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The quasi-Gaussian entropy (QGE) theory was used to formulate a statistical mechanical model describing
the thermodynamics of the folding/unfolding process of single-domain proteins. The model was parametrized
using experimental data obtained from differential scanning calorimetry (DSC) of a set of proteins. The results
showed that the model is able to reproduce the experimental behavior in the usual temperature range, for all
the analyzed proteins. Furthermore, a remarkable similarity of some parameters of the model, when normalized
per residue and corresponding to well-defined physical properties, was found. Interestingly, at low temperature,
the model provides cold denaturation features for all the proteins. Finally, a general description of the folding/
unfolding process and stability, based on the physical view provided by the model, is discussed.

Introduction

Protein folding is one of the most fascinating problems of
structural biology. The nature of this phenomenon is very elusive
since it involves a subtle equilibrium of interactions apparently
not simply related to the amino acid sequence.1 Despite the
microscopic complexity of the folding mechanism, the thermo-
dynamics of the process, at least for single-domain proteins, is
relatively simple, and it has been experimentally well-known
for almost 30 years.2

For single-domain proteins, the thermodynamics of the
folding/unfolding process is typically described by semiempirical
models based on simple thermodynamical assumptions and
approximations.1-3 The simplicity of such models allows a
macroscopic phenomenological description of the process and
furnishes interesting information on the thermodynamic stability
of proteins.2 However, no connections with the underlying
microscopic physical mechanism of protein stability and folding/
unfolding equilibrium can be inferred from such models, and
their semiempirical character cannot provide a real physical
consistency. This implies that their predictions must be always
be considered as a good approximation only in a limited
temperature range. To overcome these problems and try to
bridge the microscopic nature of the phenomenon with the
macroscopic thermodynamics of the process, statistical me-
chanical models have also been proposed. These models are
based on simplified molecular Hamiltonians (chain-chain
Hamiltonians) used to describe the interactions in the system.
More realistic Hamiltonians can be in principle used in atomistic
simulations, but the high dimensionality of the configurational
space and complexity of the corresponding energy surface for
solvated proteins make simulations still unable to provide the
complete thermodynamics of such systems. The use of simpli-

fied models was first proposed by Zimm and Bragg4 to describe
the helix-coil transition ofR-helices forming peptides. Similar
models have been used to describe the folding/unfolding kinetics
and thermodynamics ofR-helices and other peptides forming
secondary structures in solution5 (like â-hairpin) and single-
domain proteins.6-12 These kinds of models typically provide
only a qualitative agreement with experimental data, as the
idealized molecular Hamiltonians used oversimplify the physics
of the proteins.

In this paper we use the framework of the quasi-Gaussian
entropy (QGE) theory, based on enthalpy fluctuations in the
isothermal-isobaric ensemble,13 to formulate a general model
for the description of the thermodynamic properties of the
folding/unfolding of single-domain proteins. This statistical
mechanical theory, which is basically an extension of the
fluctuation theory, has provided in the past few years excellent
models for homogeneous fluids,13-18 solids,19 and recently for
the thermodynamics of flexible organic molecules in vacuo20

and solutes.21 Our approach has analogies with those proposed
by Rosgen et al. and Linder and Kromhout,11,12although based
on a completely different theoretical framework. The model we
propose was applied to experimental denaturation heat capacity
data for different proteins (SH3, cytochromec, barnase,
lysozyme) in different denaturating conditions.

