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In this paper, the perturbed matrix method (PMM) is used in combination with basic statistical mechanics, to
develop a general theoretical method to model chemical reactions and related molecular processes in complex
systems, i.e., liquids, biochemical systems, macromolecules, etc. The main feature of this approach consists
of the explicit treatment of the coupling between the reaction center and the fluctuating atomic-molecular
environment, providing a rigorous statistical mechanical description of the chemical event. A special attention
is dedicated to the approximations and assumptions necessary to use such a theoretical procedure in combination
with simulation data.

1. Introduction

The description at atomic level of a chemical event taking
place in a complex molecular system is one of the major
challenges of theoretical and computational chemistry. In the
past few years, a large number of combined quantum-molecular
mechanical (QM/MM) approaches have been proposed and
successfully applied to different molecular systems.1-6 The first
problem to be faced when such procedures are considered, is
connected to the approximations which must be included for
handling systems with a very large number of degrees of
freedom. For this reason many efforts have been made, and are
still at the center of a certain interest, to obtain force fields of
a sufficient degree of reliability but computationally more
flexible than any full ab initio description. Nowadays, it is
therefore possible to obtain relatively accurate answers to
whatever complex question arises concerning the potential
energy hypersurface of a many-particle molecular system. On
the other hand, the situation appears less promising if one has
to deal with the free energy associated with a chemical event
in a complex molecular system.7 In this case it is in fact well-
known that, beyond the accuracy of the force field used, the
statistical sampling is the major problem as the presently
available QM/MM schemes do not easily provide electronic
properties for a large set of molecular configurations. Alterna-
tively semiempirical methods may be used,8 but at the price of
a less rigorous modeling. We have recently proposed a method,
the perturbed matrix method (PMM),9,10 which deals with the
inclusion of the electronic degrees of freedom into a classical
molecular dynamics (MD) or Monte Carlo (MC) simulation,
based on quantum mechanical first principles. Such a method
seems very promising for treating complex molecular systems11-13

where the usual QM/MM procedures are computationally
problematic, and if combined with basic statistical mechanics,
this method can provide a powerful, rigorous theoretical
approach to obtain a detailed model for chemical reactions
occurring in complex systems. In these last few years, modeling
of chemical reactions in complex environment has become the
center of very active interest, and several theoretical-
computational methods have been proposed and successfully
applied.7 These approaches provided detailed and accurate
information for the quantum mechanical process in a reaction
event,14 treating the interacting environment either as a frozen
atomic structure, when the chemical event is much faster than
the atomic relaxation, or with a simplified mean field descrip-
tion7 when the thermodynamics of the reaction is concerned.
However, the former do not consider any statistical fluctuations
of the molecular environment, which is essential to correctly
describe the thermodynamics and the kinetics of a chemical
reaction. The latter, although attempting to provide such a
coupling, utilizes rather crude approximations, treating the
perturbation free energy exerted by environment on the reaction
center via macroscopic mean field models typically inaccurate
to describe the thermodynamics involved in microscopic
systems. In this paper, we address the problem of the calculation
of the free energy surface, and related properties, for a reaction
defined by a set of classical generalized coordinates (reaction
coordinates), exploring in details the statistical mechanical
framework and approximations which are to be used.

2. PMM Basic Derivations

Consider a quantum center (i.e., a molecule or a subpart of
a molecule) embedded in a classical molecular environment.
Defining with rn the nuclear coordinates of the quantum center
and withx the coordinates of the atoms providing the (classical)
perturbing field, we can expand12 the perturbed Hamiltonian
matrix H̃ of the quantum center on the Born-Oppenheimer
surface as
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whereH̃0 andqT are the unperturbed Hamiltonian matrix and
total charge of the quantum center,Q̃l,l ′ is the l, l′ transition
quadrupoles matrix,10 V is the perturbing electric potential at
ther0 position of the quantum center,E is the perturbing electric
field at r0 andΦl

0 is thelth unperturbed electronic Hamiltonian
eigenfunction (we use these eigenfunctions as the basis set).
Note that we consider the total charge as invariant in the
presence of the perturbation and hence a constant defined by
the unperturbed condition.

