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In this article the quasi-Gaussian entropy (QGE) theory has been extended toward statistical-mechanical models
that describe the temperature dependence of thermodynamic properties of fluids at fixed density over a very
large temperature range, up to 15 times the critical temperature. The system’s phase space is divided into
multiple regions, each of which has a “potential” energy distribution that can be described by a simple model,
e.g., a Gamma distribution. The overall “potential” energy distribution, which is directly related to the residual
Helmholtz free energy of the system, then is a “mixture” of Gamma distributions, each with, for example, a
different value of the “minimum” potential energy. Several such multistate models for the free energy were
derived and tested on a series of small molecules at various densities: the hard core Yukawa fluid, the Lennard-
Jones fluid, argon, methane, ammonia, water, and the extended simple point charge (SPC/E) water model. In
almost all systems, a Gamma mixture of Gamma distributions provides a very accurate thermal model over
a large temperature range starting at the coexistence line and applicable from ideal gas to dense liquid, even
in the vicinity of the critical point. The shape of the “potential” energy distribution and its density dependence
reflects the underlying molecular interactions, which are discussed by comparing different systems.

1. Introduction tion'2 as a model based on general physical principles, an
Knowledge of thermodynamics and phase equilibria forms analytical expression of the (residual) free energy is obtained.

the basis of modern chemical process design. Accurate equationg arameters are diregtly related to thermody_namic _properties at
of state (EOS) are therefore an essential tool, and very manyone arbitrary state point. Already a mathematically simple model

empirical and (semi)theoretical EOS have been proposed; seeltir'fe the Gamrlna ddistri_lgutiorg prﬁvideslan analytical fexpression
e.g., the review by Sengers etlaln the past decades, at accurately describes the thermal properties of, e.g., water

tremendous progress has been achieved in the development of"d the Lennard-Jones fluid over a considerable temperature
EOS for fluid systems, based on statistical mechanics. An fange2*>** Extensions toward more sophisticated model
example is the statistical associating fluid theory (SAFY), distributions resulted in sp-cz?lll.ed “mult|state models”, wherg
which is basically derived from a hard-body equation of state the System’s phase space is divided into several parts, each being
with (relatively simple) intermolecular model potentials for described by different _(S|mple) model distributions. E_xamples
hydrogen bonding and dispersion, included via perturbation @€ the double and triple Gamma state model for ideal gas
theory. Specific knowledge on the systems enters via “molec- Molecules® and the double state temperaftr@nd polarization/
ular” parameters within the EOS, such as hard-sphere radii, Magnetization model3for macroscopic systems.

dipole moments, etc. On the more empirical side, Wagner and  In this article we present for the first time a general derivation
co-workers for example have developed a sophisticated meth-of such thermal multistate models with an arbitrary number of
od to correlate experimental data using a “bank” of polynomial- states. The corresponding (energy) distributions turn out to be
like terms for the residual free enerjfhis procedure has been equivalent to the “mixing distributions” that are known from
successfully used to generate thermodynamic tables of variousthe statistical literaturé” Several continuous and discrete

systems, e.g., argdnmethané, carbon dioxide, water® etc. “mixtures” will be derived and the corresponding thermal EOS
In this case the parameters of the EOS are not directly relatedapplied to a range of different fluids that vary strongly in
to molecular properties. polarity: argon, methane, ammonia, water, etc. Especially the

Recently, a new statistical-mechanical approach has beenGamma mixture of Gamma states provides a very accurate
proposed, the quasi-Gaussian entropy (QGE) theory, which description of the thermal behavior of these systems over a very
yields (thermal) equations of state based on knowledge of thelarge temperature range, i.e., up to 15 times the critical
distribution of macroscopic (energy) fluctuations in the systeth. temperature.

By using some (relatively simple) “quasi-Gaussian” distribu-
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whereQ andQ« are the partition functions of the actual system
and of the reference state. The reference system is, as explained
in previous article$;!316an “ideal gas” at the same temperature
and density without any semiclassical inter- and intramolecular
potential energy, confined within the same part of phase space
as the actual system. Because of “excluded volume” effects,
only a part of the phase space with volume fractions

ac<_:eSS|bIe to the_SyStem’ at Iea§t W'th'_n the temperature ramgei:igure 1. Schematic view of phase space: (a) “ideal gas” phase space;
of interest (see Figure 1a,b). This confinement gives an extra, (p) confinement to a fractior due to excluded volume effects; (c)
purely entropic contribution to the ideal reduced free energy confinement and a perturbation regidrwithin the accessible part of

A, i.e., with respect to an “ideal gas” without any semiclassical phase space; (d) confinement and division of the accessible part of
potential energy that can have (fully) overlapping atSriist6.18 phase space into multiple regionsvith fractionse;.

Q well as that of the reference state, into a number of regiens
A= —kTIn{Q—} =A*—kTIne (2) 1, ...,n (see Figure 1d) in such a way that the thermodynamics
ref inside each region is at every temperature given by one unique

. L 16
If there is no excluded volume effeat,= 1 and both free simple statistical staté

energies are equal. For small molecules such as the Lennard- n

Jones (LJ) fluid and water, the confinement can be well modeled Q=S0Q (5)
by a hard-sphere EO%B51819The “potential” energy and its =

temperature derivatives are not affected by the confinement:

U = U*, Cy = C*y, etc. For small molecules without n

semiclassical internal degrees of freedom (like argon, water, Qurer = ZQ*ref,i (6)
ammonia, and methany, is equal taA', the reduced or residual =
free energy with respect to a usual ideal gas at the same

