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Because of its central role in basically all aspects of science,
water is certainly one of the most extensively investigated sub-
stances, from a theoretical point of view. Many properties have
been, in fact, theoretically addressed both in the isolated and
condensed phases. Nevertheless, many aspects are still not
completely understood and represent the focus of active theo-
retical interest. Among them, one of the most appealing is cer-
tainly the understanding of the electronic properties, in partic-
ular the photoabsorption features, in condensed phase. Liquid
water experimentally shows, under ambient conditions, the
0–1 absorption maximum at 147 nm, that is, 88 kJ mol�1 shifted
toward the blue with respect to the corresponding absorption
in vacuum.[1–3] This blue-shift is known to be more pronounced
in ice than in liquid water,[4] and it is also present in small
water clusters.[5] From these observations, it is well-established
that such a blue-shift is to be mainly ascribed to the short con-
tacts of the excited molecule with its solvation shell (the water
dipole moment undergoes an inversion upon 0–1 excitation[6]).
However, only a few theoretical studies have been so far de-
voted to modelling water photoabsorption in the condensed
phase.[7–9] The computational methods available nowadays are,
in fact, able to provide extremely accurate information about
the photoexcitation of isolated molecules. However, there are
still many difficulties in modelling the same phenomenon in
the condensed phase. The inclusion of electronic degrees of
freedom (necessary for studying an electronic excitation) into a
simulation of a large number of molecules (necessary for a reli-
able modelling of a condensed phase) is, in fact, still challeng-
ing from a computational point of view. In this context, we re-
cently proposed a theoretical computational approach, the
perturbed matrix method (PMM),[10, 11] whose main computa-
tional feature is the possibility of including, into a classical sim-
ulation algorithm, electronic degrees of freedom. In a number
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of recent applications, which were carried out both on large
biomolecular systems[12, 13] and on a small solute in solution,[14]

PMM actually revealed to be a rather reliable computational
tool for evaluating the spectroscopic (absorption) properties in
the condensed phase. Herein, we wish to address—via PMM—
the modelling of the photoabsorption spectroscopy of liquid
water, with the precise aim of better understanding this phe-
nomenon and, at the same time, of further evaluating PMM ac-
curacy. Moreover, and similarly to our previous studies on
formaldehyde in water,[14] we also evaluate the excitation ther-
modynamics by combining PMM calculations with the quasi-
Gaussian entropy (QGE) theoretical approach.[15, 16]

Theory and Computational Methods

The theoretical basis of PMM has been widely described else-
where.[10, 11, 14] Here, only the main features of the computation-
al strategy will be outlined. The underlying philosophy of PMM
is essentially in line with all currently employed quantum me-
chanical/molecular mechanical (QM/MM) procedures. In other
words, a portion of a complex molecular system—hereafter
called quantum centre (QC)—such as a solute, a part of a bio-
macromolecule, a molecular cluster, etc. is treated quantum
mechanically with the rest of the system, for example, the sol-
vent and/or the protein, acting as a perturbation. The novelty,
in PMM, is the way in which such a perturbation is dynamically
coupled with the QC. In fact, with rn being the nuclear coordi-
nates of the QC (i.e. , a single water molecule) and x being the
coordinates of the atoms that provide the (classical) perturbing
field (i.e. , all remaining water molecules), we can write, within
certain approximations,[11, 14] the (electronic) perturbed Hamilto-
nian matrix for the QC as Equation (1):

~hðrn,xÞ ffi ~h0ðrnÞ þ qTnðr0,xÞ~I þ ~Z1½Eðr0,xÞ,rn� þ DVðrn,xÞ~I ð1Þ

where ~h0(rn) is the unperturbed Hamiltonian matrix, which
can be built by a standard “isolated water molecule” electron-
ic-structure calculation; n(r0,x) and E(r0,x) are the (perturbing)
electric potential and the electric field at a given QC r0 position
(typically the geometrical centre), respectively ; Z̃1(E,rn) is the
perturbation energy matrix, which is explicitly given by [Z̃1]l,l’=