For a quantum center where the perturbing electric field is
almost constant, at least neglecting local atomic interactions
typically described by short-range potentials such as the
Lennard-Jones one, we can write12 the perturbed Hamiltonian
matrix H̃ of the quantum center on the Born-Oppenheimer (BO)
surface as

where ∆V(rn,x) approximates the perturbation due to all the
terms from the quadrupoles on, as a simple short-range potential.
For more complex perturbing field we can use a similar
expression, although inserting higher order multipole terms, e.g.,
the quadrupole termZ̃2. The perturbed BO Hamiltonian eigen-
valuesεi are, within the approximation given by eq 6

where

andci is theith perturbed eigenvector. Note that from the setci

we can in principle obtain any possible perturbed property, e.g.,
the perturbed (transition) dipole12 µi, j ) 〈Φi|µ̂|Φj〉 is

where obviouslyΦ is the perturbed Hamiltonian eigenfunction
and c*T is the transpose of the complex conjugated ofc
(typically from quantum chemical calculationsH̃ has only real
elements, and hencec ) c* is a real eigenvector).

3. Statistical Mechanics in the Infinite Dilution
Conditions

The partition function of a solute-solvent system for a given
electronic state, where for theN solutes we use as (classical)
molecular coordinates the center of mass positionrG, the eulerian

anglesθ,φ,ψ providing the orientation of the molecular frame
and the internal coordinatesxin providing the atom positions in
the molecular frame, is15,16

whereKT,s is the kinetic energy of theNs solvent molecules,xs

and ps are the classical coordinates and conjugated momenta
of the solvent, and the kinetic energy of theN solute molecules
is

Furthermore,xi are the classical coordinates of theith solute
molecule, roto-translational ones plus a subset of the internal
coordinates here defined asxi,in, UT,l is the total potential energy
including thelth quantum vibrational term and 1+ γ and 1+
γs are the symmetry coefficients per molecule for the solute
and solvent molecules necessary to correct the partition function
from the rotations and intramolecular atomic displacements
which correspond to permutations of identical particles which
do not change the physical state of the system.17,18 Note that
quantum nuclear coordinates (responsible of quantum vibrations)
are equivalent to classical constrained coordinates, as shown in
a previous paper,10 and hence disappear in the semiclassical
partition function. For eachith solute, we used the corresponding
transformed momenta, given by the Jacobean|sinθi|, associated
with the transformation of the angular velocity from the time
derivatives of the Eulerian angles (θ̇i,φ̇i,ψ̇i) to the projections
of the angular velocity vector onto the molecular axes
(ωi1,ωi2,ωi3), i.e., time derivatives of the rotation angles, defined
by

Note that the mass tensorM̃i providing the kinetic energy
associated with the classical degrees of freedom, is expressed
in the form which is appropriate for usingωi1,ωi2,ωi3. Finally,
h is the Planck constant,d andds are the number of classical
degrees of freedom in the solute molecules and solvent molecule
and â ) 1/kT. For a given configuration we can solve the
integral over the solutes momenta using the orthogonal trans-
formations of these momenta which diagonalize each (M̃i)-1

obtaining

H̃ ) H̃0 + ĨqTV (r0) + Z̃1(E) + Z̃2(Θ̃) + ... (1)

[Z̃1] l,l ′ ) - E‚〈Φl
0| µ̂|Φl ′

0〉 (2)

[Z̃2] l,l ′ ) 1
2
Tr[Θ̃ Q̃ l,l ′] (3)

Θk,k′ ) - (∂Ek

rk ′
)

r)r0

(4)

µ̂ ) ∑
j

qj (r j - r0) (5)

H̃(rn,x) = H̃0(rn) + qTV (r0,x)Ĩ + Z̃1(E,rn) + ∆V(rn,x)Ĩ (6)