The excess free energy is therefore given b
temperature and density. 9y g y

The ratio Q«/Q can be written as the moment generating N Q Quer
function’:2° (MGF) of the probability distribution function  A*(T) = —kTIn Z =
p(7/") of the “potential” energy//' of the systen?: 51 Quer i Quer
n

Q. . , _ Irw s
TVEf — |EB// = G//r(ﬂ) — j‘eﬁ// p(//r) dv/ (3) kTIn{|: 6|IE mef,l}
. i n n

Alternatively, it can also be expressed as the MGF of the = —KTIn{ EiefﬂA*,} = AY(T) — KT In{ EiefﬂAA*.}

distribution pref( /") in the reference ensemble:

(@)
—pU ref —pu’ yal 971

Q*Qref =@’ S G;’(_ﬁ) = fe ’ Pre( ) A" (4) wheree; = Qxet i/ Qxet IS the temperature independent volume
fraction of regioni with Yl¢; = 1, A’ is the confined ideal

As explained previousli this latter expression provides a more reduced free energy of regiorand AA” = A" — A is the free

direct route to the free energy, as the parameters.f//') energy difference with respect to some (arbitrarily chosen)

are temperature independent, whereas the parametefs/of region 1.

are implicitly dependent on temperature, and the full temperature  Each region with free energy

dependence of* is in that case only obtained after solving , ,
the so-called thermodynamic master equati&hin this paper  A' = —kTIn@ ""'[ = —kTIn ['e " p (2" ;0) d2/’

we will use the reference distribution representation, eq 4. (8)
In previous articles we used relatively simple model distribu- ) N o )
tions to obtain the complete thermodynamics, i.e. stagistical can be described by a specific statistical state, defined by some

stateof the system. Using a Gamma distribution, for example, YPe of distribution preri(7/";0) and set of parameters;.
we thus obtained the Gamma state that was successfully applied*SSUming that all regions can be described by the sgpof
to, e.g., waté¥'® and the LJ fluid>1® over a considerable dIStrIbUtlonpr.ef(//') but with dlfferent parameterg, we can sum
temperature range. However, a single Gamma distribution is Over all possible parameter s¢tg} instead of regions Hence
not accurate enough to describe the thermodynamics of the LJ8d 7 can be rewritten as
fluid over a very large temperature range {115 times the AT
critical temperature). Therefore, an improved model has been AX(T) = _len{;pe(a)e pRTe)
developed that describes the major part of the accessible part <
of phgse space by a single Ggmma dis‘gribution and.treats the = A*(Tia)) — KTIn{ ' p.( Aa)efﬂAA*(T;Aoo} 9)
remaining part as a perturbation; see Figure 1c. This formed
the basis of a complete equation of state for the LJ fluid.

In this article, instead of directly modeling the accessible part where p.(o) is the multivariate (temperature independent)
of phase space by one (relatively simple) model distribution, discrete probability distribution of a certain parameter eet
we split the accessible part of phase space of the system, as\a. = a0 — a; with a; a yet unspecified set of parameter values,

{Aa.
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AX(T;0) = —KT In fe B pef(2/";0) d2/', and AA*(T;Aa) =
A*(T;or) — A*(T;04).

Note that the magnitude of the difference in free energy for
different parameter setAA*(T;Ao) with respect tokT deter-

Apol and Amadei

Furthermore, the parameter distributigné) andp.(o) are by
definition temperature independent, whereas the probability of
observing the system in a state characterized by a specific
parameter sett is (cf. eq 12) again a function df. p(o)) and

mines if the system gradually changes parameters or if ap.(a) can therefore also be interpreted as the probability
“macroscopic” phase transition occurs when the temperature isdistributions of finding the system in a state at infinite

altered. If the system consists of “isolated” single molecules
(i.e., ideal gas condition\A*(T;Aa) ~ ¢ (kT), and so no phase
transition takes place; see Amadei et®&imilarly, a multistate
Gaussian approach was used by Hummer ét . calculate
by Monte Carlo simulations the change in electrostatic solvation
free energy of a solute molecule, with= 6 or 8. Also in that
case AA*(T;Aa) ~ @ (KT). On the other hand, for the
electromagnetic double state models of Apol et@alvhere the
free energy change i€ (NkT), a macroscopic phase transition
does occur.

In the limit that the gaps between parameter values are
differentials, eq 9 becomes

A{(T) = A(T;ap) = KTIn [o(Ac)e ™7 dAa (10)

wherep(Aa) is the multivariate continuous probability distribu-
tion of the parameterdo. This distribution is by definition
also temperature independent, but implicitly dependent on
density.

Without loss of generality we can define state 1 by the set of
average parameterst; = [0[d = }q3Pe(a) o or fpc(o)a dow
where[d[J denotes an average over the parameter distribution

(not to be confused with the ensemble average, eq 3); hence

Aa = o — [&[] are the parameter fluctuations around the mean
parameter values. Note th&tA* may also depend omy;
however, for brevity we will simply writeAA*(T;Aa). The
domain of each (fluctuating) parameter is determined by phys-

ical and mathematical restrictions. For example, in the case of.
a positive Gamma state (see eq 16), one of the parameters |§

the minimum energy//'nin. Clearly, there must be an overall
minimum energyZ/'min, SO Z/'min < ?/'min. Furthermore, the
probability distributiong.(Aa)) and p.(Ao) must be such that
the sum and integral in eqs 9 and 10 are finite.

