
www.elsevier.com/locate/molliq
Journal of Molecular Liq
Characterization of liquid behaviour by means of local density fluctuations
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Abstract

By means of principle component analysis of the local density fluctuations, as revealed by molecular dynamics simulations, we obtain

detailed information on the relevant local density fluxes and corresponding spatial patterns.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the past recent years, there has been a high interest in

the structure and dynamical behavior of liquids. Pure water

and water solutions have been widely studied either

theoretically and experimentally because of their central

role in chemistry, biology, industrial and natural sciences.

Ohmine and Tanaka’s [1] review focuses on theoretical

characterization of collective motions, providing a detailed

description of the strongly correlated molecular fluctuations

in the hydrogen bond network in liquid water. Their work,

as well as Ohmine and Saito’s [2] extensively uses inherent

structures (energy minima structures) analysis [3] in order to

explain the collective motions in terms of some fundamental

transitions. Moreover, the analysis of molecular auto and

cross-correlation functions [4] provides information about

the spatial extent of local oscillations and various relaxation

mechanisms. However, at our knowledge, no studies based

on the correlation of local molecular density fluctuations

have been performed. In this work, we use the local density

covariance (LDC) matrix, in order to characterize the local

behavior of liquids. Principal component analysis has been

extensively used in order to identify the most relevant

internal motions of bio-macromolecules (Essential Dynam-
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ics) [5–7]. In this work we use this approach to describe

local density fluctuations in the study of molecular liquids,

i.e. pure water and highly dilute water solutions.
2. Theory

If we decompose our system in n spherical concentric

layers of identical volume and describe the instantaneous

densities of the layers by means of the multidimensional

vector r, we can write the LDC matrix as

C̃C ¼ h r� hrið Þ r� hrið ÞT i ð1Þ

where hi denotes the (time) average. The symmetric matrix

C̃ can be diagonalised by an orthogonal transformation Õ:

r� hri ¼ ÕOq ð2Þ

q ¼ ÕOT r� hrið Þ ð3Þ

which transforms C̃ into a diagonal matrix K̃ of eigenvalues

ki:

ÕOT C̃CÕO ¼ K̃K ð4Þ

ki ¼ hq2i i ð5Þ
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Fig. 1. Graph of the two straight lines that determine the extreme values of

rm
2, as obtained using Eq. (11).
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Note that Õ is defined as

ÕO ¼ h1;h2; N ;hn½ � ð6Þ

where hi are the orthogonal eigenvectors of the covariance

matrix C̃, given by the eigenvalues equation:

C̃Chi ¼ kihi ð7Þ

It is possible to show that the covariance matrix

eigenvectors are the directions, in multidimensional space,

that maximize/minimize the density fluctuations. In fact,

from the previous equations we have ql=hl
TDr=DrThl,

Dr=
P

lhlql, and hence

hqiqji ¼ hhT
i DrDr

Thji ¼ hT
i hDrDrT ihj ¼ kidij ð8Þ

where Dr=r�hri. If rm
2 is the mean squared fluctuation of

r along an arbitrary unit vector n, we can write

r2
m ¼

�
DrTn
� �2� ¼

� X
l

X
lV

qlhT
l nqlVh

T
lVn

�

¼
X
l

X
lV

hT
l n

� �
hT
lVn

� �
hqlqlVi ¼

X
l

hT
l n

� �2
kl ð9Þ

By sorting ki in decreasing order, we then have

n2k1 þ kn 1� n2
� �

Vr2
mVn2k1 þ k2 1� n2

� �
ð10Þ

where 0bn2b1 is defined by n2=(h1
Tn)2 and kn is the last

eigenvalue. Rewriting the last disequality as

n2 k1 � knð Þ þ knVr2
mVn2 k1 � k2ð Þ þ k2 ð11Þ

we easily realize that rm
2 has the maximum rm

2=k1 when

n2=1, as shown in Fig. 1. As a consequence, the unit vector

that maximizes the mean squared fluctuation of r is the first

eigenvector h1. If we restrict our attention to the subspace

orthogonal to h1 and we perform the same procedure we

obtain that h2 is the direction that maximizes the mean

squared fluctuation in that subspace. Thus, each eigenvector

hi, is the direction that maximizes the mean squared

fluctuation in the subspace hi, hi+1, . . .,hn but it is also

the direction that minimizes it in the subspace h1, h2, . . .,hi.
3. Simulation methods

We have simulated pure water with a box of 256 SPC

molecules [8] at 55.32 mol/l and 300 K. Moreover, we

simulated three highly dilute solutions using the same water

box but adding a chloride [9] ion, a sodium [9] ion and a

methane [10] molecule, kept fixed in the centre of the box.

All the simulations were performed using Gromacs software

package [11] modified to use the isokinetic temperature

coupling [12]. This was done in order to obtain results fully

consistent with statistical mechanics [13,14]. The long-

range electrostatics was calculated using the Particle Mesh

Ewald (PME) [16] method, with 34 wave vectors in each
dimension and a fourth order cubic interpolation. Note that

in the case of ionic solutions in the PME procedure the

electrostatic interactions of the ion with its own replica is

removed in order to achieve convergence. Such a condition

corresponds to infinite dilution state. Short range interac-

tions were evaluated within 0.9 nm cut-off radius. In each

simulation (performed with a 2 fs time step) the initial

100,000 steps were used as equilibration run, and for the

analysis a time length of 100 ns was employed.
4. Results

We have decomposed the simulation box in 100 spherical

concentric layers of identical volume, starting from the

center of the box. In the pure water (SPC) simulation, our

reference condition, no constraints have been used and

therefore water molecules were freely moving through the

layers. For the other simulations, sodium, chloride and

methane solutions, the solute was added constraining its

position at the centre of the box, i.e. the centre of the

spherical layers. In this paper our goal is the characterization

of the local density patterns and fluctuations of liquid water

for molecular fluxes relative to a spatial reference of frame

as well as with respect to a fixed central molecule.

