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In this paper, the perturbed matrix method (PMM) is used in combination with basic statistical mechanics, to
develop a general theoretical method to model chemical reactions and related molecular processes in complex
systems, i.e., liquids, biochemical systems, macromolecules, etc. The main feature of this approach consists
of the explicit treatment of the coupling between the reaction center and the fluctuating -atootécular
environment, providing a rigorous statistical mechanical description of the chemical event. A special attention

is dedicated to the approximations and assumptions necessary to use such a theoretical procedure in combination
with simulation data.

1. Introduction where the usual QM/MM procedures are computationally
. . . . problematic, and if combined with basic statistical mechanics,
The.descrlptlon at atomic level of a chemmal event taklng this method can provide a powerful, rigorous theoretical
place in a complex molecular system is one of the major onoraach to obtain a detailed model for chemical reactions

challenges of theoretical and computa_tional chemistry. In the occurring in complex systems. In these last few years, modeling
past few years, a large number of combined quantum-molecularq¢ chemical reactions in complex environment has become the
mechanical (QM/MM) approaches have been proposed and.opter of very active interest, and several theoretical

successfully applied to different molecular systénfsThe first computational methods have been proposed and successfully

problem to be faced when such procedures are considered, iy jieq” These approaches provided detailed and accurate
connected to the approximations which must be included for jno-mation for the quantum mechanical process in a reaction

handling systems with a very large number of degrees of o enpis reating the interacting environment either as a frozen

freedom. For this reason many efforts have been made, and are;;,mic sructure, when the chemical event is much faster than
still at the center of a certain interest, to obtain force fields of o stomic relaxation. or with a simplified mean field descrip-

a sufficient degree of reliability but computationally more 7

flexible than any full ab initio description. Nowadays, it is  j\ever, the former do not consider any statistical fluctuations
therefore possible to obtain relatively accurate answers 10 ¢ the molecular environment, which is essential to correctly

whatever complex question arises concerning the potential yescripe the thermodynamics and the kinetics of a chemical
energy hypersurface of a many-particle molecular system. On o action. The Iatter, although attempting to provide such a
the other hand, the situation appears less promising if one hascoupling, utilizes rather crude approximations, treating the

to deal with the free energy e%zsoci_ated with a chemical event yery rhation free energy exerted by environment on the reaction
in a complex molecular systefrin this case it is in fact well- — conter via macroscopic mean field models typically inaccurate
known that, beyond the accuracy of the force field used, the 1, gescribe the thermodynamics involved in microscopic

statistical sampling is the major problem as the presently gystems. In this paper, we address the problem of the calculation
available QM/MM schemes do not easily provide electronic t the free energy surface, and related properties, for a reaction

properties for a large set of molecular configurations. Alterna- gefined by a set of classical generalized coordinates (reaction
tively semiempirical methods may be useklt at the price of .5 rqinates), exploring in details the statistical mechanical

a less rigorous moo_leling. We have recent_ly proposed_ a method ¢4 mework and approximations which are to be used.
the perturbed matrix method (PMM}? which deals with the
inclusion of the electronic degrees of freedom into a classical
molecular dynamics (MD) or Monte Carlo (MC) simulation,
based on quantum mechanical first principles. Such a method  Consider a quantum center (i.e., a molecule or a subpart of
seems very promising for treating complex molecular systemts a molecule) embedded in a classical molecular environment.
Defining with r, the nuclear coordinates of the quantum center
* Corresponding author. E-mail:andrea.amadei@uniroma2.it. Fax: and withx the coordinates of the atoms providing the (classical)
+39-6-72594328 . . perturbing field, we can expaftithe perturbed Hamiltonian
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when the thermodynamics of the reaction is concerned.