The overall energy distribution in the reference condition,
pref( /"), is simply given by the average

pref( //') m)ref( " a)mef |jbref( " a)g
= ;pe(o‘) pref( //'va)

= [p0) pef #/"i0) dot (11)

In the statistical literatur&’, pre(#/') is known as a “mixing
distribution”, as it can be regarded as a “mixture” of distributions
pref(2/";0) of the same type with different parameter values,
mixed according to a parameter distributimo) or p.(Aa). It
must be stressed that the potential energy distribution of the
reference staterf 7/') is temperature independent; however,
the corresponding distribution of the actual sysigY') does
depend on temperatuté:

S {a} p(#";0) p,()e ¥
3 {a}p.(0)e T
[o(2";0) p.(@)e T do

f pe(a)e—ﬁA*(Tﬂ) da

p(2") = [p(/"0) =

(12)

tempertature. Hence, the ensemble averagg corresponds
to the parameter averagé/; see also eq 11.

Clearly, for the mixing distributionpi(7/") the overall
moment generating functio's.(—f) = &% [k is a mix-
ture of the MGFs of the “basic” distribution&'S'(—;0) =
Je b pref( 7/";00) dZ/":

Gl (—p) = Zpe(a)GrEf( Ba)

= [p@)GF(~Bi0) da

Note that the previously derived thermal equations of state for
guantum-mechanical systems (solfd<jan be considered as a
special case of the general approach described above. In that
case the MGF of the (discrete) energy distribut@h (—Ap)

= [‘|I @2( ApB;0) was assumed to be tipeoductof N MGFs

of “basic” distributions with different parametes (i.e., the
energy gapAe), so that the cumulant generating funcﬁb?P
(CGR)KG,

KS, (—AB) =

(13)

In GO( AB) = szé(a) Ing ( AB;q)

=N [p(0) In & (—AB0) da
(14)

s a mixture of the CGFs of the basic dIStI’IbUtId(SS In g6

As explained in ref 22, this corresponds to a spemal clustenng
of the physical states of the system, such that the partition
function can be factorized in an inhomogeneous way. This
inhomogeneous factorization cannot be correct in the infinite
temperture limit. However, for solids with finite melting
temperature this is a good approximation. The completely
general splitting of phase space according to eqs 5 and 6 is
correct even in the infinite temperature limit.

The simplest possible distribution for the parameters is a
multivariate single state discrete distribution or a multivariate
Dirac delta function, for which eq 10 simply reduces to the
single statistical state defined by the average parameters. As a
more complicated model we can assign a nontrivial distribution
to one of the parameters\ay, e.g, and assume that the
distributions of the remaining — 1 parameters are so “narrow”
around the average, that they still can be modeled as fixed:

p
p(A®) = p(Aay) [10ne
1 JI:J A i

p
plAa) = p(Aay) |_!6D(Aaj) (15)
=

3. Statistical States

The simple Gamma statistical state is rather successful in
describing the thermodynamics of both polar and apolar fluids
over a considerable temperature range. The model distribution
pref( 2/") is for a simple Gamma state a three-parameter Gamma
distribution20:23
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Pl ) = (%' - (16)

I'(a)

where 7/} is some extreme excess energy value. Foositive

Gamma distribution,0 > 0, %, = ¢/, is the energy
minimum so /' = //; and the distribution is asymmetric to
the right. For anegatve Gamma distributionf) < 0, 7/,
U ax 1S the energy maximum sé/' < //; and the distribu-

tion is asymmetric to the left. Only a positive Gamma distribu-

tion is physically completely correct (because every system must

have an overall energy minimum); a negative Gamma distribu-
tion must be regarded as a (good) approximation to a more
complex distributior?. The moment generating function is

e = @t = {55 (17)
The free energy is via egs 1 and 4 givenA%T) = —KT In
G"'(—p). Differentiating the resulting expression i and
equating the expressions Of(T), C{(T), andaCy(T)/T at an
arbitrary temperatur@y to the corresponding thermodynamic
valuesUg, CY,, anddC)/dT (denoted by the zero subscript),
one can solve the parametet4, a and in terms ofUg, CY),
and dCy,//dT. We define, moreoverd = So(1 — do)/do With
Bo = 1KTo, andU}, and C, = kade?, the excess energy and

heat capacity in the Gamma region. In this case, where a single
Gamma state is being used, the thermodynamic properties aree

J. Phys. Chem. B, Vol. 107, No. 6, 2008413

A very simple set of mixing distributions arises if we assume
that different regions of phase space are characterized by
Gamma distributions with the same parametr@nd 6, but
with a different extreme energy valu,. From eq 18 follows
that in that casAA*(T;Aq) = 5 — WA= U, — Uiy =
A, where we indicate the parameters of the average Gam-
ma state byl". From egs 9 and 10 it immediately follows that

AX(T) = Ar(T) = KTIn G . (=P) (24)

where GZ,,X,(—[}) is the moment generating function of the
distribution of A7/}, evaluated it = —3, and Ai(T) is given

by eq 18. Any model parameter distribution must have a finite
moment generating function for fini{g For 7/} as a continu-
ous variable, eq 24 directly yields a relation between the free
energyA* and the distributiono.(A 7/}):

A(T) = A(T) = KTIn [0 (A2)e ™ dAw; (25)

In case one assumeg; to be a discrete variable, the simplest
implementation (cf. Apol et &) is to set/;, = 7% + I-Ae
where Ae is the energy gap between different valueszéf,
andl = 0, 1, .... Note that, similar to the Gamma distribution,
for a right-skewed distributiothe > 0 with 75 = %/}, the
absolute energy minimum, whereas for a left-skewed distribution
< 0 with ?§ = ?/\,ax. the absolute energy maximum. In

identical to those of the average Gamma region (denoted by athiS Way, the free energy is related to th&ifdependent)

subscriptl’): e.g.,Uf, = Ug, Cirg = Clo and aCy/dT =
aCy/dT. In this way the familiar expressions are obtaid

