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The quasi-Gaussian entropy (QGE) theory was used to formulate a statistical mechanical model describing
the thermodynamics of the folding/unfolding process of single-domain proteins. The model was parametrized
using experimental data obtained from differential scanning calorimetry (DSC) of a set of proteins. The results
showed that the model is able to reproduce the experimental behavior in the usual temperature range, for all
the analyzed proteins. Furthermore, a remarkable similarity of some parameters of the model, when normalized
per residue and corresponding to well-defined physical properties, was found. Interestingly, at low temperature,
the model provides cold denaturation features for all the proteins. Finally, a general description of the folding/
unfolding process and stability, based on the physical view provided by the model, is discussed.

Introduction fied models was first proposed by Zimm and Braggdescribe

Protein folding is one of the most fascinating problems of the helix-coll transition ofa-helic_es forming_peptides._Sim_ilar_
structural biology. The nature of this phenomenon is very elusive models have been _used to d?sc”be the folding/ upfoldlng k|r1et|cs
since it involves a subtle equilibrium of interactions apparently &nd thermodynamics ai-helices and other peptides forming
not simply related to the amino acid sequehd@espite the ~ Secondary structures in solutfolike f-hairpin) and single-
microscopic complexity of the folding mechanism, the thermo- domain prot_e|n_§T12 These kinds of models typically provide
dynamics of the process, at least for single-domain proteins, isOnly & qualitative agreement with experimental data, as the
relatively simple, and it has been experimentally well-known idealized molecular Hamiltonians used oversimplify the physics
for almost 30 year3. of the proteins.

For single-domain proteins, the thermodynamics of the In this paper we use the framework of the quasi-Gaussian
folding/unfolding process is typically described by semiempirical entropy (QGE) theory, based on enthalpy fluctuations in the
models based on simple thermodynamical assumptions andisothermat-isobaric ensembl& to formulate a general model
approximationg-3 The simplicity of such models allows a for the description of the thermodynamic properties of the
macroscopic phenomenological description of the process andfolding/unfolding of single-domain proteins. This statistical
furnishes interesting information on the thermodynamic stability mechanical theory, which is basically an extension of the
of proteins? However, no connections with the underlying  fiyctuation theory, has provided in the past few years excellent
microscopic physical mechanism of protein stability and folding/  yodels for homogeneous fluid; 8 solids2® and recently for
unfolding equilibrium can be inferred from such models, and o thermodynamics of flexible organic molecules in v&euo
their semiempirical character cannot provide a real physical and solute€! Our approach has analogies with those proposed
consistency. This implies that their predictions must be always by Rosgen et al. and Linder and Kromhétt2although based
be considered as a good approximation only in a limited on a completely different theoretical framework. The model we

temperature range. To overcome these problems and try to . . . .
bridge the microscopic nature of the phenomenon with the propose was applied to experimental denaturation heat capacity
data for different proteins (SH3, cytochromg barnase,

macroscopic thermodynamics of the process, statistical me- in diff t denaturati giti
chanical models have also been proposed. These models arg/sozyme) In ditferent denaturating conditions.

based on simplified molecular Hamiltonians (chaaiain
Hamiltonians) used to describe the interactions in the system.Methods

More realistic Hamiltonians can be in principle used in atomistic —_ .
simulations, but the high dimensionality of the configurational The QGE model proposed in this paper was parametrized on

space and complexity of the corresponding energy surface forthe heat capacity data obtained from DSC e_xperimgnts of a set
solvated proteins make simulations still unable to provide the Of proteins reported in the literaturer-spectrin SH3? cyto-

complete thermodynamics of such systems. The use of simpli-chromec,? barnasé? and egg white lysozym&The experi-
mental calorimetric curves were kindly provided by Professor