�E·hF0
l j m̂ jF0

l0 i ; and DV(rn,x) approximates the perturbation
due to all higher-order terms as a simple short-range potential.
Moreover, F0

l are the unperturbed (electronic) Hamiltonian ei-
genfunctions, and all the matrices used are expressed in this
unperturbed basis set. If a molecular dynamics (MD) simulation
or—more general—a configurational space sampling is carried
out, a “sequence” of E and n is produced. Hence, the diagonali-
sation of ~h(rn,x), carried out along such a configurational sam-
pling, will produce a “trajectory” of perturbed eigenvalues (ei)
and eigenvectors (ci) of the QC and, therefore, of whatever per-
turbed electronic property. In the case of liquid water, the
choice of using a single water molecule, instead of a molecular
cluster, as QC might result—although it allows a straightfor-
ward computational application of PMM—in an oversimplified
model. However, the use of a molecular cluster as QC would
imply the simulation of such a cluster embedded into the sol-

vent molecules, and such a simulation, although possible, re-
quires the design of the cluster force field and the statistical
sampling of the cluster’s internal configurational space. More-
over, it should be noted that, when MD simulations based on
non-polarisable force fields are utilized, as usual, the definition
of a single molecule as QC interacting with the molecular envi-
ronment is probably statistical–mechanically more coherent
with the physics of the simulated system.

By extracting the perturbed excitation energies and the re-
lated perturbed transition dipoles, mi,j = hFi j m̂ jFji, where
[Eqs. (2)–(5)]:

mi,j ¼ c*T
i

~L0
xcjiþ c*T

i
~L0

ycjjþ c*T
i

~L0
zcjk ð2Þ

½~L0
x�l,l0 ¼ hF0

l jm̂xjF0
l0 i ð3Þ

½~L0
y�l,l0 ¼ hF0

l jm̂yjF0
l0 i ð4Þ

½~L0
z�l,l0 ¼ hF0

l jm̂zjF0
l0 i ð5Þ

we can readily obtain, by a straightforward statistical averag-
ing, the electronic vertical excitation distribution corrected by
the transition probability, that is, the electronic spectrum with-
out the internal quantum vibrational contribution. Such a
curve for the i!j transition, denoted by Ii,j(l), can be obtained
by using the corresponding Einstein coefficient Bi,j combined
with the probability density p(l) of excitation in the wave-
length (l) space (i.e. the probability to find the chromophore
within a given excitation-energy interval divided by the corre-
sponding l interval), both as obtained by MD and PMM
[Eqs. (6a) and (6b)]:

Ii,jðlÞ ¼ Bi,j1ðlÞ ð6aÞ

Bi,j ¼
jmi,jj2

6 2 0�h2
ð6bÞ

Note that also the perturbed transition dipole mi,j is calculat-
ed by averaging within a given l interval.

From the previous equations, we can also express the free-
energy exchange, for an electronic excitation of the quantum
centre, with all the neighbouring molecules in their electronic
ground state[14] [Eq. (7)]:

DA ¼ �kT ln

� R
e�bui dxdxdpxdpxR
e�bu0 dxdxdpxdpx

�
�kT ln

Qu,i

Qu,0

¼ �kT lnhe�bðui�u0Þiu0
�kT ln

Qu,i

Qu,0

he�bðui�u0Þiu0
¼
R

e�bðui�u0Þe�bu0 dxdxdpxdpxR
e�bu0 dxdxdpxdpx

ui ¼ ei þ kx þ uenv,i

ð7Þ

where x are the classical nuclear degrees of freedom of the
QC, p the conjugated momenta, kx the (classical) kinetic
energy of the QC and uenv,i the internal energy of the environ-
ment (excluding the interaction with the quantum centre and
the possible environmental quantum vibrational terms) ob-
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tained when the quantum centre is in the ith electronic state
and all the environment molecules are in their electronic
ground states. Moreover, Qu,0 and Qu,i are the quantum vibra-
tional partition functions for the ground and ith electronic
states of the quantum centre (we assume that such an usual
factorisation is always possible). Note that, in the definition of
ui, we disregard the contribution due to the shift in the vibra-
tional energy of the ground state with respect to the reference
value defining the corresponding vibrational partition function.
Here, this term is considered to be negligible (i.e. we assume
that the vibrational frequencies are virtually independent of
the coordinates). Note also that the eigenvalue ei of the pertur-
bed Hamiltonian matrix should be obtained at the minimum
energy configuration of the corresponding electronic state.
However, even when the excited electronic state has a mini-
mum energy position which is different from that of the
ground state, vertical excitations can be used to correct the ex-
citation energy with the energy shift due to the position relax-
ation, that is, the energy exchange between the vertical excit-
ed state and the corresponding excited state in its minimum
energy configuration. A computationally convenient approxi-
mation for rigid molecules, which was used both in a previous
work[14] and in the present one, considers this correction as a
constant that is independent of the perturbation (i.e. its value
can be obtained in the unperturbed condition) and, hence, ir-
relevant when subtracting the unperturbed excitation energy
(which is also a constant for rigid molecules) from the excita-
tion free energy. This approximation is typically valid for QC,
where the minimum energy positions of the ground and (con-
sidered) excited states are rather close, as we have assumed
herein to simplify our calculations. Note that, in the case in
which the environmental energy is basically independent of
the electronic state of the quantum centre, as we assume ne-
glecting atomic polarisation, ui�u0 = ei�e0, this last equation,
together with the assumption that Qu,iffiQu,o (i.e. , assuming that
the free-energy term due to the quantum vibrational partition
functions can be neglected), was used for the calculation of
the excitation free energy, which is hence equivalent to the
vertical excitation free energy. The values obtained at different
temperatures were then used to parameterise a theoretical
model for the excitation thermodynamics based an the quasi-
Gaussian entropy theory, as described in a previous paper.[14]

For the PMM procedure, an adequate description of the
electronic properties of the isolated (unperturbed) solute mole-
cule (in this case a water molecule) and a reliable and statisti-
cally meaningful MD simulation providing the solute–solvent
interaction are necessary. We performed MD simulations over a
wide temperature range (300–800 K), using a cubic box of 256
simple-point-charge (SPC)[17] water molecules at 55.32 mol L�1

density. All simulations were performed using the Gromacs
software package,[18–20] which was modified to use the isokinet-
ic temperature coupling[21] for obtaining results that were fully
consistent with statistical mechanics.[22, 23] For all simulations,
the number of steps was 2500 000, with two different time
steps: 2 fs for simulations in the range 300–500 K and 1 fs in
the range 600–800 K. Hence, the corresponding simulation-
time lengths were about 5 and 2.5 ns. The long-range electro-

statics was calculated using the particle mesh Ewald (PME)
method,[24] with 34 wave vectors in each dimension and a
fourth-order cubic interpolation. We also used roto-translation-
al constraints to stop the water “solute” in the simulation
box.[22] This procedure, which speeds up the solvent relaxation
around the solute and allows a simple PMM application to sim-
ulation data, provides the correct statistical mechanics and
thermodynamics of the system. Different sets of quantum
chemical calculations for the isolated water molecule were car-
ried out using two complementary high-level-of-theory com-
putational approaches: the complete active space self-consis-
tent field (CASSCF) and the coupled-cluster (CC) linear-re-
sponse calculation[25] including the single and double excita-
tions (CCSD). The active space used in the CASSCF calculations
consisted of eight electrons in 12 orbitals, and the 6-311 ++