T.C T
A(T) = AX(T) = U, — ff" - fimm(l —9) (18)
0
UH(T) = UX(T) = Ugp + (T — TO)C’QFO(%) (19)
C(T) = Cin(T) = Ccm((%)z (20)
(D =S =%’[6 +In(L — 0)] (1)
0
oM =0 (22)
T(1 - 60) + TO(SO
In these equations, as usual,
1 9Curo |
5= 05T _ Msd '] 23)
° 2¢, 2KToM,, [ 2211

is a measure of the skewness of the energy distribyt{an’)
within the Gamma region 8, defined by the ratio of the third
and second central moments#f, i.e.,Msd 7/'] andMy,f 7/'],
evaluated afly. For og < 0, 690 — 0, and 0< dg < 1, the
distribution is left-skewed, symmetrical (Gaussian) or right-
skewed, respectively. The model has three parameté{s4,
and @ of the reference state, or equivalently, Cir,, anddo)

that are related to three physical properties at the arbitrary
reference temperatuid, e.g.,U;, C, andaCy/aT.

probability p; of a certain level as

AX(T) = AYT) — kT In 2™GE(—pAe)
= AX(T) — A — lenipleﬁA?' (26)

3.1. Gaussianf/;] Mixture of Gamma[ 7/'] States. The
simplest possible continuous parameter distribyigh/}),
although not completely physically allowed (because it is
defined from—o to +), is the Gaussian distributicii,23

1

Evaluating eq 25 yields with = Cy — Cipo = 07KTo?

-
w(n =i - rl )

Ut — ToCuro B TCro
° 9 0y

0

plA W) =

9/1\2
@y ] -

20°

TO
In(l - (5) + Toxz(l - ﬁ_)
(28)

TO
U(T) = Uy(T) — TOXE(T)
Y * 0 * TO
=Up+ (T - To)cvroé_o + ToXo(l - ?) (29)
(30)

* TO 2
Cy(T) = Cyr(T) + Xo(?)

i
s(n=s5m - i) (31)
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where AL(T), UL(T), Cyr(T), SK(T), andd(T) are given by egs
18—22. The model has four parameterg}, a, 8, ando of the
reference state, or equivalently, Ciro, do, andyg) that are
related to four physical properties at the arbitrary reference
temperaturely, e.g.,Ug, Cly Cy/dT, and 82Cy/aT2 x5 is a
measure of the variance of' at To due to the spread i/},
i.e., g2 The skewness of the distribution of the extreme energy
/' is, being a symmetric Gaussian, obviously zero. A mea-
sure of the skewness of the overall potential energy distribution
p(Z/") at Ty, defined analogous td, (eq 23), is given by

.%%
JURLLL: U0 WL PR () R
0T KT M, [ 2ck, 0

Just as for the single Gamma state, the heat cap&%ify)

is monotonically descreasing with temperature. This statis-
tical state, which we can write symbolically as Gaussian-
[7/}]xGammal/'], must be regarded as an approximation to
a physically correct state, such as the following.

3.2. Gammaf//;] Mixture of Gamma[ 7/] States. The
first continuous model distribution fop.(A?/}) that can be
completely physically allowed is the Gamma distributféi?
722
T'(b)

b-1 ,
p(AUWY) = (A 74 _|_l;3) g TAUitb) 33y
which has the same mathematical form as eq 16 but now

expressed in terms of fluctuations around the average. Evaluatin
eq 25 and with a reparametrization similar to the single Gamma

state [i.e.,r = fo(1 — do)/do andy5 = Cyp — Ciro = kbay?,
one obtains
Toko o
AT) = AT ——22— — Dna -
(T) = Ar(T) Wl-) g n(l-aq
T.C*
—u; - odcvro q}rol n(l— ) —
0
T, Ty,
Too T g (3
o 0
* _ q
UM = Ui — 2 q(q)
0\ ™0,

= U* +(T— TO)CT/TO( ) +(T— TO)XO( o) (35)
G = Cin( + 7 &) (36)
S(M=SM+ ;%[q tha-q @)

O E— (38)

T(1 — gy + Ty

where AL(T), UK(T), Cyr(T), S(T), andd(T) are given by eqs
18—22. The model has five parameter&’{, a, 6, b, andz of

the reference state, or equivalentlf, Ciro, do, x5 and do)
that are related to five physical properties at the arbitrary

Apol and Amadei

reference temperatur&, e.g.,Us, Cio dCy/0T, 32°Cyo/dT?,
and 8°Cy,/dTe. In this case,

e
Togr M; d %]
U= = — (39)
2 2KToM, | 2]

is a measure of the skewness of the potential energy distribution
p(2/") at To due to the distribution o?/;. Note that the central
momentsMn o 77;] = L2/} — ¥/ [9)"[J of the extreme energy
2/ are given in terms of ensemble averages; i.e., they are
moments of the principle temperature-dependent probability
distribution of finding the system in a state characterized by a
specific value ofZZ; qo is in fact also the skewness of this
distribution atTo.

The skewness of the overall potential energy distribution at
To (cf. eq 32) is given by the weighted average

Ciro Xo
+ 40
(q*,o) qo(c’go) (40)

Whendo andqp are both positive, the model can be considered
completely physically allowed because in that case the energy
is always larger than/,,,,. Just as for the single Gamma state
and the Gaussian mixture of Gamma states, the heat capacity
Cy(T) is monotonically descreasing with temperature. The
model can be written symbolically as Gammg]] x Gamma-

Note that the above expressions are (mathematically) sym-
metrical with respect to exchange of the parame{&., oo}
and{ g, do}. One can, however, physically distinguish the two
sets of parameters. Because for positive Gamma stéges (

0) the effect of a distribution of”/; values should be most
pronounced at low temperature (whef€ is relatively close

to 7/}), the parameters should be assigned in such a way that
the contribution of the “average” Gamma st&@g-(T) to the

total heat capacityCy(T) increases with temperature. The
assignment can also be facilitated by comparing the parameter
sets of the Gaussiar{;] xGammaf/'] model with the Gam-
ma[#/;] xGammal//'] model, because in the former case the
parameters are mathematically distinct.

