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In a recent paper@M. D’Alessandro, M. D’Abramo, G. Brancato, A. Di Nola, and A. Amadei, J.
Phys. Chem. B106, 11843~2002!# we showed how to combine molecular dynamics simulations
with the quasi-Gaussian entropy theory, in order to model the statistical mechanics and
thermodynamics of ionic~water! solutions. In this paper we extend the method to treat nonspherical
solutes, describe more thoroughly its theoretical basis and apply it to a set of more complex solute
molecules in water~i.e., water, methane, ethane, methanol, and ethanol!. Results show that this
approach can really provide an excellent theoretical description of solute–solvent systems over a
wide range of temperatures. ©2004 American Institute of Physics.@DOI: 10.1063/1.1647530#

I. INTRODUCTION

The use of molecular simulations for evaluating the sta-
tistical mechanics and thermodynamics of liquids is a chal-
lenge for theoretical and computational physical chemistry–
chemical physics. Usual computational methods~e.g.,
particle insertion, thermodynamic integration, etc.! although
in principle able to provide, for a given Hamiltonian, the
‘‘exact’’ thermodynamics, can be severely affected by their
slow convergence and, due to the high computational costs,
are typically limited to the evaluation of the excess chemical
potential at a few state points. Hence, it would be of great
importance in theoretical physical chemistry–chemical phys-
ics the use of a largely analytical method, based on a sound
theory, providing the thermodynamics of simulated liquid
mixtures and solutions at relatively low computational costs,
regardless of the complexity of the molecules involved. In a
recent paper1 we extended the quasi-Gaussian entropy
~QGE! theory, in combination with molecular simulations, to
obtain a complete description of the thermodynamics of di-
lute ionic solutions. In that paper we showed that this theo-
retical approach was very efficient for the ionic solutions, but
we did not address its applicability and accuracy for treating
more complex or apolar solutes. Therefore in this paper we
optimize and extend the proposed method to treat nonspheri-
cal solutes, investigating its applicability and accuracy for
polar and apolar molecules. Moreover, using a water mol-
ecule as solute in water and comparing its partial molar prop-
erties with those obtained from the molecular properties of
~simulated! pure liquid water, we evaluate directly the con-
sistency of the method. The paper is organized as follows. In
Sec. II we describe the theoretical basis of our approach

clarifying some relevant derivations~providing a better
physical understanding! and extending the theory further to
treat nonspherical solutes. In Sec. IV we test the accuracy
and applicability of our approach using, as solutes in water, a
water molecule and four different types of molecules: meth-
ane, ethane, methanoł, and ethanol. Finally we summarize
the results obtained in Sec. V.

II. THEORY

In this section we describe in details the derivations of
the QGE theory for treating partial molecular properties and
to combine this theory with molecular simulation data. We
essentially follow the derivations of the previous paper1 with
some relevant extensions and change of notation. Note also
that in some equations of the previous paper a few typing
errors occurred.

For a fluid state system ofN solute molecules at high
dilution, the canonical partition function can be expressed
as2,3

Q5
~8p2NV!N

N!

3S QE*
e2bU8)

j 51

ns

~detm̃j !
1/2~detM̃ !1/2dxindxD N

>S 8p2VQ

e21 E*
e2bU8)

j 51

ns

~detm̃j !
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,

~1!

whereU8 is the excess energy~basically the potential energy
including the quantum vibrational ground state energy! of a
subsystem made ofns solvent molecules and a single solute
molecule with fixed rototranslational coordinates,xin the
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generalized internal~classical! coordinates of the single sol-
ute molecule andx the ~classical! coordinates of thens sol-
vent molecules within the solute molecular volumeV, i.e.,
the integration limits are defined byV. Moreoverm̃j is the
mass tensor of thejth solvent molecule,M̃ the mass tensor of
the solute~expressed in the basis set which makes it inde-
pendent of the center of mass position and Eulerian angles!,
andQ a temperature dependent factor including the quantum
corrections,3

Q5
~2pkT!~d1ds!/2Qref

qm

ns!h
~d1ds!~11g!~11gs!

ns
~2!