εi ) ε ′i(rn,x) + qTV (r0,x) + ∆V(rn,x) (7)

(H̃0 + Z̃1) ci ) ε ′i ci (8)

µi, j ) ci
/TΛ̃x

0cj i + ci
/TΛ̃y

0cj j + ci
/TΛ̃z

0cj k (9)

[Λ̃x
0] l,l ′ ) 〈Φl

0| µ̂x|Φl ′
0〉 (10)

[Λ̃y
0] l,l ′ ) 〈Φl

0| µ̂y|Φl ′
0〉 (11)

[Λ̃z
0] l,l ′ ) 〈Φl

0| µ̂z|Φl ′
0〉 (12)

QT ) ∑
l
∫ e-âKT,se-âKT e-âUT,l

(1 + γs)
Ns(1 + γ)N Ns!N!h(Nd+Nsds)

×

dpsdxs∏
i)1

N

|sin θi|dxidpi (13)

pi ) M̂i x3 ′i

xi ) ( r i,G

θi

φi

ψi

xi,in

) x3 ′i ) ( r3 i,G
ωi1

ωi2

ωi3

x3 i,in

)
K T )

1

2
∑
i)1

N

pi
T(M̃i )

-1pi (14)

ωi1 ) θ̇i cosψi + φ̇i sin θi sin ψi (15)

ωi2 ) - θ̇ sin ψi + φ̇i sin θi cosψi (16)

ωi3 ) φ̇i cosθi + ψ̇i (17)

∫ e-â(1/ 2)pi
T (M̃i)-1pi dpi ) [(2πkT)d detM̃i]

1/2 (18)
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Using this last equation, we then have

If the N solutes are in the infinite dilution condition, we can
simplify the integral in the previous equation considering that
there is no interaction between the solute molecules. Hence for
the great majority of the solutes roto-translational configurations,
the integral on the other coordinates and solvent momenta is a
constant (note that in the solute mass tensor no elements depend
on the center of mass position and the Eulerian angles).
Therefore

where in this last equation we used

andU T,l is now evaluated at fixed roto-translational coordinates
of the solute molecules being homogeneously distributed in the
volumeV of the full system. Note that in the special case we
deal with a linear solute molecule where the integral over the
Eulerian angles must be performed atψ fixed and hence reduces
to 4π. Finally, considering again thatN/Ns is almost zero, we
have

where Ul is the potential energy including thelth quantum
vibrational term of a subsystem defined by a single solute
molecule with fixed roto-translational coordinates, in the center
of the subsystem, andns solvent molecules (ns is given by the
closest integer number toNs/N) with Ks the corresponding
solvent molecules kinetic energy. The right-hand integral in the
last equation is taken over the volumeV/N of the subsystem,
andxs andps are now the coordinates and momenta of thens

solvent molecules of the subsystem. Clearlyxin andM̃ represent
the 3N - 6 internal coordinates and the mass tensor of the single
solute molecule. Note that the factorNs!/(ns!)N is a simple
degeneration factor due to the number of ways we can distribute
ns out of Ns solvent molecules inN subsystems. Hence, using
N! = NNe-N, we can rewrite the whole partition function asQT

) (QV)N/N! = (eQV/N)N with Q the partition function of a single
subsystem given by

This last result states that we can obtain the exact statistical
mechanics for whatever dilute solute (including of course a
reactive molecular complex) simply investigating a single solute
at a given roto-translational configuration embedded in the
solvent (the environment).