The Gammaf/;] xGammal/'] expressions resemble those
of the perturbed Gamma state that was used for the Lennard-
Jones fluid over a very large temperature range (ref 15, eqs
46—49). One can convert the perturbed Gamma state parameters
AUnmaxandy to the Gamma mixture parametegsandqo with
the help of the equation€, — Ciro = x5 = 2AUmayTo/

(To + y)3 (cf. eq 52 of ref 15) and eq 39, whetgy/dT =

ICYIT — ICyr/dT = —2AUmaxy(2To — ¥)/(To + y)* (cf. eq
53 of ref 15). The result is
. 2AUL 0Ty
Xo— 3
(To+ )
3y
B%=5r 1o (41)
0 2(Ty+7)

3.3. Negative Binomiall’Z;] Mixture of Gamma[ 7/']
States.In case one assumes that for some physical reason the
extreme energy/, can only assume discrete values separated
by an energy gape, one of the simplest discrete distributions
of the T-independent level probabiliy is the negative binomial
distribution”
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_(l+s—1\q1 _ s - - < heat capacity of solidd. The statistical state can be symboli-
P ( | )(1 PP $20,0=<p=1 (42 cally written as NBinf/;] xGammap/'].
for1 =0, 1, .... Evaluating eq 26 and defining the characteristic 4. Results and Discussion

temperature® = Ae/k, one obtains . . - .
P € In this section the new statistical states, especially the

2 Gammal/ ] xGammaf/'] state, will be applied to several
AX(T) = AX(T) — T@X*(E) % + systems consisting of small molecules without semiclassical
r e pe ©'To intramolecular degrees of freedom, for which the reduced or

T\2 (2 % residual propertieX" (with respect to the ideal gas) are idenfical

TXE( 0) -0 ( ) to the ideal reduced properties. Note that the ideal reduced
energy UU') and temperature derivatives such as the heat capacity

C]

(1 _ p)e*Q/To In p

N (C'y) are also identical to the confined ideal reduced properties

— Ut — ToCuro _ TCro In(1— 0) — (U* and C}). As indicated in the previous sections, for all
0 ol 5.2 models a limited set of input data at one temperaflyés

0
T, T\ ~"n02 £ sufficien'_[, e.g., the “potential” e*nergl)dg and some tempera—
Tl =1V o+ T ————In|—] 43) ture derivatives such a€y, 9Cy/dT, .... In the following
p

e O/ (1—pe @ applications, the experimental value dj is being used, and
the remaining two to four parameters of the model at hand
P . To\ &/\’"02 1—g©or (q*,ro,_ao, ..) are obt_air_1ed by fitting _thPJ*(T) expressio_n to
Ur(N = Ur(M = Taro\g | —om, <~ - experimental data within some specified temperature interval.
pe B This is conceptually equivalent to fitting a polynomial to selected
o o U*(T) data aroundT, and evaluating the required energy
=Uo+ (T = ToGr %, + derivativesCy, ..., 3"Cy/0T" to obtain all parameters of the
T\ "2 [—or e model. Previous§1618we have shown that the QGE Gamma
ToX* _0\ Y {e _€ (44) model, eq 19, can extrapolate thermodynamic functions over
0 ®}e*9’T0\ N N large temperature ranges only on the basis of information close

to To. In this study, we would like to show, in general, the ap-
TA2( 17\2 plicability of the Gammaf/;] xGamma}/'] model for vari-
CiT) = Cip(T) +X’5(_°) (—4) g OWT1M)  (45) ous systems and conditions. Therefore, to obtain the most
T accurate parameters, we used a fitting procedure within a
specified temperature window.

~

. AR _e(T-1Ty) 4.1. Hard Core Yukawa Fluid. The first system that was
S(T) = ST — %o TO Te - studied is the hard core Yukawa fluid, with an interaction
2 L2 potential of the form
*(E) ‘\—0 |n(£) (46)
Xo ® (1 _ p)e—@/To p 00 r<o
un={_e® (49)

where Af(T), UN(T), Cyr(T), Si(T), and 6(T) are given by e ¢
egs 18-22 and where!”’=1— (1L — p)e®@Tand 1p=1—
(1 — p)e M. In these expressions we also ussd= where the parameterdetermines the interaction range. For a
(a/R)(To/®)2 N p2[(1L — p)e®T] and yj = Cly — Cipo- The valuez = 1.8 the system is claimed to give results similar to
model has five parameters//(, a, 6, s, and Ae of the the Lennard-Jones systéfhThe potential is, e.g., used as a
reference state, or equivalently, Cro, do, %5 and ©) that model potential for charged colloids with screened Coulombic

are related to five physical properties at the arbitrary reference interactions. Duh and Mier-y-Ten# have formulated an explicit
temperatureTo, .., U, Clo 0CiJoT, 9°Cl/aT? and 8 EOS for this system by means of an analytical continuation and
CiJoTe. A meésure’ofotyhe soly<ewness of the pot:antial energy Summation of the first five terms of the high-temperature free

distribution atTy due to the distribution of’/; (cf. eq 39) is energy expansiop given by I—_|end_erson and co-wo?Rgm;hin
the mean spherical approximation (MSA). At various state

given by points, the EOS very accurately reproduces the exact MSA
1+ (1—p)e-om results of Henderson et &F,and for various values dof, the

Ko _4e 1+d=-pe " ° (47) EOS yields coexistence lines that compare well with results from