with 11g and 11gs the symmetry coefficients for the solute
and the solvent respectively,d andds the number of classical
degrees of freedom in the solute andns solvent molecules
and Qref

qm the quantum vibrational partition function, as de-
fined in previous papers,3,4 for the molecules within the sol-
ute molecular volumeV ~note that in this partition function
the quantum energy also involves the reference electronic
ground state energy!. Finally the star denotes an integration
only over the accessible configurational space within the sol-
ute molecular volume andh is the Planck’s constant. Note
that we used the approximationN! >e2NNN. Defining as
reference condition the system at the same temperature and
density but without excess energy and hence without any
unaccessible configuration, with partition function

Qref5
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we can express the excess~Helmholtz! free energy per solute
molecule as2–6

A85A2Aref5
2kT ln~Q/Qref!
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wheree is the fraction of available configurational space6
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The entropic term due to a possible confinement of the sys-
tem in configurational space,k ln e, is usually associated with
hard-body excluded volume4 and for molecules with a
simple geometry can be obtained in principle by hard body
equations of state. Note that the last equations means that the
statistical mechanics and thermodynamics of the whole sys-
tem are fully determined by the subsystem including a single

solute molecule andns solvent ones~thermodynamic el-
ementary system!. The ensemble averages in Eq.~5! can also
be expressed as

^e2bU8& ref5E r ref~U8!e2bU8dU8, ~7!

^ebU8&5E r~U8!ebU8dU8, ~8!

wherer ref(U8), r~U8! are the probability distribution func-
tions of the excess energyU8 in the reference and actual
conditions, respectively, for the elementary system. The use
of r ref or r is fully equivalent and, for a given model distri-
bution, they provide identical results. We showed in previous
papers4,6–10 that one of the simplest distribution, the gamma
distribution, yields a fully physically acceptable theoretical
model providing an excellent description of the fluid state
thermodynamics over a wide range of temperature and den-
sity, including solute–solvent systems. We can rewrite the
excess free energy of the elementary system as

A8~T!5nsas81a8, ~9!

where as8 is the partial molecular excess~Helmholtz! free
energy of the solvent and clearlya8 is the partial molecular
excess~Helmholtz! free energy of the solute. It is worth not-
ing that solvent and solute partial molecular excess free en-
ergies are obtained at fixed pressurep for the actual fluid and
not in general at fixed pressure for the reference state. This is
because the reference state is defined with the same volume
and molecules number of the actual condition. Hence, defin-
ing with n the number of solute molecules in the elementary
system, which can be considered a continuous variable as the
elementary system still contains a huge number of solvent
molecules, we have
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v5S ]V
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, ~13!

ms85ms2m ref,s , ~14!

m85m2m ref , ~15!

p85p2pref , ~16!

wherepref is the pressure in the reference state,v andvs the
partial molecular volumes of the solute and solvent in the
actual fluid~which are in general different from the ones in
the reference state!, andm, m ref the chemical potentials in the
actual fluid and in the reference condition, respectively. At
high dilution the solvent partial molecular properties and all
the intensive thermodynamic properties are virtually identi-
cal to the pure solvent ones~hence independent of the sol-
ute!, and so their derivatives in the solvent molecular num-
ber, at fixed pressure, must be virtually zero. Assuming that
A8 can be well modeled by a single gamma state,4 we have

A85U082T0CV08 L~T!2kT ln e, ~17!

L~T!5
1
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1

T

T0d0
2

ln$12d~T!%, ~18!

d~T!5
T0d0

T~12d0!1T0d0
, ~19!

with U085U8(T0) andCV08 5CV8 (T0) the excess internal en-
ergy and heat capacity of the elementary system at the refer-
ence temperatureT0 , k ln e the entropy term due to configu-
rational confinement, andd0 a dimensionless intensive
property4 independent of the temperature, that in our case
~high dilution! is determined by the solvent. The gamma
state expressions4 would then provide any thermodynamic
property of the elementary system and hence of the whole
macroscopic system. Using the fact that (]L/]ns)p,T,n50
~high solute dilution!, we then obtain
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and hence

vs52
~]d0 /]ns!V,n

~]d0 /]V!n,ns

, ~21!
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These last equations clearly show that both the solvent and
solute partial molecular volumes are, along the isochore,
temperature independent. This result points out a specific
feature of the gamma state model at high solute dilution. It is
worth noting that the use of the more complex multi gamma
state model, introduced in previous papers6,7,11and based on
the partition of phase space into a set of gamma state re-
gions, may provide temperature dependent partial molecular
volumes. Subtracting the solvent partial excess free energy
from Eq. ~17!, we readily obtain
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are temperature independent~asvs , v are temperature inde-
pendent! and then at every temperature correspond to the
partial molecular excess internal energyu08 and heat capacity
cV08 , evaluated at the reference temperatureT0 , and
2kT ln ē to the partial molecular excess free energy due to
the confinement. Therefore Eq.~23! also implies
(]L/]n)p,T,ns