4. The Free Energy Reaction Surface

To deal with a chemical reaction it is convenient to express
the energyUl by the perturbed Hamiltonian matrix as a function
of the reaction coordinatesη. Expressing the nuclear coordinates
of the quantum center (we consider it as the solute or a part of
the solute) asrn ) {xq,η,ú} wherexq are the internal quantum
vibrational coordinates,η the reaction coordinates (belonging
to the solute classical internal coordinatesxin) and ú the
remaining classical coordinates, and defining withê all the solute
classical internal coordinates exceptη, i.e., xin ) {ê, η}, we
have that the free energy change for a chemical transition
defined byηa f ηb is

where

and the subscripts a and b mean that the property is evaluated
at ηa or ηb. For those molecular systems where the chemical
transition considered is, as usual, not accessible within a
simulation (i.e., the Hamiltonian used provides thatη fluctua-
tions are confined within a very small range aroundηa) the
ensemble average of the last equation can be in principle
obtained by a molecular simulation taking into account only
the configurations whereη = ηa. However, such a procedure
is in general statistically not very efficient since it utilizes only
a subpart of the sampling obtained by the simulation, and where
molecular dynamics simulations are concerned, often the use
of a rather short time step is required, asη typically involves
bond length coordinates. The use of a constrained simulation
whereη ) ηa would then be very convenient. However, it must
be noted that in the previous equationsM̃a and M̃b are not in
general identical to the mass tensors of a constrained system
whereη ) ηa or η ) ηb,15,19and hence we must consider with
care when the ensemble average of the previous equations can
be obtained using a constrained simulation. In fact we can
rewrite the ensemble average as

QT ) ∑
l
∫ e-âKT,s e-âUT,l(2πkT)Nd/2

(1 + γs)
Ns(1 + γ)NNs!N!h(Nd+Nsds)

×

dps dxs∏
i)1

N

(detM̃i )
1/2|sin θi| dxi (19)

∫e-â(UT,l+KT,s) dps dxs∏
i)1

N

(detM̃i)
1/2|sin θi| dxi =

(V8π2)N∫e-â(UT,l+KT,s) dps dxs∏
i)1

N

(detM̃i)
1/2 dxi,in (20)

8π2 ) ∫0

π|sin θ| dθ∫0

2π
dφ∫0

2π
dψ (21)

V ) ∫ drG (22)

∫e-â(UT,l+KT,s) dps dxs∏
i)1

N

(detM̃i)
1/2 dxi,in =

Ns!

(ns!)
N

(∫e-â(Ul+Ks)(detM̃)1/2 dps dxs dxin)
N (23)

Q ) Θ∑
l
∫ e-â(Ul+Ks)(detM̃)1/2 dxs dps dxin (24)

Θ )
(2πkT)d/28π2

(1 + γ)(1 + γs)
nsns!h

(nsds+d)
(25)

∆A ) - kT ln[∑l
∫ e-â(Ks+Ub1)(detM̃b)

1/2dê dxsdps

∑
l
∫ e-â(Ks+Ua1)(detM̃a)

1/2 dê dxs dps]
) - kT ln〈e-â(Ub,l - Ua,l)(detM̃b /detM̃a)

1/2〉a

〈e-â(Ub,l-Ua,l)(detM̃b/detM̃a)
1/2〉a )

∑
l
∫e-â(Ub,l-Ua,l)e-â(Ks+Ua,l)(detM̃b/detM̃a)

1/2(detM̃a)
1/2 dê dxs dps

∑
l
∫e-â(Ks+Ua,l)(detM̃a)

1/2 dê dxs dps
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whereM̃ê,a, M̃ê,b are the mass tensor (diagonal) blocks corre-
sponding to theê velocities, obtained atηa andηb. For a non
highly flexible solute (where the rotational coupling can be
neglected15), if we consider only a very limited range for the
reaction coordinates such that theη transition does not alter
significantly the solute structure and therefore its mass tensor
determinant, we may assume

and hence

where 〈e-â(Ub,l-Ua,l)〉ηa is evaluated in the true constrained
ensemble, and so it may be obtained by a constrained molecular
simulation withη ) ηa.