2ATo\1— (1 —pe ™ Gibbs Ensemble Monte Carlo simulations, except very close to

the critical point. According to the EOS, far= 1.8 the critical
and the total skewness of the overall potential energy distribution point (in reduced units) i§. = 1.24 andpne = 0.319. Using

at To (cf. eq 32) is the weighted average the EOS,U*(T) data at 22 isochores with densijty = 0.01,
0.03, 0.05(0.05)1.0 were generated from the coexistence line
(C\*/m) (XS ) uptoT = 6 (i.e.,~5Ty), and the reference temperature was set
Ao = 0o\l —| T k| = (48) to To = 1.5 at all isochores.
Cwo Cwo For this large temperature interval, a single Gamma state (eq

19) provides a very accurate description of the data from the
The thermal behavior of the heat capadiyis a combination coexistence line on. Parameters are shown in Figure 2. Extension
of the “classical’ monotonic decrease with temperature (like of the temperature range up o= 20 (~16T;) and T = 50
the Gamma state) with superimposed an initial increase followed (~40T,) yields exactly the same parameters with the same
by a decrease to zero of the “quantum” contribution (like the accuracy, suggesting that the Gamma distribution is a very good
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Figure 2. ParametersJ, Cir, and oo of the Gammaf/'] state, eq
19, for the hard core Yukawa fluid at various densitiesTat 6 with

To= 1.5 (®). Also shown are the coexistence |ifigex(—), the singular
temperaturdl, of the negative Gamma state (< —), and the infinite
temperature potential energy of the Gamma stdfg, (¢), together
with values of Henderson et al. within the MZA(x). The critical
point is indicated by *.

o
©

approximation to the real potential energy distribution within
the MSA. In fact, it was impossible to obtain reliable parameters

for the Gaussiany/;]xGammal/'] or Gammal/ ] xGam-

ma[7/'] state models (eqs 29 and 35). Obviously, the EOS (an
data used) are based on the MSA, but an analysis based o
fluid data from Monte Carlo simulations, for example, would

probably yield reasonably similar results.

Interestingly, at all densities the distribution is left-skewed
(00 < 0) due to the attractive interactions and the lack of
continuous repulsive forces. The distribution is most asymmetric
around the critical density. For negative Gamma states, as

encountered here, there is a singular temperafure —Todo/

(1 — dg) > 0 for 69 < 0 at which the thermodynamics is
undefined® In Figure 2 this temperature is shown, together with

the coexistence lin€.pex At all densities T, is well belowToex

Interestingly, atoy — O the singular temperature goes exactly
to zero, meaning that there is no singularity in the ideal gas
limit, as should be. Finally, also the infinite temperature energy

limit Ul = lim—U*(T) = Ug + ToCiro/(1 — o) (see ref 9)

is shown in Figure 2, along with exact MSA results from
Hendersor?® Both sets match extremely well, again showing
that a single Gamma state is a perfect description of the hard

core Yukawa fluid within the MSA.

4.2. Lennard-Jones Fluid.We also reanalyzetd*(T) data
of the truncated and shifted Lennard-Jones (LJ) sy3beior,
10 isochores with density (in reduced LJ unjigy= 0.1(0.1)1.0
and temperatures from the coexistence line up te 20. The

data are identical to those used to parametrize a full EOS for

the LJ system based on a perturbed Gamma $tdtee critical
point of the truncated and shifted LJ system usiNyT
simulations (without long-range and shift correctionsYis=

Apol and Amadei
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Figure 3. Parameters of the Gamm[] x Gammal/'] state for the
Lennard-Jones fluid at various densities wih= 2.0: (1) direct use

of eq 35 @); (2) conversion of perturbed Gamma state parameters
(ref 15) using eq 40-¢).

describes the simulation data over the entire temperature range.
Parameter values for the 10 isochores, obtained by fitting eq
35 to theU*(T) simulation data, are given in Figure 3. Also
the parameter values of the perturbed Gamma state expression
from ref 15, converted to Gammé(;] xGammal/'] state

d parameters via eq 41, are shown in the same figure. There is a
rperfec’t agreement between the two sets of parameter values,

indicating that the perturbed Gamma state is in fact just a good
approximation to the Gamma{,] xGammal/'] state, and the
“average” Gamma state of the Gammié]] xGammap/']
model coincides with the Gamma state region of the perturbed
Gamma state model, cf. the white region in Figure 1c,d. As
explained in section 3.2, the parameters were assigned in such
a way that the contribution of the average Gamma state to the
heat capacity is increasing with temperture. The asymmetry of
the basic Gamma distributions of the mixture is more or less
density independent and very positivé, (~ 0.98), and the
Gamma heat capaciy, increases monotonically with den-
sity. The distribution of 7} is left-skewed ¢y < 0) for
densities below~0.5, and right-skewed for larger densities. In
this way also the overall potential energy distribution changes
from left-skewed at low densityAp < O, cf. eq 40) to right-
skewed Qo > 0) at high density, due to a changing balance
between attractive and repulsive interactions. Similar behavior
has been observed for water and metf4aad in the previous
analysis of the LJ fluid® see also section 4.8. From an analysis
of the relative contribution o€}(T) to the total heat capacity
Cy(T) it follows that the mixing contribution is especially
important for gas densities at relatively low temperature.

4.3. Argon. Data of the residual energy" = U* of argon
were obtained from the equation of state of Tegeler, Span, and
Wagne? at 25 isochores (0.001, 0.005, 0.01, 0.05, 0.1, 0.25,
0.5, 0.75, 1, 1.5, 2, 2.5(2.5)35 mol/dnfrom the coexistence

1.29 andec ~ 0.348 (ref 15) The reference temperature was line to 700 K. The critical pOint is located at = 150.7 K and

set toTo = 2.0.