50. Using general thermodynamic relations,
the gamma state expressions for the various thermodynamic
properties and the fact that the partial molecular volumes are
temperature independent, we can obtain any possible ther-
modynamic property at high dilution, e.g.,
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or the partial molecular internal energyu8 and heat capacity
cV8
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The previous general equations are very suited to be used in
combination with simulation data. In fact, Eq.~9! states that
we can obtain the whole thermodynamics of a solute–solvent
system, at high solute dilution, only using information from
simulations of a single solute molecule embedded in the sol-
vent. Assuming a gamma state behavior for the solute–
solvent system as well as for the pure solvent, we can pa-
rametrize the corresponding gamma state models fitting the
average excess~potential! energies in temperature,1 and
hence obtain the solute excess chemical potential, excluding
the confinement contribution

m* 5m81kTS ] ln e

]n D
V,ns

5S ]A*

]n D
V,T,ns

5DA* , ~25!

A* 5A81kT ln e, ~26!

whereDA* is the difference between the excess Helmholtz
free energies without the confinement terms~confined ideal
reduced Helmholtz free energy4! of the solute-solvent system
and of the pure solvent one, at fixed volume. Note that from
the previous equations, considering thate is temperature in-
dependent, we haveD~bm8!5D~bm* !. The confinement term
(] ln e/]n)V,ns

is determined by the unaccessible phase space
regions typically due to hard body contacts. In principle such
unaccessible configurations should be characterized by an
infinite energy or at least should be separated by the others
by an infinite energy barrier. In practice a confinement be-
havior is found also in systems where no unaccessible re-
gions are strictly present.6,10 In this case such a term must be
regarded as an effective confinement term due to the pres-
ence of high energy phase space regions which are virtually
unaccessible in the whole temperature range of interest. In
the previous article we focused on water–solute systems
where the confinement behavior could be well described by a
hard sphere model.1 In this paper we still consider two
spherical-like solutes~water and methane! but we also in-
clude nonspherical molecules such as ethane, methanol and
ethanol. From Eqs.~11!, ~23!, and~25! we also have

m* 5u082cV08 T0L~T!1p* v, ~27!

p* 5p82jT, ~28!

j5kS ] ln e

]V D
n,ns

, ~29!

whereL(T), p* , p8, j, being intensive properties, are given
by the gamma state obtained by the pure solvent simulations
~the gamma state expressions forp8 and p* are given in
previous papers4!. Fitting, with Eq. ~27!, m* as obtained by
Eq. ~25!, we can evaluateu08 , cV08 , and the partial molecular
volumev. In the infinite temperature limit the excess termo-
dynamics of the theoretical model we use, will reduce to that
of a hard body mixture of the same molar fraction. In the

previous paper1 we used the Lebowitz equation of state for
hard sphere mixtures12 to obtain the hard sphere radius of the
solute once the partial molecular volume is known. In this
paper we utilize a more recent and accurate hard sphere mix-
ture equation of state~BMCSL!13–15 for spherical-like sol-
utes and the recent hard chain equation of state~SC-SPT!16

to treat homoatomic linear chain solutes~SC-SPT deals with
linear chains each made of identical beads!. BMCSL has
been systematically tested in a rather large density range,
including the solute infinite dilution where it provides an
excellent agreement with~Monte Carlo! simulation data.
Lebowitz’s equation of state seems to overestimate the hard
sphere radius of the solute and has been tested in a limited
range of density not including the solute infinite dilution.
This makes BMCSL really more reliable when dealing with
large spherical solutes at low dilution. In the case of non-
spherical molecules it is obvious that any hard sphere equa-
tion of state would be inaccurate and SC-SPT seems one of
the most reliable equation of state for hard chain mixtures,
although applicable only to homoatomic linear solutes. Other
types of nonspherical solutes would require different, and
probably more complex, hard body equations of state and so,
in this paper, we model their confinement properties simply
using at a single temperature thermodynamic integration data
~vide infra!. Note that the confinement properties of the sol-
vent are obtained using the homogeneus Carnahan–Starling
hard sphere equation of state.4,17 The solvent hard sphere
radius is evaluated using the Carnahan–Starling model to
describe the confinement part of the excess pressure~i.e.,
jT) obtained by the pure solvent simulations. From Eq.~24!
we can evaluate the free energy confinement term2kT ln ē
52kT(] ln e/]n)p,ns

via

2kTS ] ln e

]n D
p,ns

52kTS ] ln e

]n D
V,ns

2jTv, ~30!