Moreover, the use of different fixed central molecules

(solutes) allows the direct comparison of their effects on the

surrounding water fluxes.

In Fig. 2 the time averaged density in each layer is

shown. From the figure it turns out that the local average

density pattern is strongly affected by the type of fixed

central molecule. The average density pattern of the pure

water, where no fixed central molecule is present, is as

expected completely constant. The values of the first

maxima of the average density for the ionic solutions are

higher than the one for methane, i.e. there are more solvent

molecules near the ions because of the strong (electrostatic)

solute–solvent interactions. The figure also shows that

sodium ion, with smaller size, has denser solvation shells,

in agreement with previous findings [15]. To investigate the



Fig. 2. Layer average molecular density (d is the distance from the

geometric center of the simulation box).

Fig. 4. Components of the first (first row), second (second row) and third

(third row) eingenvectors of pure water versus the layer index.
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density fluctuation behavior we use the LDC matrix. The

eigenvalues obtained by diagonalisation of this matrix for

the systems studied, are shown in Fig. 3. Most of the

eigenvalues are rather similar implying that for all the

systems there are many correlated density fluxes of similar

amplitude and free energy variation. Only the first few

eigenvalues (corresponding to the largest correlated sponta-

neous fluxes) and the last 10–15 eigenvalues (corresponding

to almost constrained fluctuations) differ significantly from

the other almost degenerate eigenvalues. Interestingly, the

presence of the fixed central molecule seems to enhance

such a difference for the first eigenvalues. As described in

the theory section, in each eigenvector the components

provide the density correlation of the layers.
Fig. 3. Eigenvalues obtained from dia
In Fig. 4 we show the component patterns of the first

three eigenvectors (providing the principal spontaneous

density fluctuations) for the pure water simulation. The

presence of a long-range correlation is evident, which

extends all over the simulation box (2 nm), which is damped

only in the last layers. Such fluxes involve anticorrelated

density fluctuations for neighbouring subgroups of layers,

each consisting of about five layers. Eigenvectors corre-

sponding to smaller eigenvalues are defined by either

anticorrelated fluctuations for each neighbouring layer

(almost degenerate eigenvectors) or by a net fluctuation

(i.e. without a relevant anticorrelation) only for a group of

layers (almost constrained eigenvectors).

In Fig. 5 we show the different component patterns of the

first three eigenvectors for the chloride, sodium and

methane solutions as a function of the layer-index. From
gonalisation of LDC matrices.



Fig. 5. Components of the first, second and third eigenvectors (from left to right) versus the layer index. First row: chloride ion solution. Second row: sodium

ion solution. Third row: methane solution.
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the comparison of this figure with the previous one it is clear

that the solute (fixed central molecule) largely removes the

long range correlations and the corresponding largest

spontaneous fluctuations are mainly concentrated within

the first hydration shells, i.e. the largest components

correspond to layers 4–6 for chloride solution, to layers

7–10 for sodium solution and to layers 8–10 for methane
Fig. 6. Left side: Projection of the trajectory onto non Gaussian eigenvectors fo

Probability distributions along the corresponding eigenvector for sodium solution
solution. It is worth noting that such a different behavior

basically disappears when considering high-index eigenvec-

tors. According to what was previously observed [15] the

sodium ion induces a quite large rigid coordination shell of

the surrounding water, as indeed shown in the figure by the

fact that layers 1–6, dg0–0.4 nm, are nearly orthogonal to

the first three eigenvectors. Interestingly, in the case of
r sodium solution (up) and methane one (down) versus time. Right side:

(up) and methane one (down).
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chloride and methane where the first hydration water

molecules are less rigid, non-zero components of the first

three eigenvectors are present even very close to the solute.

It is also remarkable that except for minor differences, ions

and methane seem to provide rather similar correlation

patterns for density fluctuations. This shows that the main

effect in the removal of the long range correlations is due

simply to the presence of the fixed central molecule,

regardless of its chemical nature.

Finally, in the pure water system the distribution of the

fluctuations along all the eigenvectors are quite Gaussian

(data not shown). This implies that fluctuations are

statistically independent and the corresponding free energy

surface is quadratic. For the other systems studied, where a

fixed central molecule is present, we obtain essentially the

same results except for the presence in the sodium and

methane solutions of non-Gaussian fluctuations for eigen-

vectors 100 and 97, respectively (see Fig. 6). These high-

index eigenvectors correspond to almost constrained

density fluxes which simply change the solvent molecular

density in the first solvation shell with a double state

regime.
5. Conclusions

In this paper we investigated the local fluxes of liquid

water as obtained by means of principal component analysis

of density fluctuations. Our results show the presence of a

characteristic long-range correlation pattern when no fixed

central molecule is considered, i.e. density fluxes are

defined with respect to a spatial reference of frame. Such

spontaneous long-range fluctuations are largely suppressed

when density fluxes are defined with respect to a fixed

central molecule, which essentially constrains the main

density fluctuations within the first hydration shells. More-

over, for all the systems studied a large part of the correlated

flux modes (eigenvectors) are almost degenerate (i.e. very

similar eigenvalues) and relevant differences are present
only within the first few eigenvectors. Finally the compar-

ison of the systems where a fixed central molecule is used

shows that different central molecules provide very similar

behaviours of the sourrounding water molecules, at least as

far as density fluctuations are concerned. This clearly means

that the main effect in the removal of the long-range

correlations is due simply to the presence of the fixed central

molecule, regardless of its chemical nature.
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