* Author to whom the correspondence should be addressed. E-mail: P. L. Privalov and Dr. F. Conejero-Lara. The curve fitting was

a”?ﬁ?éfr’]‘;%gﬁg‘li’ﬂm(l‘;“:;z-%;?‘;@3;19672594328- performed by a graphical Unix tool (DSC modeler) specifically
f Universitadi Roma .kL‘;{ Sapienza’. designed for this purpose. This program is available from the
8 Universitadi Roma “Tor Vergata’. author (D.R.) by request.
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Theory fluctuations. In the present paper where we deal with a very
complex system involving a macromolecule, it is likely that we
need more sophisticated models. In recent arfiéfswe
showed, for the canonical ensemble, that the use of mixing

For a fluid state system & solute molecules at high dilution,
the canonical partition function can be expressed as

(SnZV)N distributions for gamma state models provides a very powerful
Q= © f* e P dg dx dr dp)™ (1) method to obtain more sophisticated and accurate models for
N! Z fluid state systems. We can use a similar approach in the present

case, assuming that the solute molecular configurational space
O =nd(1 + y)(L+ y)h@® 2) of the internal coordinates can be partitioned into a set of
subspaces, each one defining a sohgelvent system exactly
where the summation runs over the quantum vibronic states,described by a “local” diverging gamma state (note that pure
//\ is the total energy, including the quantum vibronic energy, water thermodynamics, along an isobar, is well described over
of the subsystem defined by a single solute moleculerand a wide temperature range by a single diverging gamma state).

solvent moleculesy is the overall volume of the syste&are We can rewrite the total free energy change as
the generalized internal coordinates of a single solute molecule

with fixed rototranslational coordinates, are the conjugated L EniB

momenta of the solute molecule, ardp are the coordinates ~ AG(B) — FoG(By) = —N InZ” €

and conjugated momenta of thgsolvent molecules within the =1Em,i(Bo)

solute molecular volume. Moreover,1y and 1+ ys are the L
symmetry coefficients for the solute and the solvent respectively, =-NIn{T ¢ g NAPTAGTy (7)
d andds are the number of classical degrees of freedom in the =

solute and solvent molecules of the subsystem, lansl the _

Planck’s constant. Finally, the integral is taken within the solute ABud = PuB) — BotsBo) (8)
molecular volumeV,, = VIN, and the asterisk denotes an ABu) = Bu(B) — Bou 9
integration only over the accessible configurational space. From Br) = Pri(B) = Boti(Bo) ©)
the previous equation it follows, using the approximatitin=

" ) - where En; is the partition function corresponding to thid
NNe~N, that the whole partition function can be obtained from

conformation; is the chemical potential of the solute in the

the solute molecular partition function gy = Q) ith conformation and
87°V,,0 = (80
Qu= —Z [*e#" d& dx dx dp 3) 6= 7% = g Poluoio) (10)
e! :‘m(ﬁo)
Hence, the whole thermodynamics is defined @y as A = with o = u(Bo) = —kTo INE(Bo) — nsus(Bo) the solute chemical

—NKT In Qm. This clearly means that if we want to describe potential at the reference temperatdie= 1/(kBo). Note that

the thermodynamics of the same system using the isobaricin eq 10 we use the fact that at high dilution the solvent

ensemble we must use a solute molecular isobaric partition molecular partial properties are identical to the pure solvent ones

function defined as (hence independent of the solute). Within the assumption that
eachnus + ui can be well modeled by a “local” diverging

— _ av gamma state, we hati!
En=[e"QuB, Vi, )

TO
providing G = —NKT In E, (note thatv is an arbitrary volume #i =N = ToGoo; + T(Coo; = Sy) + TGyl (11)
constant necessary to make a dimensicéigl Following the
theoretical scheme described in a previous arfithee then with hoj, Cpoj, and sp; the partial molecular enthalpy, heat

have capacity, and entropy of the solute in thie conformation at
the reference temperatufe. From the other general equations

BG(B) — BoG(Bo) = of the diverging gamma state properties we can also obtain all

ELB) g the other partial molecular properties of the solute, for example,

—Ninj = B =-—NiInle ™"} (5) the enthalpyh; and heat capacity,;