2. PMM Basic Derivations
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A=A+ Ta; 7/(rg) + Zy(E) + Z,(0) + ... (1) angles ¢,y providing the orientation of the molecular frame
and the internal coordinates, providing the atom positions in
[21]”, = _ E.@pﬁ ,}@IOD 2) the molecular frame, 1816
5 ~ = ~BIrs BIT B
[Za) = %‘I’r[@ Q] ®) Q, = Z © °€ € x
oE (L+ 79 @+ y) NJNIpON®
O =~ (r_k) (4) N
k' Jr=rg dpdx, | | Isin6;ldx,dp; (13)
~ 1=
p=3 g -ro (5) o o
Jz e P = M; X
whereH° andgr are the unperturbed Hamiltonian matrix and lic tic
total charge of the quantum cent€), is thel, I' transition 0, w;,
quadrupoles matri¥® 7’is the perturbing electric potential at _|e v w
therg position of the quantum centét,is the perturbing electric X =| @i %= Yi2
field atro and® is thelth unperturbed electronic Hamiltonian Yi Wiz
eigenfunction (we use these eigenfunctions as the basis set). X in Xiin

Note that we consider the total charge as invariant in the

presence of the perturbation and hence a constant defined bXNhere(/'/ is the kinetic enerav of thal- solvent molecule
the unperturbed condition. s 9y s s

. .. ... andps are the classical coordinates and conjugated momenta
For a quantum center where the perturbing electric field is Ps 1ug

. L - of the solvent, and the kinetic energy of tNesolute molecules
almost constant, at least neglecting local atomic interactions .

typically described by short-range potentials such as the S

Lennard-Jones one, we can witéhe perturbed Hamiltonian 1N

matrix H of the quantum center on the Ber®ppenheimer (BO) He=— piT(|\7|i)—1pi (14)
surface as 2 &

H(r,, x) = Hr,) + g; 7(ro, X)T + Z,(Er,) + AV(r,, X)T (6) Furthermorex; are the classical coordinates of thk solute
molecule, roto-translational ones plus a subset of the internal

where AV(r,,x) approximates the perturbation due to all the coordinates here defined &s,, 74, is the total potential energy

terms from the quadrupoles on, as a simple short-range potentialincluding thelth quantum vibrational term and-t y and 1+

For more complex perturbing field we can use a similar ys are the symmetry coefficients per molecule for the solute

expression, although inserting higher order multipole terms, e.g., and solvent molecules necessary to correct the partition function

the quadrupole terrd,. The perturbed BO Hamiltonian eigen-  from the rotations and intramolecular atomic displacements

valuese; are, within the approximation given by eq 6 which correspond to permutations of identical particles which
’ 7 do not change the physical state of the systéM Note that
€& = €i(r, X) + or 7(ro,x) + AV(r, X) (7) guantum nuclear coordinates (responsible of quantum vibrations)

are equivalent to classical constrained coordinates, as shown in
a previous papéef and hence disappear in the semiclassical
partition function. For eactth solute, we used the corresponding
transformed momenta, given by the Jacobsand;|, associated
with the transformation of the angular velocity from the time
derivatives of the Eulerian angle8; $i,1;) to the projections

'of the angular velocity vector onto the molecular axes
(win,wiz,wiz), i.€., time derivatives of the rotation angles, defined

where
(H*+2Z)c=¢c ®)
andg; is theith perturbed eigenvector. Note that from thecet

we can in principle obtain any possible perturbed property, e.g.
the perturbed (transition) dipdfeu; ; = [@;||P;Uis

~ . «T % . *T X b
i =C A + ¢ TA) j + ¢ TAYK k 9) Y , .

5 =0, .+ ¢, sinG; siny; 1
[AY,,. = @0, D00 (10) @a = B CoSy T oSG Sy no
~ A w;, = — O siny, + ¢, sin6, cosy, (16)
[AS]I,I':@IOlluy'q)lO’D (11) i P e s [

~ i w3 = ¢, COSO, + 1, 17)
[AZ,, = [@0|7,|00 (12)