Moreover, noting that for a small modification of theη
coordinates the quantum vibrational energy is likely to be
unaffected, we have

whereε, providing the electronic ground state energy, comes
from eq 7 andUenv,aUenv,bare the internal energies of the atomic
and molecular environment (excluding the interaction with the

quantum center and the quantum vibrational term) obtained
when the quantum center is atηa and ηb respectively. If the
environment energy is basically independent of the internal state
of the quantum center, as we assume neglecting atomic
polarization, then (see eq 7)

This last equation can be used to simplify our expressions in
the usual case when we consider the total partition function as
factorized into a quantum vibrational and a semiclassical part.
This is equivalent to assume that a set of reference vibrational
energiesεref,l exists such that, for everylth vibrational state16,20

with the zero subscript indicating the vibrational ground-state
condition. Hence we can write

Finally, a further simplification is possible via

noting that within our approximations

with ∆A∆V the free energy change between theηb state and a
virtual state identical to the previous except for the short-range

〈e-â(Ub,l-Ua,l)(detM̃b/detM̃a)
1/2〉a)

〈(detM̃b/detM̃ê,b)
1/2〉ηb

〈(detM̃a/detM̃ê,a)
1/2〉ηa

〈e-â(Ub,l-Ua,l)(detM̃ê,b/detM̃ê,a)
1/2〉ηa

(26)

〈e-â(Ub,l-Ua,l)(detM̃ê,b/detM̃ê,a)
1/2〉ηa

)

∑
l
∫e-â(Ub,l-Ua,l)e-â(Ks+Ua,l)(detM̃ê,b/detM̃ê,a)

1/2(detM̃ê,a)
1/2dê dxs dps

∑
l
∫e-â(Ks+Ua,l)(detM̃ê,a)

1/2 dê dxs dps

〈(detM̃b/detM̃ê,b)
1/2〉ηb

)

∑
l
∫ e-â(Ks+Ub,l)(detM̃b/detM̃ê,b)

1/2(detM̃ê,b)
1/2 dê dxs dps

∑
l
∫ e-â(Ks+Ub,l)(detM̃ê,b)

1/2dê dxs dps

〈(detM̃a/detM̃ê,a)
1/2〉ηa

)

∑
l
∫ e-â(Ks+Ua,l)(detM̃a/detM̃ê,a)

1/2(detM̃ê,a)
1/2 dê dxs dps

∑
l
∫ e-â(Ks+Ua,l)(detM̃ê,a)

1/2dê dxs dps

〈(detM̃a/detM̃ê,a)
1/2〉ηa

= 〈(detM̃b/detM̃ê,b)
1/2〉ηb

detM̃a= detM̃b

detM̃ê,a = detM̃ê,b

〈e-â(Ub,l-Ua,l)(detM̃b/detM̃a)
1/2〉a = 〈e-â(Ub,l-Ua,l)〉ηa

(27)

〈e-â(Ub,l-Ua,l)〉ηa
)

∑
l
∫ e-â(Ub,l-Ua,l) e-â(Ks+Ua,l)(detM̃ê,a)

1/2dê dxs dps

∑
l
∫e-â(Ks+Ua,l)(detM̃ê,a)

1/2 dê dxs dps

∆A = - kT ln〈e-â(Ub,l-Ua,l)〉ηa
(28)

Ub,l - Ua,l = εb - εa + Uenv,b- Uenv,a (29)

Ub,l - Ua,l ) εb - εa )
ε ′b - ε ′a + qT (Vb - Va) + ∆Vb - ∆Va (30)

∫e-â(Ua,l-εref,l+Ks)(detM̃ê,a)
1/2dê dxs dps=

∫e-â(Ua,0-εref,0+Ks)(detM̃ê,a)
1/2dê dxsdps

∫e-â(Ub,l-εref,l+Ks)(detM̃ê,b)
1/2dê dxs dps=

∫e-â(Ub,0-εref,0+Ks)(detM̃ê,b)
1/2dê dxs dps

〈e-â(Ub,l-Ua,l)〉ηa
= 〈e-â(U ′b,0-U ′a,0)〉ηa

0 (31)

〈e-â(U ′b,0-U ′a,0)〉ηa

0 )