=m\~0.
with A3 =  — fo, the subscrippy indicating an average in h = (%) = hg; + (T = Tp)Cyo; (12)
the 5o ensemble and? = 7/, + pVin. Note thatG/N = u + B Ien, ' P
ngs = —KT In Ey with 4 andus the solute and solvent chemical
potentials. The ensemble average in eq 5 can be expressed as c. = (3_hl) =c.. (13)

Pl BT p,ns pOJ

ey = [p() e dar (6)
(note that in this paper, for sake of simplicity, we always omit
wherep(%) is the enthalpy probability distribution function in  in the partial derivatives the notation for the fixed number of
the o ensemble. Instead of using a perturbation expansion, in solute molecules). In the present case where we deal with
the QGE theory the free energy is obtained by modeling the complex macromolecules such as proteins at fixed pressure, the
distribution function and hence its moment generating func- summation in eq 7 is likely to involve a very large number of
tion?>26or Laplace transform, eq 6. For homogeneous fluid state gamma states corresponding to different protein configurational
systems it was shown that a rather good model in the isobaric subspaces (conformations). Hence, in order to keep the math-
ensemble is the diverging gamma state mbdigr enthalpy ematical derivations and especially the model application
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Figure 1. Simple picture of the configurational space partitioned into
subspaces corresponding to the gamma states. In the figure is also shown
the distribution of the enthalpy gaps of the subspaces.
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A(BLY) = 3 AB — Cyo ToAB — plf'ﬂn% (21)

From the previous equations we readily obtain the other partial
molecular properties, that is, enthalpy, entropy, and heat capacity

= (%), =n+ b=y 22
. e‘ﬁ(ﬂu_ﬂf)
xX= 14+ e—ﬁ(ﬂu—ﬂf) (23)
s= h%“ (24)
_(ohy  _
%= (aT)p,ns N
h, — h)?
-1~ X)(Cp,u - Cp,f) +(@1- X)X% (25)

manageable, we must use drastic simplifications. We will first
assume that we can decompose the huge number of gamm
states into two subgroups: one associated with the folded state
of the protein and one with the unfolded state. Moreover, we
will also assume that within each subgroup the partial molecular
heat capacity is the same for the different gamma states and
the partial molecular enthalpies are giventgy = hg +jo (=
0,1,23,..) witrhg ando the overall “ground state” enthalpy

(at To) and enthalpy gap of the subgroup. We may define such
kind of subgroup a gamma states family. In Figure 1 we give
a simple picture of the gamma states partition used, where we
indicate the native (N) and denatured (D) gamma states families.
Hence, using the subscripts f and u to define the folded and
unfolded state properties, respectively, we obtain from ed07

é{vhere obviously

h= (%‘f)p (26)
h,= (3§gu " (27)
o= () . 28)

A = M%)~ naggy =

(wheree;, €, ur, andu, are the total fractions and chemical
potentials of the folded and unfolded subgroups and

—In{e” (Bus—Patto) +e —(Bru— ﬂuuo)}

g BurPawo) — e*A(ﬂ# f)Ef @*Aﬁéﬂﬁ (14)
e BuuPato) — e*A(ﬂMOJGU@*AﬁéuiQ (15)
Li—1
@M= 3 e M) (16)
=
L~1
— 6 1 _ —_ (3 i -
B A= 3 e M) (17)
=
o 6f]
wi() =1 )
i €
w,() = (19)

u

Cpo, fl

A(ﬂﬂ?) = hg,fA:B Cho, ToAB —

(20)

are the corresponding partial molecular properties in the folded
or unfolded state. Note that in the limit of a differentigland

dy a continuous gamma states partition of the solute intra-
molecular phase space is involved, as previously described for
the canonical ensembté.However, in this paper we will
consider only the discrete-like diverging gamma states partition
as it seems to provide a better general description of protein
behavior. The use of a discrete-like diverging gamma states
partition implies that the thermodynamics of a solvated protein
should be a complex mixture between a typical fluid state
behavior and a discrete-like “energy” fluctuation. In order to
proceed further we must model the discrete probability distribu-
tion w(j). A simple discrete distribution, which is physically
acceptable and proved to be successful to model the quantum
solid state, is the negative binomial distribution providing