Note that the mass tensddl; providing the kinetic energy
where obviouslyd is the perturbed Hamiltonian eigenfunction associated with the classical degrees of freedom, is expressed
and c¢*T is the transpose of the complex conjugatedcof in the form which is appropriate for using,wiz,wis. Finally,
(typically from quantum chemical calculatiofishas only real h is the Planck constantl and ds are the number of classical

elements, and henae= c* is a real eigenvector). degrees of freedom in the solute molecules and solvent molecule
and f = 1/kT. For a given configuration we can solve the

3. Statistical Mechanics in the Infinite Dilution integral over the solutes momenta using the orthogonal trans-

Conditions formations of these momenta which diagonalize eadh¢
obtaining

The partition function of a solutesolvent system for a given
electronic state, where for tHé solutes we use as (classical) B 2067 ()t g S
molecular coordinates the center of mass posiiigthe eulerian f e PV Pdp, = [(27kT)" detM]] (18)
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Using this last equation, we then have

e*ﬂ-(//T',s e*ﬂ //T,I(ZJTk'I‘)NdIZ

Qr

X
Z (14 y M+ 7) NI NIRNEND
N
dp, dx.[ ] (detM,)?sin6,] dx; (19)

If the N solutes are in the infinite dilution condition, we can
simplify the integral in the previous equation considering that

Amadei et al.
Q= @Z [ e det M)t dx dpg dx,  (24)

B (zﬂk-l-)dlz&rz
(L + p)(L+ y ndhED

(25)

This last result states that we can obtain the exact statistical
mechanics for whatever dilute solute (including of course a
reactive molecular complex) simply investigating a single solute
at a given roto-translational configuration embedded in the
solvent (the environment).

there is no interaction between the solute molecules. Hence for

the great majority of the solutes roto-translational configurations,

the integral on the other coordinates and solvent momenta is a
constant (note that in the solute mass tensor no elements depeng1

on the center of mass position and the Eulerian angles).
Therefore

N
[e T dp_dx [ (detM)2sin 6] dx; =

5
N
(V8rA)N e I dp, dx [T](deth)" dx;, (20)

where in this last equation we used

87’ = [Isin6| do [ dg ["dy (1)

V= [ (22)

and Z/1) is now evaluated at fixed roto-translational coordinates

of the solute molecules being homogeneously distributed in the

volumeV of the full system. Note that in the special case we
deal with a linear solute molecule where the integral over the
Eulerian angles must be performedafixed and hence reduces
to 4. Finally, considering again thé/Ns is almost zero, we
have

N
[t dp dx [T (detM)M? dx
I

=

i,in

N,

e (f e 73 (detM)*? dp, dx, dx,)" (23)
ng

where 74 is the potential energy including théh quantum
vibrational term of a subsystem defined by a single solute
molecule with fixed roto-translational coordinates, in the center
of the subsystem, and; solvent moleculesrg is given by the
closest integer number thly/N) with %% the corresponding
solvent molecules kinetic energy. The right-hand integral in the
last equation is taken over the voluwéN of the subsystem,
andxs and ps are now the coordinates and momenta of the
solvent molecules of the subsystem. CleaglyandM represent
the AN — 6 internal coordinates and the mass tensor of the single
solute molecule. Note that the factdk!/(nd)N is a simple

4. The Free Energy Reaction Surface

To deal with a chemical reaction it is convenient to express
e energy// by the perturbed Hamiltonian matrix as a function
of the reaction coordinates Expressing the nuclear coordinates
of the quantum center (we consider it as the solute or a part of
the solute) as, = {Xq,17.6} wherexq are the internal quantum
vibrational coordinatesy the reaction coordinates (belonging
to the solute classical internal coordinateg) and ¢ the
remaining classical coordinates, and defining il the solute
classical internal coordinates excepti.e., xin = {&, n}, we
have that the free energy change for a chemical transition
defined byn, — np is

