: the results for
MF and PME are practically undistinguishable. Also, a very
good agreement has been observed in the hydrogen bonding
arrangement between the carbonyl group and water as shown
by the Oact–Hwat distance distributionfFig. 11sadg, the
Oact–Hwat–Owat angle distributionfFig. 11sbdg and the aver-
age number of hydrogen bonds,Nhb=2.14 sMFd and Nhb

=2.13 sPMEd. All these results along with a very similar
acetone geometry conformationsresults not shownd confirm
that the structural properties of the solute-solvent system
seem to be unchanged.

In Table IV, we report the average density,r ssNwat

+1d /Vd, the acetone–water electrostatic energy,Uel, with its
fluctuations,s2sUeld, the acetone dipole moment and the
number of hydrogen bonds,Nhb. Note that, similar to what
was seen in the previous section, both energy and density
refer to a spherical region of radius 2.0 nm centered at the
carbonylic carbon atom. No reaction field term has been
added toUel ands2sUeld. All the results show a remarkable
agreement and support the use of the MF model in treating
solute-solvent systems.

IV. CONCLUSIONS

In this work, the use of a mean field based approach
sMFd has been exploited to perform molecular dynamics
simulations of liquid water and simple aqueous solutions. To
this end, charged solutes, like sodium and chloride ions, and
a strongly dipolar molecule, like acetone, have been studied
as test systems at ambient conditions.

TABLE IV. Comparison between MF and PME results for an aqueous so-
lution of acetone.r ssNwat+1d /Vd, Uel and s2sUeld are, respectively, the
density, the acetone-water electrostatic energy and its fluctuations, and refer
to a subsystem included in a spherical region of radius 2.0 nm centered at
the acetone carbonylic carbon.kml is the acetone dipole moment andNhb is
the average number of hydrogen bonds. The estimated errors from block
averages forUel ands2sUeld are, respectively, 0.4 and 6.

r snm−3d Uel skJ/mold s2 sUeld kml sDd Nhb

MF 33.184 −49.1 223 4.85 2.14
PME 33.240 −47.5 242 4.85 2.13

FIG. 10. sad Oact–Owat and sbd Oact–Hwat radial distribution functions.

FIG. 11. sad Oact–Hwat hydrogen bond distance distributions andsbd
Oact–Hwat–Owat hydrogen bond angle distributions.
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The results on water suggest that liquid bulk properties
can be well reproduced with the MF model: the comparison
of structural properties, mobility and typical thermodynami-
cal properties, like the excess energy and heat capacity,
shows a very good agreement between MF and commonly
used PBC methods, with the exception of Cutoff, which
completely neglects an important part of the long-range in-
termolecular interactions. Also, the analysis of the local den-
sity, molecular orientation distribution, and the spatial den-
sity correlations demonstrate that the MF method can
effectively reduce the unwanted boundary effects, which are
in principle present whenever a physical confinement is in-
troduced in a simulation.

Furthermore, investigation of the local dipole fluctua-
tions, evaluated on subsystems of growing dimension, re-
vealed more noticeable differences between the models con-
sidered: only PME and MF have shown the best agreement,
which not surprisingly are the two more rigorous methods
from a statistical mechanical point of view. As expected,
PME results are greatly affected by the choice of the dielec-
tric constant of the external medium, which also means that
some care should be adopted in using this methodology. Re-
markably, all methods have comparable computational costs.

Besides, the study of simple solute-solvent systems with
MF, without any reparametrization of the model, and the
corresponding comparison with PBC simulations have
shown the reliability and flexibility of the method proposed
in this paper.

It has to be pointed out that the present MF model can be
extended to perform constant pressure simulations. We ex-
pect that MF can be fruitfully used for simulating complex
molecular systems and, especially, solution of large macro-
molecules where the number of solvent molecules can be
conveniently reduced without the loss of a physically rigor-
ous treatment of the long-range interactions.
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