) 1-— q Zs
— ABO] — f
Rain {—1 . Aﬁéf} (30)
. 1 — q Z,
[ VM= ——— 31
n {1_%6% (31)

where q and Z are two pure numbers characteristic of the
negative binomial distribution. With these last equations we can
express the partial molecular properties of the folded and
unfolded states as
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Cpof, T
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Note that from the last equations we can interpret the folding
and unfolding states thermodynamics as due to a&ear(d

Z,) of independent “modes” each defined by the “partition
function” Q¢ or Q. Each folded or unfolded “mode” corre-
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TABLE 1: Number of Residues, pH Value Used for DSC,
Equilibrium Temperature Used in the QGE Model, and the
rmsd between Experimental and Theoretical Heat Capacity
for Each Protein

protein n pH To (K) rmsd (J K1 mol™)

SH; 62 2.0 307.93 183

2.5 318.73 170

3.0 330.63 153

35 336.23 174

4.0 339.73 113
cytochromec 104 45 345.58 552
barnase 108 5.5 328.00 751
lysozyme 129 25 341.28 983

temperature, that isi/e, = 1. With these simplifications we
obtain

Bluy — ug) = (0§, = NG )AB — (Cpo— Coo) ToAB —

&@%&ngiwa—LW%;%iﬁﬁ}ﬁq

h,— h=
(Z,— Z)ad
hg,u - hg,f + (CpO,u - CpO,f)(T - TO) + T (35)
(Z,— Z)akop)’ e
Cou ™ Cot = Cpou ~ Cpof T - (1— qe 26)? (36)

which can be used to obtain the solute partial molecular
properties, for example, via eq 25 the partial molecular heat
capacity. Finally, it must be remarked that we derived a
multistate model and hence the use of two gamma states
families, corresponding to the folded and unfolded conditions,
is not equivalent to the usual “two states” approximation where
two simple thermodynamic states describe completely the
folding thermodynamics. However, the approximations intro-
duced in the general theory to simplify the gamma states
properties in each subgroup reduce the ability of the model to
treat more complex systems where more than two gamma states
families could be necessary. More general multistate models,
although possible, are in practice very difficult to use as the
number of physical parameters defining the model becomes very
large.

Results

The theoretical model described in the theory section was
applied to four different single-domain proteins: SH3, cyto-
chromec, barnase, and lysozyme (see Table 1). The model
parameters were obtained by fitting experimental heat capacity
data (DSC experiments) with the corresponding theoretical
expression, via a multistep procedure where the folded and

sponds to an independent type of enthalpy fluctuation and canUnfolded data were used separately. The simplified QGE model

be excited providing a thermodynamic transition of the solvent

used in this paper utilizes the same number of parameters as

solute system. Interestingly, such independent thermodynamicthe more sophisFicated semiempirical model_s based on thermo-
“modes” should correspond to basic sets of conformational dynamic expansions (7 to 8 parameters). In Figure 2 we compare
subspaces which, via combination, provide all the possible the experimental partial molar heat capacities of SH3, at three

gamma state conformational subspaces of the system.

We can simplify further the model assuming that

% =0,=d
6 =0,=0

(32)
(33)

and taking the reference temperatdiig as the equilibrium

pH values, with the corresponding curves due to our theoretical
model. In Figure 3 we also show the folding free energies,
entropies, and enthalpies of the QGE model at the three pH
values. Note that each folding free energy crosses the abscissa
twice showing clearly that two equilibrium temperatures are
present. The higher is the experimental equilibrium (folding)
temperature we used in the model, the other, lower temperature
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Figure 4. Experimental folding heat capacity (circles) and correspond-
ing QGE model values (solid line) for cytochroroe