where from the estimate of the solute hard body chemical
potential, it is straightforward to obtain the corresponding
excess chemical potential2kT(] ln e/]n)V,ns

. We follow
three strategies to obtain the solute hard body excess chemi-
cal potential and the other confinement properties. For
spherical solutes we directly use the partial molecular vol-
ume to evaluate the corresponding hard sphere radius via
BMCSL. This is possible since BMCSL is a very accurate
and general equation of state which provides rather accurate
pressure derivatives of the chemical potential such as the
partial molar volume. Hard chain solutes are more difficult to
be treated and SC-SPT, although rather efficient, is not quan-
titatively fully reliable for evaluating pressure derivatives of
the chemical potential~we performed tests on this matter!.
Hence for nonspherical solutes which can be considered as
linear chains of identical particles~in this paper ethane!, we
estimate the bead diameterd by the corresponding Lennard-
Joness value, vias/s ref5d/dref , wheres ref anddref corre-
spond to the methane values. Finally, for any other non-
spherical solutes~in this paper methanol and ethanol! we
obtain the confinement properties to be used in our model,
simply performing at one temperature a thermodynamic in-
tegration calculation to evaluatem8. From such a value the
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temperature independent confinement term can be easily ob-
tained from (] ln e/]n)V,ns

5(m*2m8)/(kT), wherem* is again
evaluated by the QGE theory.

III. SIMULATION METHODS

We performed five different sets of molecular dynamics
~MD! simulations over a wide temperature range~280–1200
K!, using a cubic box of 256 simple point charge~SPC! ~Ref.
18! water molecules, at 55.32 mol/l, plus a solute molecule:
a water~SPC!, a methane,19 an ethane,19 a methanol,20 and
an ethanol,20 respectively. Note that in these models non po-
lar hydrogens are not explicitly present~united atoms ap-
proximation!. All the simulations were performed usingGRO-

MACS software package21–23 modified to use the isokinetic
temperature coupling.24 This was done in order to obtain
results fully consistent with statistical mechanics.2,25 For all
the simulations the number of steps was 3 000 000 with three
different time steps: 2 fs for simulations in the range 280–
450 K, 1 fs in the range 450–800 K and 0.5 fs in the range
800–1200 K. Hence the corresponding simulation time
lengths were about 6, 3, and 1.5 ns and in each simulation
the initial 250 000 steps were considered the equilibration
and so removed from the analysis. Short range interactions
were evaluated within 0.9 nm cut off radius and the long
range electrostatics was calculated using the particle mesh
Ewald ~PME! method,26 with 34 wave vectors in each di-
mension and a fourth order cubic interpolation. All the solute
molecules were constrained for the internal and rototransla-
tional motions via the rototranslational2 and bond length27

constraints, or using the freezing option inGROMACS. Hence
in the simulations we treated the solutes as rigid molecules
with no rototranslational motions. This procedure, which
speeds up the solvent relaxation around the solute, provides
the correct statistical mechanics and thermodynamics of the
system~SPC plus a rigid solute!. In order to compare our
QGE results with values obtained by a different, and typi-
cally reliable, computational procedure, we used theGRO-

MACS routine to perform thermodynamic integration~TI! cal-
culations~soft core potential witha51.51, s50.3 nm! on
the same systems, at 300 K and 800 K, to evaluate the cor-
responding solutes excess chemical potentials. For methanol
and ethanol the 800 K values were also used to obtain the
confinement term in our models~see Theory section!. For
methane we performed 11 perturbation simulations which
were tested to be enough for a good convergence of the
excess chemical potential value. Ethane excess chemical po-
tential was obtained from the methane one adding the free
energy difference for the ethane to methane transformation
~again 11 simulations!. In the case of SPC our tests showed
that a comparable convergence was obtained using 21 simu-
lations. Methanol excess chemical potential was evaluated
from the methane one adding the free energy difference for
the methanol to methane transformation, where the latter was
obtained performing 21 simulations. Finally ethanol excess
chemical potential was obtained from the methanol one add-
ing the free energy difference for the ethanol to methanol
change~for this latter perturbation we performed again 11
simulations!. All the perturbation simulations~250 ps each,