Methods

The QGE model proposed in this paper was parametrized on
the heat capacity data obtained from DSC experiments of a set
of proteins reported in the literature:R-spectrin SH3,22 cyto-
chromec,3 barnase,23 and egg white lysozyme.3 The experi-
mental calorimetric curves were kindly provided by Professor
P. L. Privalov and Dr. F. Conejero-Lara. The curve fitting was
performed by a graphical Unix tool (DSC modeler) specifically
designed for this purpose. This program is available from the
author (D.R.) by request.
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Theory

For a fluid state system ofN solute molecules at high dilution,
the canonical partition function can be expressed as24

where the summation runs over the quantum vibronic states,
U l is the total energy, including the quantum vibronic energy,
of the subsystem defined by a single solute molecule andns

solvent molecules,V is the overall volume of the system,ê are
the generalized internal coordinates of a single solute molecule
with fixed rototranslational coordinates,π are the conjugated
momenta of the solute molecule, andx, p are the coordinates
and conjugated momenta of thens solvent molecules within the
solute molecular volume. Moreover, 1+ γ and 1+ γs are the
symmetry coefficients for the solute and the solvent respectively,
d andds are the number of classical degrees of freedom in the
solute and solvent molecules of the subsystem, andh is the
Planck’s constant. Finally, the integral is taken within the solute
molecular volumeVm ) V/N, and the asterisk denotes an
integration only over the accessible configurational space. From
the previous equation it follows, using the approximationN! =
NNe-N, that the whole partition function can be obtained from
the solute molecular partition function byQ ) Qm

N

Hence, the whole thermodynamics is defined byQm as A )
-NkT ln Qm. This clearly means that if we want to describe
the thermodynamics of the same system using the isobaric
ensemble we must use a solute molecular isobaric partition
function defined as

providingG ) -NkT ln ¥m (note thatV is an arbitrary volume
constant necessary to make a dimensional¥m). Following the
theoretical scheme described in a previous article,13 we then
have

with ∆â ) â - â0, the subscriptâ0 indicating an average in
the â0 ensemble andH ) U l + pVm. Note thatG/N ) µ +
nsµs ) -kT ln ¥m with µ andµs the solute and solvent chemical
potentials. The ensemble average in eq 5 can be expressed as

whereF(H ) is the enthalpy probability distribution function in
the â0 ensemble. Instead of using a perturbation expansion, in
the QGE theory the free energy is obtained by modeling the
distribution function and hence its moment generating func-
tion25,26or Laplace transform, eq 6. For homogeneous fluid state
systems it was shown that a rather good model in the isobaric
ensemble is the diverging gamma state model13 for enthalpy

fluctuations. In the present paper where we deal with a very
complex system involving a macromolecule, it is likely that we
need more sophisticated models. In recent articles20,27 we
showed, for the canonical ensemble, that the use of mixing
distributions for gamma state models provides a very powerful
method to obtain more sophisticated and accurate models for
fluid state systems. We can use a similar approach in the present
case, assuming that the solute molecular configurational space
of the internal coordinates can be partitioned into a set ofL
subspaces, each one defining a solute-solvent system exactly
described by a “local” diverging gamma state (note that pure
water thermodynamics, along an isobar, is well described over
a wide temperature range by a single diverging gamma state).
We can rewrite the total free energy change as

where ¥m,i is the partition function corresponding to theith
conformation,µi is the chemical potential of the solute in the
ith conformation and

with µ0 ) µ(â0) ) -kT0 ln¥(â0) - nsµs(â0) the solute chemical
potential at the reference temperatureT0 ) 1/(kâ0). Note that
in eq 10 we use the fact that at high dilution the solvent
molecular partial properties are identical to the pure solvent ones
(hence independent of the solute). Within the assumption that
eachnsµs + µi can be well modeled by a “local” diverging
gamma state, we have13,21

with h0,i, cp0,i, and s0,i the partial molecular enthalpy, heat
capacity, and entropy of the solute in theith conformation at
the reference temperatureT0. From the other general equations
of the diverging gamma state properties we can also obtain all
the other partial molecular properties of the solute, for example,
the enthalpyhi and heat capacitycp,i

(note that in this paper, for sake of simplicity, we always omit
in the partial derivatives the notation for the fixed number of
solute molecules). In the present case where we deal with
complex macromolecules such as proteins at fixed pressure, the
summation in eq 7 is likely to involve a very large number of
gamma states corresponding to different protein configurational
subspaces (conformations). Hence, in order to keep the math-
ematical derivations and especially the model application