For such a large temperature intervall6T.) a single Gamma

pone = 13.41 mol/drd. The reference temperature was set to
To = 180 K.

state (eq 19) is not accurate enough. However, for a more A single Gamma state model (eq 19) for temperatures up to

restricted temperature rangé £ 6.0 ~ 4T,) a single Gamma
state is accurate for “liquid” isochoresy(= 0.6). The Gamma-
[7]xGammal/'] state model (eq 35), however, perfectly

700 K (~5T,) is not accurate enough, except at high densities
(on = 22.5 mol/dnd), just like for the LJ system. For a more
restricted range up to 300 K~@T,), a single Gamma state
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Figure 4. Parameters of the Gammé[] x Gammal/'] state, eq 35, Figure 6. Parameters of the Gamm[] xGammal/'] state, eq 35,
for argon at various densities far < 700 K (®) and of the single for methane at various densitie®) and of the single Gamma state,
Gamma state, eq 19, fdr < 300 K (—) with To = 180 K. eq 19 () with To = 301 K. lll-defined parameter values of the Gamma

mixture model (see text) are indicated Oy
-1 T T T T

K) and the Gammay/;] xGamma}/'] model that is able to
= 15 “,..w"’” describe the behavior df*(T) and C(T) over the whole
£ ',.,u»"’" temperature range. Obviously, the Gamma mixture model cannot
2 R T describe the true divergence @, at the critical point.
> -2 ,.w”" However, part of the steep increaseGifthat is also present in
P general close to the coexistence line at other noncritical
o5 ‘ ‘ A 7 1 ‘ » isochores, can be accurately described by the model. Note that
0 (;31 00 , 300 7 500 ' 700 the parameters are very smooth functions of density, even around
) . ‘ the critical point. A detailed description of the critical point
+ experimental and its close vicinity would require additional theory, e.g.,
< 002 Gamma[U',] X Gamma[U'] T<700 K renormalization group theory with a “crossover” equation of
S - Gamma[U’] T<700 K state27-29
£ ) Gamma[U’] T<300 K
2 \ 4.4. Methane. Data of the residual energy’” = U* of
5y 001 \\x methane (Cl) at 13 selected isochores (0.5, 1.0, 2.5(2.5)25.0
. and 28.0 mol/dr§) were obtained from the NIST Chemistry
o RS S T S OUOUOUUOUUNOUUTT Webbooki® on the basis of the equation of state of Setzmann
100 300 500 700 and Wagnérfrom the coexistence line up to 621 K. The critical
Temperature T (K) parameters ar&; = 190.6 K andpne = 10.14 mol/dm. The
Figure 5. Potential energyU* and heat capacityC}, of argon vs reference temperature was seffip= 301 K.
temperature at the critical isochore 13.41 mofdmd Gammaj/’] Just as for the LJ system and argon, for this temperature range
and Gammal/;] x Gamma}/'] state models (eqs 19 and 35). (up to~3Ty), a single Gamma state (eq 19) accurately describes

“gas” isochores gy < 5 mol/dn¥) and “liquid” isochores
provides an accurate description almost from the coexistence(pN > 17.5 mol/dnd). The corresponding parameters are given
line for typical “gas” pn < 7.5 mol/dn¥) and “liquid” densities  in Figure 6, and the behavior in density is very similar to argon.
(on = 22.5 mol/drd). For intermediate densities a single Gamma  The Gammaf/!] x Gammap/'] model (eq 35), however, per-
state still provides a fair description; see also Figure 5. The fectly describes the data over the entire temperature range,
corresponding parameters are shown in Figure 4. A Gamma-including the coexistence line and the vicinity of the critical
[#]xGammal/’] model (eq 35), however, provides an point for all isochores. Parameters are shown in Figure 6, and
excellent description of the system over the entire temperature|sp these parameters are very similar to those of the LJ system
range, including the vicinity of the critical point. In Figure 4  and argon (Figures 3 and 4): the Gamma energy distributions
the corresponding parameters are shown as a function of densityof the mixture are rather right-skewedh(~ 0.6—0.85) but less
There is a clear similarity between these parameters and theasymmetric than for the LJ system and argon~20 mol/dn#
parameters of the LJ fluid (Figure 3). Also in this case the zng above, theSty, values of a single Gamma state and the
Gamma distributions of the mixture are very right-skewed Gammap/ ] xGamma}/'] model virtually coincide, indicat-

(00 ~ 0.96-0.98). In contrast to the decrease @f, of the ing that the influence of the “mixture” is negligiblg(~ 0),
single Gamma state model between 12.5 and 20 mé)/G{p, so the mixture model reduces to the single “average” Gamma
in the Gammaf/ ] xGamma}/'] model increases monotoni-  model. Hence the values af are numerically rather ill-defined
cally; this is compensated by the behaviorgf as Cj, = in this region; i.e., the model is rather insensitive to the precise

Ciro T x5 Figure 5 shows the critical isochorpn(= 13.41 value ofqp. In the figure this is indicated by open symbols. Up
mol/d?) with the single Gamma state¥ € 300 K, T < 700 to ~20 mol/dn?, the behavior ofj is (within the noise) smooth
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Figure 7. Potential energyJ* and heat capacityy, of methane vs
temperature at the near-critical isochore 10 mofdmd Gammaj/']
and Gammaf/ ;] x Gammal//'] state models (egs 19 and 35).

and similar to the previous systems. In Figure 7, the data of

U*(T) and C{(T) for the near-critical isochorgy = 10 mol/
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Figure 8. Parameters of the Gamm[] x Gammal/'] state, eq 35,
for ammonia at various densitie®) and of the single Gamma state,
eq 19 () with To = 430 K. lll-defined parameter values of the Gamma
mixture model are indicated b$; see text.