time step52 fs at 300 K and 60 ps each, time step51 fs at
800 K! were performed identically to the ones utilized for
QGE calculations except for the use of a simple~group
based! 0.9 nm cut off radius for treating molecular interac-
tions. Note that comparison between TI results for Ewald
sum or generalized reaction field and group based cut off
simulations, shows a complete agreement within the
noise.28,29 In TI calculations we always disregarded the ini-
tial part of the simulations~50 ps at 300 K and 10 ps at 800
K! and the free energy error was estimated by propagating
the noise of the free energy gradients in the integration. The
noise of each free energy gradient was obtained by the stan-
dard deviation of the perturbation energy derivative divided
by the square root of the number of statistically independent
evaluations~obtained using the autocorrelation function!. Fi-
nally, the pure solvent properties used in the QGE models
were obtained by the simulations described in the previous
paper.1

IV. RESULTS

We parametrize our theoretical models, described in the
theory section, using only the average potential energy~ex-
cess internal energy! and pure solvent pressure in the whole
temperature range, i.e., by fitting these values with the cor-
responding theoretical models. The partial molecular proper-
ties of the solute are obtained, according to the theory sec-
tion, via m* 5DA* . Note that in the calculation ofm* is
very important to use exactly the same temperatures for the
evaluation of the overall excess free energies of the solute–
solvent and pure solvent systems. This is because even a
slight systematic error in these two excess free energies
would result in an inaccuratem* . As mentioned in the
Theory, in this paper we model the confinement term of the
spherical-like solutes using a more recent and accurate hard-
sphere mixture equation of state13–15than the one used in the
previous paper.12 Interestingly, the new confinement terms
we obtain for the ions investigated in that work, provide
excess chemical potentials even closer to the ones reported in

FIG. 1. Excess chemical potential curves of the SPC QGE models. Solid
line: values obtained by inserting one SPC molecule as solute in the SPC
box; dashed line: values obtained by molecular properties of the SPC box.
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literature using a completely, different method,30 i.e., ther-
modynamic integration. In the case of ethane which is in our
force field, a linear chain made of two identical pseudo at-
oms, we use the hard chain model SC-SPT as described in
the theory section. For the other nonspherical solutes~metha-
nol and ethanol! we evaluate the confinement properties via
TI calculations at a single temperature~800 K!. However,
with the use of the relationD~bm8!5D~bm* ! ~see theory sec-
tion! we may directly compare QGE and TI excess chemical
potentials excluding the confinement effect~i.e., m* !.

A. Water solute in water solvent

In order to ascertain the accuracy of the proposed proce-
dure, we test our method using a water molecule as solute in
water. Considering the molecular thermodynamic properties
obtained from the QGE theory applied to a pure SPC box of
256 molecules at 55.32 mol/l1 as the exact molecular prop-
erties, we can compare these data with those obtained by
inserting in the SPC box an additional SPC molecule as sol-
ute and using the procedure described in the theory section to
obtain the solute partial molecular properties. In Fig. 1 we
show the excess chemical potential curves for these two
QGE models. The two curves are in very good agreement in
the whole temperature range, with a deviation ranging from
about 0.7 to 2.5 kJ/mol. From further analysis of a few tem-
perature points at a close isochore, we could also roughly
estimate the standard deviation of the excess chemical poten-
tial, obtained by inserting one SPC molecule as solute, to be
temperature dependent in the range 0.3–5.0 kJ/mol. Such
values are lower than those evaluated in the previous paper

~10–15 kJ/mol!, which were probably overestimated as we
did not use as many information as for the SPC solute. In
fact, the errors for the solute partial molecular properties at
high dilution should be largely determined by the solvent
molecules, and hence very close for different solutes. There-
fore we consider the previous SPC error estimate as valid
also for the other solutes. It is worth noting that these errors
could be reduced by augmenting the sample of configura-
tions used to obtain the average potential energies. In this
paper we always utilized 2750 MD frames taken every 0.5–2
ps according to the simulation temperature~see Methods!. In
Table I we report the physical parameters of the two QGE
models for SPC~obtained by molecular properties and by
insertion of one SPC molecule!, together with the corre-
sponding values obtained by the QGE theory applied to ex-
perimental liquid water.4 From the table it is again clear the
accuracy of the insertion procedure we use and moreover, the
excellent agreement between SPC thermodynamics and the
experimental one. In the same table we also report the excess
chemical potentials of SPC and experimental water at 298 K,
as obtained by QGE models. Our values are very close to the
one given in a recent paper31 where perturbation integration
method is used~226.2 kJ/mol!. Interestingly, these values
are also very close to the experimental water chemical po-
tential as obtained by vapor pressure data~226.5 kJ/mol!.32