âG(â) - â0G(â0) ) -N ln∑
i)1

L ¥m,i(â)

¥m,i(â0)
εi

) -N ln{∑
i)1

L

εi e-[ns∆(âµs)+∆(âµi)]} (7)

∆(âµs) ) âµs(â) - â0µs(â0) (8)

∆(âµi) ) âµi(â) - â0µi(â0) (9)

εi )
¥m,i(â0)

¥m(â0)
) e-â0(µ0,i-µ0) (10)

µi ) h0,i - T0cp0,i + T(cp0,i - s0,i) + Tcp0,iln
T0

T
(11)

hi ) (∂âµi

∂â )
p,ns

) h0,i + (T - T0)cp0,i (12)

cp,i ) (∂hi

∂T)
p,ns

) cp0,i (13)

Q )
(8π2V)N

N!
(Θ∑

l
∫/ e-âUl dê dx dπ dp)N (1)

Θ-1 ) ns!(1 + γ)(1 + γs)
nsh(d+ds) (2)

Qm )
8π2VmΘ

e-1
∑

l
∫/e-âUl dê dx dπ dp (3)

¥m ) ∫e-âpVmQm(â, Vm)
dVm

V
(4)

âG(â) - â0G(â0) )

-N ln{ ¥m(â)

¥m(â0)} ) -N ln 〈e-∆âH 〉â0 (5)

〈e-∆âH 〉â0 ) ∫F(H ) e-∆âH dH (6)
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manageable, we must use drastic simplifications. We will first
assume that we can decompose the huge number of gamma
states into two subgroups: one associated with the folded state
of the protein and one with the unfolded state. Moreover, we
will also assume that within each subgroup the partial molecular
heat capacity is the same for the different gamma states and
the partial molecular enthalpies are given byh0,i = h0

0 + jδ (j )
0, 1, 2, 3, ...,) withh0

0 andδ the overall “ground state” enthalpy
(at T0) and enthalpy gap of the subgroup. We may define such
kind of subgroup a gamma states family. In Figure 1 we give
a simple picture of the gamma states partition used, where we
indicate the native (N) and denatured (D) gamma states families.
Hence, using the subscripts f and u to define the folded and
unfolded state properties, respectively, we obtain from eqs 7-10

(whereεf, εu, µf, and µu are the total fractions and chemical
potentials of the folded and unfolded subgroups and

From the previous equations we readily obtain the other partial
molecular properties, that is, enthalpy, entropy, and heat capacity

where obviously

are the corresponding partial molecular properties in the folded
or unfolded state. Note that in the limit of a differentialδf and
δu a continuous gamma states partition of the solute intra-
molecular phase space is involved, as previously described for
the canonical ensemble.27 However, in this paper we will
consider only the discrete-like diverging gamma states partition
as it seems to provide a better general description of protein
behavior. The use of a discrete-like diverging gamma states
partition implies that the thermodynamics of a solvated protein
should be a complex mixture between a typical fluid state
behavior and a discrete-like “energy” fluctuation. In order to
proceed further we must model the discrete probability distribu-
tion w(j). A simple discrete distribution, which is physically
acceptable and proved to be successful to model the quantum
solid state, is the negative binomial distribution providing

where q and Z are two pure numbers characteristic of the
negative binomial distribution. With these last equations we can
express the partial molecular properties of the folded and
unfolded states as

Figure 1. Simple picture of the configurational space partitioned into
subspaces corresponding to the gamma states. In the figure is also shown
the distribution of the enthalpy gaps of the subspaces.