∫e-â(U ′a,0+Ks)e-â∆(ε′+qTV)e-â(∆Vb-∆Va)(detM̃ê,a)
1/2 dê dxs dps

∫e-â(U ′a,0+Ks)(detM̃ê, a)
1/2 dê dxs dps

U ′l ) Ul - εref,l

∆(ε′ + qTV ) ) ε ′b - ε ′a + qT(Vb - Va)

〈e-â(U ′b,0-U ′a,0)〉ηa

0 )

∫e-â(U ′a,0+Ks)e-â∆(ε′+qTV )e-â(∆Vb-∆Va)(detM̃ê,a)
1/2dêdxsdps

∫e-â(U ′a,0+Ks)e-â∆(ε′+qTV )(detM̃ê,a)
1/2dêdxsdps

×

〈e-â∆(ε′+qTV )〉ηa

0

〈e-â∆(ε′+qTV )〉ηa

0 )

∫e-â(U ′a,0+Ks)e-â∆(ε′+qTV )(detM̃ê,a)
1/2 dê dxs dps

∫e-â(U ′a,0+Ks)(detM̃ê,a)
1/2 dê dxs dps

∫e-â(U ′a,0+Ks)e-â∆(ε′+qTV )e-â(∆Vb-∆Va)(detM̃ê,a)
1/2 dê dxs dps

∫e-â(U ′a,0+Ks)e-â∆(ε′+qTV )(detM̃ê,a)
1/2 dê dxs dps

)

∫e-â(U ′b,0+Ks)(detM̃ê,b)
1/2 dê dxs dps

∫e-â(U ′b,0+Ks)e-â(∆Va-∆Vb)(detM̃ê,b)
1/2 dê dxs dps

) e-â∆A∆V

(32)
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potential which is evaluated atηa. Because of the smallη
transition and the weak, short-range nature of∆V, it is possible
to assume∆A∆V = 0. Hence,

Moreover, for any electronic propertyø of the quantum center,
the average atηb is

which, on the basis of the previous approximations and using
derivations similar to the previous ones, can be used to obtain

valid at least forø properties which are basically independent
of the short range interactions (e.g., the perturbed dipoles).
Equations 33 and 34 are very suited for calculations based on
a constrained simulation, where only the vibrational ground state
is considered and the short range energy fluctuations are likely
to be not fully sampled because of the fixed subset of classical
coordinates. However, in the case where we deal with an
unconstrained simulation, the previous approximations would
lead to the same expressions although evaluated in the uncon-
strained ensemble, i.e.

Note that for a rigid or semirigid quantum center∆(ε′ + qTV )
can be considered as a function only ofη, i.e., independent of
the other internal coordinates of the quantum center. Hence,
the unperturbed matrices used to construct the Hamiltonian
perturbed matrix in PMM can be evaluated atηa andηb keeping
all the other internal coordinates fixed at a reference position,
thus reducing considerably the computational effort needed.
Finally, it must be remarked that in the case where a largeη
transition is concerned and hence some of the previous
approximations could be inaccurate, the same approach can be
used iteratively to reconstruct the whole reaction path.

5. Conclusions

In this paper, we show that PMM is extremely well suited to
construct a general statistical mechanical treatment of chemical
reactions in complex systems, based on simulation data. Via
the explicit modeling of the coupling between the reactive center
and the fluctuating complex environment, it is possible to use
rigorous quantum chemical calculations to describe the perturbed
reaction path. No special assumptions have been made and the
approximations utilized are rather reasonable and usual in the
simulation of complex molecular systems. In this paper, we
specifically address the problem of the calculation of the free
energy reaction surface, and related electronic properties, for
chemical reactions which can be defined by a set of classical
generalized coordinates (reaction coordinates). Such a free
energy surface defines completely the thermodynamics of the
reaction and can be used to investigate its mechanism and
kinetics. The proposed method is very general and can also be
applied to complex reactions where the whole reaction path is
too extended to fit within the approximations used. In fact, in
such a case, the same procedure can be iteratively applied to
the different reaction steps which decompose the whole reaction
pathway. These reaction steps could then be used to reconstruct
the complete reaction process.
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