Figure 2. Experimental folding heat capacity (circles) and correspond-
ing QGE model values (solid line) for SH3.
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Figure 3. QGE model folding free energy, entropy, and enthalpy of
SH3.
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corresponds to the experimentally well-known cold denatura-
tion.28-30 A similar behavior was actually found for all the
proteins studied, implying that within our model cold denatur-
ation is a rather general feature, in agreement with the previous

Cp (kI K 'mol )

observations on folding thermodynamics. The same comparison, 20
between experimental and model heat capacity, is shown for | |
cytochromec (Figure 4), barnase (Figure 5), and lysozyme
(Figure 6). ottt

For all the proteins the agreement between the experimental 280 300 320 340 360 380
partial molar heat capacity and theoretical prediction is rather Temperature (K)

good in the whole temperature range. The corresponding root-Figure 6. Experimental folding heat capacity (circles) and correspond-
mean-square deviations (rmsd), see Table 1, are comparable ting QGE model values (solid line) for lysozyme.

the ones obtained using the most sophisticated semiempirical

models, based on thermodynamic expansion, which utilizes thethe folded or unfolded condition of these proteins can be well
same number of parameters. These results suggest that the modelescribed by a single family of gamma states (more complex
used, although simplified, captures the essential features of theproteins could require the use of more gamma states families).
folding thermodynamics of the four proteins studied, and hence The correspondence of the folded and unfolded conditions with
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TABLE 2: Parameters Used in the QGE Models of the

Different Proteins®

J. Phys. Chem. B, Vol. 108, No. 18, 2008761

for the reference enthalpy) each describing either the folded or
the unfolded condition. The model distribution of the reference

protein pH AZ Z o Acn  cuodn  AhYn enthalpies we use implies that each gamma states family is
She 50 —165.09 26513 974 11421 8898 1181 determined by combinations of independent conformational
25 —165.09 351.73 10.56 118.72 49.90 13.42 “‘modes” describing all the possible thermodynamic transitions
3.0 —165.09 351.73 11.92 108.94 40.55 15.43 for the proteir-solvent system. The results obtained for the set
35 —165.09 351.73 11.92 105.90 47.00 15.67 of proteins studied show that such a model is rather accurate in
cytochrome: i:g :igg:gg i’%ﬁ ii:gg igg:gg gg:gg ggg reproducing the experimental beh_avior a_md hence captures some
barnase 55-163.29 402.35 631 98.74 102.69 11.62 Of the essential features of protein folding. The corresponding
lysozyme 2.5-161.26 270.31 7.87 76.99 86.52 11.38 thermodynamics essentially emerges from the hierarchical

aWhen indicated the property is per residue, i.e., the value is divided

by the number of residues In the table we also give for each protein
its pH value used for DSC. Note that(J/mol), Ay = Cpo,u — Cpo,i (J
mol~1 K1), Ahg = h , — hg; (kJ/mol), andAZ = Z, — Z. Finally, for

all the proteingy = 0.864.

organization of the gamma states subspaces, defined by a
specific type of discrete distribution (negative binomial) for the
reference enthalpies. Such a picture seems to point out that
proteins could be a peculiar mix of fluid and solid state behavior
where the complexity of the conformational space results in a
relatively simple thermodynamics. Finally, comparison of the

two large ensembles of simple thermodynamic states is actually QGE models for the different proteins used shows a rather
in agreement with simulation results showing that the native homogeneous folding behavior: the gamma states properties
protein configurational space can be subdivided into a low- are essentially defined by the number of residues involved while
dimensional subspace, characterized by large conformationalthe properties of the distribution of the reference enthalpies

fluctuations?* and a high-dimensional one, defined by quasi- seems to be a molecular property which cannot be reduced to
constrained degrees of freedom, where the folding or unfolding the single residue behavior.

paths occuf? In Table 2 we provide the physical parameters

defining the QGE models used. Interestingly, all the properties  Acknowledgment. We thank Professor P. Privalov who
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