g(d,p) basis set, hereafter named BSI, was used. For the CC cal-
culations, we used the 6-311 ++ g(3df,2pd) basis set (hereafter
called BSII). For comparison with literature data,[7] we also per-
formed a few test calculations using the augmented cc-pVDZ
basis of Dunning including polarisation and diffusion functions
for each hydrogen atom and the Rydberg basis of Dunning
and Hay for oxygen,[26, 27] denoted herein as BSIII. For the calcu-
lation of the transition moments, to be used in conjunction
with the CASSCF eigenvalues, a configuration interaction pro-
cedure was carried out using the natural orbitals obtained by a
state-averaged CASSCF on the first ten electronic states. The
quality of these quantum chemical calculations was checked
by comparison with the available experimental and theoretical
data.[7, 28–31] We also evaluated the vertical 0–1 excitation
energy of water using time-dependent density functional
theory calculations[32] (TD-DFT) combined with the polarisable
continuum model (PCM)[33] to simulate the average effect of
the water solvent. The hybrid B3 LYP[34] functional was used for
this purpose with the BSI basis set. The Gamess,[35] Gaussian[36]

and Dalton[37] packages were used for all these quantum chem-
ical calculations.

Results and Discussion

The results of the calculations described in the methodological
section are reported in Table 1.

From the table, it clearly emerges that CASSCF/BSI/PMM,
which shows an energy maximum at 146 nm and a blue-shift

Table 1. Absorption maxima (lmax) and related blue-shift (B-Sh) for the 0–1
transition. BSI stands for 6-311 ++ g(d,p), BSII for 6-311 ++ g(3df,2pd)

Method lmax [nm] B-Sh [kJ mol�1]

CASSCF/BSI/PMM 300 K 146 78
CC/BSII/PMM 300 K 150 64
CASSCF/BSI/PMM 400 K 146
CASSCF/BSI/PMM 500 K 149
CASSCF/BSI/PMM 600 K 151
CASSCF/BSI/PMM 800 K 151
TD-DFT (B3 LYP)/BSI/PCM 180 25
TAB/101) model 300 K7 150 65
experiment (liquid, 298 K)1 147�1 88�6
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of 78 kJ mol�1, provides excellent results (within the experi-
mental noise).[1] Less satisfactory—even though still rather
close to the experimental values—are the results from CC/BSII/
PMM, whose maximum is found at 150 nm with a blue shift of
64 kJ mol�1. Interestingly, our CC/BSII/PMM calculations are in
very good agreement with the TAB/10D calculations from Kim
and co-workers,[7] which were based on a methodology some-
what similar to PMM, and utilising CASSCF/BSIII quantum
chemical calculations. We also tested, within our methodology,
large atomic basis sets including the Rydberg functions, with-
out obtaining any improvement in the results. Therefore, we
decided not to use such computationally demanding basis sets
any further. Such a finding is probably due to the fact that the
presence of diffuse atomic basis set functions (i.e. BSII) in our
unperturbed quantum chemical calculations, partially mimic
the Rydberg effect. Moreover, the use of Rydberg functions in
a single molecule QC is likely not to significantly improve the
description of the possible molecular overlap taking place
upon excitation, and the effective molecular Hamiltonian, opti-
mised to reproduce the correct statistical mechanics of liquid
water (SPC), correctly simulates macroscopic observables,
which include—as is evidenced by our results—the absorption
spectrum. This is probably due to the fact that the electric
field fluctuations provided by SPC molecules satisfactorily
mimic the real local field experienced by the chromophore.

In Figure 1, the first excitation spectrum (neglecting quan-
tum vibrational effects) at 300 K is reported. It is worth noting
that such vibrational effects in condensed phase, although im-

portant for an accurate and detailed modelling of the photo-
absorption spectrum, typically provide an enlargement of the
absorption curve without altering its maximum or its basic
shape. However, we are presently extending PMM to explicitly
include quantum nuclear vibrations to treat vibronic excita-
tions. In Figure 2, we show such excitation spectra at three dif-
ferent temperatures: 300, 500 and 800 K. As already remarked
in the previous section, all these profiles were obtained by