Finally, in Tables II and III we show the excess chemical
potentials at 300 and 800 K andD~bm8!5D~bm* ! for the

FIG. 2. Excess chemical potential curves of the solutes. Solid line: SPC
QGE model obtained by inserting one SPC molecule as solute in the SPC
box; dashed line: QGE model of methane in the SPC box; dotted line: QGE
model of ethane in the SPC box.

TABLE I. Parameters of the QGE theoretical models and corresponding
excess chemical potentials at 298 K obtained by molecular properties of
pure SPC~256 molecules! at 55.32 mol/l, by inserting one SPC molecule in
the previous box, using experimental data of water at 55.32 mol/l, by insert-
ing a methane or an ethane molecule in the SPC box. We also show, between
parenthesis, the excess chemical potential error~one standard deviation!.

d
~nm!

v
~l/mol!

u08
~kJ/mol!

cV08
~J/mol K! d0

m8
~kJ/mol!

SPC~box! 0.2426 0.0181 241.375 46.27 0.6565226.0~0.3!
SPC~ins! 0.2280 0.0165 243.702 52.58 0.6565226.8~0.6!
Water 0.2700 0.0181 241.436 49.42 0.5006226.8
CH4 0.2955 0.0258 26.659 57.67 0.6565 13.1~0.6!
C2H6 0.2991 0.0394 211.275 69.66 0.6565 12.3~0.6!

TABLE II. Excess chemical potentials at 300~upper! and 800 K~lower! for
SPC, methane, and ethane as obtained by the QGE theory applied to MD
simulation data~first row! and by TI applied to the same solutes~second
row!. For SPC we provide both the QGE values obtained by insertion~left!
or molecular properties~right!. All the values are in kJ/mol and we also
show, between parenthesis, the excess chemical potential error~one standard
deviation!.

SPC CH4 C2H6

QGE 226.7~0.6! 225.8~0.3! 13.3~0.6! 12.5~0.6!
5.8 ~2.4! 7.1 ~1.3! 58.1~2.4! 74.8~2.4!

TI 224.6~0.5! 12.9~0.3! 12.4~0.3!
10.6~1.7! 57.8~1.9! 72.9~6.0!

TABLE III. D~bm8!5D~bm* ! for the 300–800 K transition for SPC, meth-
ane, ethane, methanol, and ethanol as obtained by the QGE theory applied to
MD simulation data~first row! and by TI applied to the same solutes~sec-
ond row!. For SPC we provide both the QGE values obtained by insertion
~left! or molecular properties~right!. We also show, between parenthesis, the
error ~one standard deviation! for TI results.

SPC CH4 C2H6 MeOH EtOH

QGE 11.6 11.4 3.4 6.2 12.4 14.8
TI 11.5 ~0.3! 3.5 ~0.3! 6.0 ~0.9! 11.9 ~0.5! 14.0 ~0.5!
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300–800 K transition, as obtained by QGE and TI calcula-
tions. From these tables it is evident the complete agreement
~within the noise! between QGE and TI SPC results.

B. Methane and ethane in water

We also evaluate the partial molecular properties of two
hydrophobic small solutes in water~SPC!: methane and
ethane. The physical parameters which define the corre-
sponding QGE models are given in Table I. In Fig. 2 we
show the excess chemical potentials of these solutes, to-
gether with the excess chemical potential of SPC obtained
with the same procedure, i.e., by insertion. From the figure it

is clear that these three molecules have a rather different
thermodynamics, implying a different interaction behavior
with solvent. From Tables II and III it is clear that, like SPC,
methane and ethane QGE values match very well~within the
noise! the TI values. In Figs. 3 and 4 we show the partial
molar excess entropy and isochoric excess internal energy
changes(]U8/]n)V,ns ,T of the same three solutes. Methane,
ethane, and SPC have not very different excess entropies,
which become rather close when we remove the pure en-
tropic confinement termsk ln ē. This means that most of the
difference in the solvation entropic cost for these solutes, is
due to a simple cavity effect. Finally, the excess internal
energy change at fixed volume are compared~Fig. 4!. This
figure provides a further test for the accuracy of the QGE
models as it directly compares the model predictions with
simulation data. For all the solutes there is an excellent
agreement with the simulation data~the errors shown corre-
spond to a standard deviation of the property!.