∆(âµ) ) ∆(â
G(T)

N ) - ns∆(âµs) )

-ln{e-(âµf-â0µ0) + e-(âµu-â0µ0)}

e-(âµf-â0µ0) ) e-∆(âµ0
f)εf 〈e-∆âδfj〉f (14)

e-(âµu-â0µ0) ) e-∆(âµ0
u)εu〈e

-∆âδuj〉f (15)

〈e-∆âδfj〉f ) ∑
j)0

Lf-1

e-∆âδfjwf(j) (16)

〈e-∆âδuj〉u ) ∑
j)0

Lu-1

e-∆âδujwu(j) (17)

wf(j) )
εf,j

εf
(18)

wu(j) )
εu,j

εu
(19)

∆(âµf
0) ) h0,f

0 ∆â - cp0,fT0∆â -
cp0,f

k
ln

T
T0

(20)

∆(âµu
0) ) h0,u

0 ∆â - cp0,uT0∆â -
cp0,u

k
ln

T
T0

(21)

h ) (∂âµ
∂â )p,ns

) hf + ø(hu - hf) (22)

ø ) e-â(µu-µf)

1 + e-â(µu-µf)
(23)

s ) h - µ
T

(24)

cp ) (∂h
∂T)p,ns

)

cp,u - (1 - ø)(cp,u - cp,f) + (1 - ø)ø
(hu - hf)

2

kT2
(25)

hf ) (∂âµf

∂â )
p,ns

(26)

hu ) (∂âµu

∂â )
p,ns

(27)

cp,f ) (∂hf

∂T)
p,ns

(28)

cp,u ) (∂hu

∂T)
p,ns

(29)

〈e-∆âδfj〉f ) { 1 - qf

1 - qf e-∆âδf}Zf

(30)

〈e-∆âδuj〉u ) { 1 - qu

1 - qu e-∆âδu}Zu

(31)
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and so

Note that from the last equations we can interpret the folding
and unfolding states thermodynamics as due to a set (Zf and
Zu) of independent “modes” each defined by the “partition
function” Ωf or Ωu. Each folded or unfolded “mode” corre-
sponds to an independent type of enthalpy fluctuation and can
be excited providing a thermodynamic transition of the solvent-
solute system. Interestingly, such independent thermodynamic
“modes” should correspond to basic sets of conformational
subspaces which, via combination, provide all the possible
gamma state conformational subspaces of the system.

We can simplify further the model assuming that

and taking the reference temperatureT0 as the equilibrium

temperature, that is,εf/εu ) 1. With these simplifications we
obtain

which can be used to obtain the solute partial molecular
properties, for example, via eq 25 the partial molecular heat
capacity. Finally, it must be remarked that we derived a
multistate model and hence the use of two gamma states
families, corresponding to the folded and unfolded conditions,
is not equivalent to the usual “two states” approximation where
two simple thermodynamic states describe completely the
folding thermodynamics. However, the approximations intro-
duced in the general theory to simplify the gamma states
properties in each subgroup reduce the ability of the model to
treat more complex systems where more than two gamma states
families could be necessary. More general multistate models,
although possible, are in practice very difficult to use as the
number of physical parameters defining the model becomes very
large.

Results

The theoretical model described in the theory section was
applied to four different single-domain proteins: SH3, cyto-
chromec, barnase, and lysozyme (see Table 1). The model
parameters were obtained by fitting experimental heat capacity
data (DSC experiments) with the corresponding theoretical
expression, via a multistep procedure where the folded and
unfolded data were used separately. The simplified QGE model
used in this paper utilizes the same number of parameters as
the more sophisticated semiempirical models based on thermo-
dynamic expansions (7 to 8 parameters). In Figure 2 we compare
the experimental partial molar heat capacities of SH3, at three
pH values, with the corresponding curves due to our theoretical
model. In Figure 3 we also show the folding free energies,
entropies, and enthalpies of the QGE model at the three pH
values. Note that each folding free energy crosses the abscissa
twice showing clearly that two equilibrium temperatures are
present. The higher is the experimental equilibrium (folding)
temperature we used in the model, the other, lower temperature