f o Pt //bl)(det |\7|b)1’2 d& dx.dp,

AA=—KTIn

Z f e_ﬁ(,%g+ //al)(detma)llz d§ dXS dps

KT In@ A%~ //aJ)(det |\7|b/det Ma)llzq
where

@7/3( Up)— //aJ)(det |\7Ib/det Ma)UZQ —

Z f g b= g Ist 1) det M, IdetM,) Y *(detM,) 2 d& dx, dp,

Z f e Pt ) (detM ) Y2 dE dx, dp,

and the subscripts a and b mean that the property is evaluated
at i, or . For those molecular systems where the chemical
transition considered is, as usual, not accessible within a
simulation (i.e., the Hamiltonian used provides thatuctua-
tions are confined within a very small range aroupg the
ensemble average of the last equation can be in principle
obtained by a molecular simulation taking into account only
the configurations wherg = 5. However, such a procedure

is in general statistically not very efficient since it utilizes only

a subpart of the sampling obtained by the simulation, and where
molecular dynamics simulations are concerned, often the use
of a rather short time step is required,spasypically involves
bond length coordinates. The use of a constrained simulation
wheren = 5, would then be very convenient. However, it must
be noted that in the previous equatidvlg and M, are not in

degeneration factor due to the number of ways we can distributegeneral identical to the mass tensors of a constrained system

ns out of Ns solvent molecules ifN subsystems. Hence, using
N! = NNeN, we can rewrite the whole partition function @s

= (QVNIN! = (eQVN)N with Q the partition function of a single
subsystem given by

wheren = 5, 0r g = np,'>and hence we must consider with
care when the ensemble average of the previous equations can
be obtained using a constrained simulation. In fact we can
rewrite the ensemble average as
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[ P ") (detM,/detM,) V] =
[(detM,/detM, )"t
[(detM /detM, )4

e A= //ai)(detME,l]detME,a)l/zqa (26)

[e 1 %=)(detM, ,/detM, )] =

Z f g AU radg AU %2)(det M. JdetM, ) *4(detM. )"/ dE dx, dp;

Z f e AU (detM, )M2 dg dx, dp,

[detM,/detM, ) ") =

Z f e s (detM,/detM. )" *(detM, ,)"'* dZ dx, dp,

Z f o At //bv')(det M E,b)ll 20g dx, dpg

[detM, /detM, )"0) =

Z J &P det i /det, ) A(detM, ) dg dx, dp,

Z f e MU 1) (detM, )2 dE dx, dp,
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guantum center and the quantum vibrational term) obtained
when the quantum center is at and i, respectively. If the
environment energy is basically independent of the internal state
of the quantum center, as we assume neglecting atomic
polarization, then (see eq 7)

Uy = Upyy =€, — €=
eh = eh Gr (75— 7)) + AV, — AV, (30)

This last equation can be used to simplify our expressions in
the usual case when we consider the total partition function as
factorized into a quantum vibrational and a semiclassical part.
This is equivalent to assume that a set of reference vibrational
energies s exists such that, for eveiyh vibrational statt®20

[e a7 (detM, )" d dx, dp,=

Je oot detM, ) dE dx dp,
[ tbmaert D detM, ) dg dx, dpy=

Je ho ot (detM, ) d dx, dp,

with the zero subscript indicating the vibrational ground-state
condition. Hence we can write

whereM; 5, Mg, are the mass tensor (diagonal) blocks corre- @—ﬁ(//.,,l—//aj)q ~ [@ A(bo //g,a@ (31)
sponding to the& velocities, obtained ag, and#ny. For a non a a

highly flexible solute (where the rotational coupling can be _ g 7i99 _

neglectedd), if we consider only a very limited range for the e ' ' @a_

reaction coordinates such that thetransition does not alter
significantly the solute structure and therefore its mass tensor
determinant, we may assume

‘/"e—ﬁ(//gyo—lr,’//s)e—ﬁA(e'qthr/) e—ﬁ(Avb—AVa)(d etI\7I§’ a)1/2 dE dx, dp,
[ et (detM, )2 dE dx, dp;
U=t~ €
A +a;7) =€, — e+ (7, — 70

v VERYY y VIR
[(detM/detM, )] = [(detM,/detM, "]
detM, = detM,

detM, , = detM,, Finally, a further simplification is possible via

and hence @ P(“bo= 720 [ja =

fe*ﬂ( //é"#‘(]‘geiﬂA(GurQT1/))e7ﬂ(AVb7Ava)(det|\7|§’a)1/2d§dXSdps

fe—ﬂ( U a0t (//S)e—ﬁA(e'ﬁ»qT ’/’)(deu\'?lg’a)llzdg dXSdps
e PA+ar ‘/’)[j

P //aj)(d etM J/det M Zﬂ)llzq ~ @ Plhi- //al)qa (27)