combining the statistical probability of the excitation energy
with the square length of the perturbed transition dipoles,
both obtained by PMM. These curves show a rather large full-
width-at-half-maximum (fwhm) of about 10 nm, although as
the temperature is increased, an enlargement of the curve and
a slight red-shift of the maximum are observed. Note that, in
both figures, we only show data obtained by CASSCF/BSI/
PMM. Our results basically confirm previous findings on water
photoabsorpiton,[7] showing that a sharp temperature increase
(although poorly affecting the absorption maximum) systemat-
ically enlarges the distribution at the red-edge, while the blue-
edge remains essentially unaffected. Since no quantum vibra-
tions are included in our model, the observed features of the
excitation-energy-distribution width and shape must be entire-
ly ascribed to the effect of the electric field fluctuation of the
solvent.[7, 13] Interestingly, the electric-field-fluctuation pattern is
essentially determined by the combination of two independ-
ent components: a larger one occurring along the symmetry
axis of the molecule, and another one—a rather dumped
one—occurring orthogonal to the molecular plane. Consider-
ing that, upon the 0–1 excitation, the dipole moment decreas-
es, these findings suggest that solvent electric field fluctua-
tions are essentially given by molecular fluctuations within
ground-state potential-energy minima, hence providing a blue
tail close to the maximum absorption energy accessible to the
system. Finally, in Figure 3 we show the excitation free energy
(subtracted from the unperturbed excitation energy) as ob-
tained by combining PMM data with the quasi-Gaussian entro-
py (QGE) theory, using the same procedure as in ref. [14],
which is briefly described in the “Theory and Computational
Methods” Section. In Figure 3, we show both the excitation
free energies given by PMM at four temperatures and the
curve provided by a QGE model (gamma state) parameterised
fitting PMM data. The PMM values and the QGE model are in
rather good agreement,[14] which confirms that also the excita-
tion thermodynamics in a liquid can be well described by a rel-
atively simple model (gamma state). From the QGE model, a
rather characteristic thermodynamic behaviour emerges, which

Figure 1. Excitation spectrum (excluding quantum vibrational effects) of liquid
water at 300 K, as obtained by PMM calculations.

Figure 2. Excitation spectrum (excluding quantum vibrational effects) of liquid
water at three temperatures, as obtained by PMM calculations.
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is due to a negative excitation heat capacity (e.g. at 300 K
DCV =�62.7 J mol�1 K�1). The decrease in temperature of the
excitation free energy is associated to a strict temperature de-
crease of the excitation entropy (not shown), which occurs as
a consequence of an energy fluctuation reduction of the entire
system when an excited water molecule is added to the bulk
water. Note that each excitation thermodynamic property for
an infinitely diluted excited molecule (solute) corresponds to a
change in the solute partial molar property due to electronic
excitation and, hence, the QGE model provides a complete de-
scription of the partial molar properties of the excited state.

Conclusions

Herein, we used MD simulations and PMM calculations to
obtain detailed information about electronic excitation in
liquid water. The results clearly demonstrate the accuracy of
this procedure and confirm the essential role that the dynami-
cal coupling between the chromophore electronic states and
the environment atomic motions plays in determining the
electronic behaviour. When compared with other theoretical–
computational procedures applied to liquid water, PMM turns
out to be the most accurate, as obtained in the case of solvat-
ed formaldehyde.[14] Those methods using a mean-field ap-
proach are clearly inaccurate because of the too-rough approx-
imation of treating the solvent as a macroscopic dielectric,
while those based on explicit solvent interactions are typically
missing the dynamical coupling, which can only be obtained
with a rather extended configurational sampling. Finally, the
combined use of PMM with QGE theory provided an analytical
model for the complete thermodynamics of the excited state.
Such information, which is essentially of theoretical interest for
a water molecule, could be of great importance in other sys-
tems in which the excited state of a solvated molecule is in-
volved in a chemical reaction. These results make PMM particu-
larly interesting for studying quantum mechanical events in

complex molecular systems and confirm its reliability and accu-
racy.
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