TABLE 1: Number of Residues, pH Value Used for DSC,
Equilibrium Temperature Used in the QGE Model, and the
rmsd between Experimental and Theoretical Heat Capacity
for Each Protein

protein n pH T0 (K) rmsd (J K-1 mol-1)

SH3 62 2.0 307.93 183
2.5 318.73 170
3.0 330.63 153
3.5 336.23 174
4.0 339.73 113

cytochromec 104 4.5 345.58 552
barnase 108 5.5 328.00 751
lysozyme 129 2.5 341.28 983

âµf - â0µ0 ) h0,f
0 ∆â - cp0,fT0∆â -

cp0,f

k
ln

T
T0

-

ln εf - Zf ln( 1 - qf

1 - qf e-∆âδf)
) Zf{h0,f

0

Zf
∆â -

cp0,f

Zf
T0∆â -

cp0,f

Zfk
ln

T
T0

-

1
Zf

ln εf - ln( 1 - qf

1 - qf e-∆âδf)}
) -Zf ln Ωf

âµu - â0µ0 ) h0,u
0 ∆â - cp0,uT0∆â -

cp0,u

k
ln

T
T0

-

ln εu - Zu ln [ 1 - qu

1 - qu e-∆âδu]
) Zu{h0,u

0

Zu
∆â -

cp0,u

Zu
T0∆â -

cp0,u

Zuk
ln

T
T0

-

1
Zu

ln εu - ln ( 1 - qu

1 - qu e-∆âδu)}
) -Zu ln Ωu

hf ) -Zf(∂ ln Ωf

∂â )
p,ns

) h0,f
0 + (T - T0)cp0,f +

Zfqfδf

e∆âδf - qf

hu ) -Zu(∂ ln Ωu

∂â )
p,ns

) h0,u
0 + (T - T0)cp0,u +

Zuquδu

e∆âδu - qu

cp,f ) cp0,f +
Zfqfk(δfâ)2 e-∆âδf

(1 - qf e-∆âδf)2

cp,u ) cp0,u +
Zuquk(δuâ)2 e-∆âδu

(1 - qu e-∆âδu)2

sf )
hf - µf

T

su )
hu - µu

T

qf ) qu ) q (32)

δf ) δu ) δ (33)

â(µu - µf) ) (h0,u
0 - h0,f

0 )∆â - (cp0,u - cp0,f)T0∆â -
(cp0,u - cp0,f)

k
ln

T
T0

- (Zu - Zf) ln { 1 - q

1 - q e-∆âδ} (34)

hu - hf )

h0,u
0 - h0,f

0 + (cp0,u - cp0,f)(T - T0) +
(Zu - Zf)qδ

e∆âδ
(35)

cp,u - cp,f ) cp0,u - cp0,f +
(Zu - Zf)qk(δâ)2 e-∆âδ

(1 - q e-∆âδ)2
(36)
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corresponds to the experimentally well-known cold denatura-
tion.28-30 A similar behavior was actually found for all the
proteins studied, implying that within our model cold denatur-
ation is a rather general feature, in agreement with the previous
observations on folding thermodynamics. The same comparison,
between experimental and model heat capacity, is shown for
cytochromec (Figure 4), barnase (Figure 5), and lysozyme
(Figure 6).

For all the proteins the agreement between the experimental
partial molar heat capacity and theoretical prediction is rather
good in the whole temperature range. The corresponding root-
mean-square deviations (rmsd), see Table 1, are comparable to
the ones obtained using the most sophisticated semiempirical
models, based on thermodynamic expansion, which utilizes the
same number of parameters. These results suggest that the model
used, although simplified, captures the essential features of the
folding thermodynamics of the four proteins studied, and hence

the folded or unfolded condition of these proteins can be well
described by a single family of gamma states (more complex
proteins could require the use of more gamma states families).
The correspondence of the folded and unfolded conditions with

Figure 2. Experimental folding heat capacity (circles) and correspond-
ing QGE model values (solid line) for SH3.