X

e //aj)q —

Z f e*ﬂ(//br Uay) e*ﬂ(-(//s'+ //a])(detmg,a)llzdb& dXS dps

[ AAE e g =

Z fe—ﬁ(.%/er //aj)(detmg’ a)1/2 d& dx, dp, f o P agt 7P +ar '/o(d etI\7I§’ a)1/2 dE dx, dp,

AA = — len@*ﬁ(//b,I*//aj)q (28) fe ﬁ(//a'o—'—%S)(detME’a)l/Z dg dXS dps
noting that within our approximations
where [&(%,~%)[] is evaluated in the true constrained
ensemble, and so it may be obtained by a constrained molecularf g PVactTg BAEHar ) g PAVS—AV (ot : 6)1/2 d dx, dp,
simulation withy = 7, : =
Moreover, noting that for a small modification of the
coordinates the quantum vibrational energy is likely to be
unaffected, we have

fe—ﬂ( U st T g PAE+ar7) ( det|\7|5, e)1/2 dE dx_ dp,

Je bt (detM, )2 d& dx dps

— e‘ﬁAAAv

Uy — Uy = €y — €a+ Unnyp— V.

‘env,a

(29) fe*ﬁ( //[')v0+,%/5)e*ﬁ(AVa*AVb)(detI\N/IEYb)l/Z dg dxS dps

32
wheree, providing the electronic ground state energy, comes (32)

from eq 7 and/env,a “envp@re the internal energies of the atomic ~ with AAay the free energy change between thgstate and a

and molecular environment (excluding the interaction with the virtual state identical to the previous except for the short-range
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potential which is evaluated af,. Because of the smaly
transition and the weak, short-range natur@uf it is possible
to assumelAay = 0. Hence,

AA = —KT Ine A (33)

Moreover, for any electronic propergyof the quantum center,
the average afy, is

fe—ﬂ( Wit detM,) 3y, dE dx, dp,
f e Pt (detM, )2 dg dx, dp,

B [@ Ui %) det M, /detM,) %,

- @7ﬁ( //m* //al)(det Mb/det I\N/Ia)llzq

Ohold =

which, on the basis of the previous approximations and using

Amadei et al.

5. Conclusions

In this paper, we show that PMM is extremely well suited to
construct a general statistical mechanical treatment of chemical
reactions in complex systems, based on simulation data. Via
the explicit modeling of the coupling between the reactive center
and the fluctuating complex environment, it is possible to use
rigorous quantum chemical calculations to describe the perturbed
reaction path. No special assumptions have been made and the
approximations utilized are rather reasonable and usual in the
simulation of complex molecular systems. In this paper, we
specifically address the problem of the calculation of the free
energy reaction surface, and related electronic properties, for
chemical reactions which can be defined by a set of classical
generalized coordinates (reaction coordinates). Such a free
energy surface defines completely the thermodynamics of the
reaction and can be used to investigate its mechanism and
kinetics. The proposed method is very general and can also be
applied to complex reactions where the whole reaction path is

derivations similar to the previous ones, can be used to obtaintoo extended to fit within the approximations used. In fact, in

[@ PA+ar ’/’)Xb[ga

Bt = m (34)

valid at least fory properties which are basically independent
of the short range interactions (e.g., the perturbed dipoles).

Equations 33 and 34 are very suited for calculations based on

a constrained simulation, where only the vibrational ground state

such a case, the same procedure can be iteratively applied to
the different reaction steps which decompose the whole reaction

pathway. These reaction steps could then be used to reconstruct
the complete reaction process.
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