C. Methanol and ethanol in water

In order to test further our approach, we also apply it to
two different polar nonspherical solutes in water~SPC!:
methanol and ethanol. The physical parameters which define
the corresponding QGE models are given in Table IV. For
these heteroatomic solutes we cannot use BMCSL or SC-
SPT equations of state and hence we do not provide in the
table any bead diameter. As previously described, in this case
we obtain the solute confinement properties by TI calcula-

FIG. 3. Excess partial molar entropy of the solutes. Solid line: SPC QGE
model obtained by inserting one SPC molecule as solute in the SPC box;
dashed line: QGE model of methane in the SPC box; dotted line: QGE
model of ethane in the SPC box.

FIG. 4. Isochoric excess internal energy change (]U8/]n)V,T,ns
of the sol-

utes. SPC: solid line5QGE model obtained by inserting one SPC molecule
as solute in the SPC box; empty circles5MD data. Methane: dashed line
5QGE model of methane in the SPC box; empty squares5MD data.
Ethane: dotted line5QGE model of ethane in the SPC box; filled
triangles5MD data. The errors for the simulation data correspond to a stan-
dard deviation.

FIG. 5. Excess chemical potential curves of the solutes. Solid line: QGE
model of methanol in the SPC box; dotted line: QGE model of ethanol in the
SPC box.

TABLE IV. Parameters of the QGE theoretical models and corresponding
excess chemical potentials at 298 K obtained by inserting a methanol or an
ethanol molecule in the SPC box. We also show, between parenthesis, the
excess chemical potential error~one standard deviation!.

v
~l/mol!

u08
~kJ/mol!

cV08
~J/mol K! d0

m8
~kJ/mol!

MeOH 0.0469 232.625 72.45 0.6565 214.7 ~0.6!
EtOH 0.0662 233.674 91.72 0.6565 212.3 ~0.6!
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tions at 800 K~evaluation at 300 K is also possible and
actually provides close results; however to diminish the tem-
perature propagation of the noise 800 K is preferable!. From
Fig. 5 where we show the excess chemical potentials of these
two solutes as a function of the temperature, it is evident that
methanol and ethanol have a rather different behavior. In
Table V we compare the QGE excess chemical potentials at
300 K, with the corresponding values obtained by TI calcu-
lations. For these solutes we can only compare at one tem-
perature~300 K! as we use the TI values at 800 K to evaluate
the confinement terms. From Tables III and V we have, just
like for SPC, methane and ethane, that, also for these two
non spherical polar solutes, QGE values match very well
~within the noise! TI results. In Figs. 6 and 7 we show the
partial molar excess entropy and isochoric excess internal
energy change of these alcohols. Also in this case most of the
difference in the excess entropies is due to the confinement
terms, and the isochoric excess internal energy change shows
that the QGE models reproduce very well the simulation data
~the errors shown correspond to a standard deviation of the
property!.

V. CONCLUSIONS

In this paper we show that the combined use of the QGE
theory with molecular dynamics~MD! simulations can pro-
vide the whole thermodynamics of a solute–solvent system,
including all the partial molar properties. We have investi-
gated five different solutes in water~water, methane, ethane,

methanol, and ethanol! at high dilution, along the typical
liquid water isochore. Results show that within a wide range
of temperature the QGE theoretical models provide a coher-
ent and accurate description of all the partial molar proper-
ties of solute and solvent as a function of the temperature.
This is demonstrated directly by using a water molecule as
solute in water and comparing the excess partial molar prop-
erties obtained with the ones given by molecular properties
of the pure solvent~SPC box!. Moreover, a remarkable
agreement between QGE and TI results accuracy is shown
for D~bm8!5D~bm* ! ~Table III! as well as for the excess
chemical potentials~Tables II and V!, confirming previous
results on ionic solutions.1 It is worth noting that no difficul-
ties were found for ethane, methanol and ethanol showing
that nonspherical molecules can be treated properly, although
using non-spherical confinement terms.
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