Figure 3. QGE model folding free energy, entropy, and enthalpy of
SH3.

Figure 4. Experimental folding heat capacity (circles) and correspond-
ing QGE model values (solid line) for cytochromec.

Figure 5. Experimental folding heat capacity (circles) and correspond-
ing QGE model values (solid line) for barnase.

Figure 6. Experimental folding heat capacity (circles) and correspond-
ing QGE model values (solid line) for lysozyme.
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two large ensembles of simple thermodynamic states is actually
in agreement with simulation results showing that the native
protein configurational space can be subdivided into a low-
dimensional subspace, characterized by large conformational
fluctuations,31 and a high-dimensional one, defined by quasi-
constrained degrees of freedom, where the folding or unfolding
paths occur.32 In Table 2 we provide the physical parameters
defining the QGE models used. Interestingly, all the properties
of the (negative binomial) distribution of the gamma states
reference enthalpies (h0,u, h0,f), are quite size independent being
either identical (as forq) or similar (as forZf andZu). On the
other hand, all the parameters describing the thermodynamics
of the gamma states (h0,f

0 , h0,u
0 , δ, cp0,f, cp0,u) are rather clearly

correlated to the protein size, their values per residue (reported
in Table 2) being rather similar for the different proteins. From
the physical parameters defining the QGE models it is evident
that for the single gamma state the unfolded condition is
characterized by a higher enthalpy and entropy, the latter due
to an increase of the heat capacity, while the contribution of
the reference enthalpies distribution provides a lower enthalpy
and entropy for the unfolded ensemble (Zu - Zf < 0). Such a
conflicting behavior, also providing cold denaturation, is due
to the fact that the high enthalpy-entropy unfolded gamma state
subspaces are defined as the combination of fewer “modes” than
the low enthalpy-entropy folded gamma state subspaces. The
presence of these conformational “modes” suggests a hierarchi-
cal organization of the conformational-thermodynamical protein
behavior: a set of combined “modes” generates the gamma state
subspaces and these are grouped into two families corresponding
to the folded and unfolded conditions. Hence, within this model,
folding thermodynamics essentially emerges from the combina-
tion of the independent “modes” providing excitations from one
gamma state to another. It is also worth noting that the enthalpy
gap for the gamma states is only about 10 J/mol in all the studied
proteins, implying that at physiological temperature such
excitations are largely accessible.

Conclusions

In this paper we developed a new theoretical model for
describing protein folding thermodynamics, based on the
coupling of relatively simple QGE models, that is, the diverging
gamma states for the enthalpy fluctuation in the isothermal-
isobaric ensemble. Such a coupling is based on the assumption
that protein configurational space can be partitioned into a very
large set of subspaces, each well described by a single gamma
state. Gamma states themselves are assumed to be grouped into
two families (i.e., subgroups where the gamma states differ only

for the reference enthalpy) each describing either the folded or
the unfolded condition. The model distribution of the reference
enthalpies we use implies that each gamma states family is
determined by combinations of independent conformational
“modes” describing all the possible thermodynamic transitions
for the protein-solvent system. The results obtained for the set
of proteins studied show that such a model is rather accurate in
reproducing the experimental behavior and hence captures some
of the essential features of protein folding. The corresponding
thermodynamics essentially emerges from the hierarchical
organization of the gamma states subspaces, defined by a
specific type of discrete distribution (negative binomial) for the
reference enthalpies. Such a picture seems to point out that
proteins could be a peculiar mix of fluid and solid state behavior
where the complexity of the conformational space results in a
relatively simple thermodynamics. Finally, comparison of the
QGE models for the different proteins used shows a rather
homogeneous folding behavior: the gamma states properties
are essentially defined by the number of residues involved while
the properties of the distribution of the reference enthalpies
seems to be a molecular property which cannot be reduced to
the single residue behavior.
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