From the analysis of the relative contribution@j(T) to the

dm? are shown, together with the single Gamma state model total heat capacitZy(T) it follows that at low density the heat

and Gammaf/;] xGammal/'] model. The latter model per-

capacity is completely determined by the parametgendap.

fectly reproduces the potential energy and heat capcity, including Probably the temperature range is too small to define in a stable

a very large part of the divergence ©f at the critical point,

way the “average” Gamma state that should dominate at high

even though the parameters such as for argon are all verytemperature. Hence in Figure 8 the parame®jg anddo are
smoothly depending on density, even around the critical point. in this region also indicated by open symbols. At all isochores,

Note that the behavior off{(T) at intermediate densities
(including the critical one) is very regular, i.e., smoothly

the energy distributions of the mixture are rather right-skewed
(60 ~ 0.6—0.7), but significantly less asymmetric than for the

decreasing with temperature, in contrast to the behavior thatLJ system and argon.

was observed using older experimental d4ta.

4.5. Ammonia. Data of the residual energy’ = U* of
ammonia (NH) at 23 isochores (0.01, 0.1, 0.25, 0.5, 1.0, 1.5,
2.5(2.5)42.5 mol/di) were obtained from the NIST Chemistry
Webbook3° on the basis of the equation of state of Tillner-
Roth, Harms-Watzenberg, and Ba®firom the coexistence line
up to 700 K. The critical point i, = 405.4 K andon. = 13.21
mol/dn®. The reference temperature was sefgo= 430 K.

For the given temperature rangel.7T;), a single Gamma
state is actually very accurate for typical “gagn(< 4 mol/
dm?) and “liquid” densities gy = 20 mol/dn¥). For intermediate

4.6. Water. Data of the residual enerdy’ = U* of water at
34 isochores (0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5,
2.0, 2.5(2.5)60.0 mol/d&were obtained from the EOS by Saul
and Wagnét from the coexistence line up to 1273 K-2T,).

The critical point is located af. = 647.1 K andone = 17.87
mol/dn®. The reference temperature was sefgo= 673 K.

In accordance with previous result&}14.18for all isochores
already a single Gamma state model (eq 19) very accurately
describes the data within this temperature range, except for a
small temperature window of at most5 K located at the
coexistence line for 2.& py < 25 mol/dn?. Parameters are

densities the accuracy is good, but only close to the coexistenceshown in Figure 9. For densities below 32 molAjithe potential
line, there is a small temperature window with some deviations. energy distribution is left-skewed{ < 0) due to predominant

Parameters are shown in Figure 8.
The Gammaf/ ;] xGammal/'] model (eq 35) significantly

attractive interactions, above that density the distribution is right-
skewed §o > 0).

improves the accuracy at those intermediate densities and Experimental data over an even larger temperature range are
provides an excellent description from the coexistence line up difficult to obtain; therefore we used the Saul and Wagner EOS
to 700 K at all isochores. The parameters are shown in Figureto generate data up to 2073 K-8T,). Although the EOS has

8. There are two density regions that show some special been parametrized up to 1273 K, its description of shock-wave

features: at high densityy > 30 mol/dn¥) the parametersdg
andqp are virtually equal, meaning that in fact the mixture model

experiment$suggests that it might be used to extrapolate over
a larger temperature range. Again, a single Gamma state model

reduces to a single (positive) Gamma state. In the figure clearly perfectly describes the data, with parameters that are almost

the values ofd, of the single Gamma state coincide at high
density with thedo values of the Gamma mixture model, and
the values ofy; (=C{, — Ciro) andqo are therefore numeri-
cally rather ill-defined. In the figure they are indicated by open
symbols. The other region is at very low density € 2.5 mol/
dm?), where the “average” Gamma state parame®&js and
especiallydo are rather ill-defined: for a broad range G,

identical to the parameters up to 1273 K (see Figure 9). This
confirms that a single Gamma distribution is an excellent model

for the potential energy distribution of water.

Because the distributiuon is so close to a single Gamma
distribution, it is somewhat difficult to obtain reliable parameters

for mixing distributions, such as a Gaussiafi] xGamma-

[Z'] (eq 29) or Gamma{/;] xGammal//'] model (eq 35). In

andodo values the model provides virtually the same behavior. fact, a Gaussian}|] xGammal/'] model does not improve
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0 -y TABLE 1: Molecular Dynamics Results of SPC/E Water as
= 10 - e, 1 a Function of Temperature at 55.509 mol/dr
% oo | . kk*,,“\*** J T (K) At(fs)  tsim (PS) U* (kJ/mol) Cy [kd/(mol K)]
= .-
30 | R o 250 3.0 12000 —49.5199(22) 0.0628
> 275 2.0 12000 —47.9928(16) 0.0750
—40 20 20 50 300 20 9000  —46.4680(14) 0.0545
0.04 ‘ ‘ 350 2.0 6500 —43.7998(14) 0.0449
< i 1 400 1.0 5000 —41.6348(14) 0.0404
g 0% AT 500 1.0 3000 —37.9149(17) 0.0315
/ e e e R g
5 002 - B 600 1.0 3000 —34.9234(17) 0.0259
= o0t L/ ] 800 05 1500 —30.2647(24) 0.0198
;_; ' 1000 0.5 1500 —26.6189(24) 0.0162
0 2‘0 4‘0 o 1200 0.5 1500 —23.5697(24) 0.0138
10° ! ‘ 6 1600  0.25 1400 —18.5772(26) 0.0111
05 - \ 2000  0.25 1400 —14.4875(27) 0.0093
o . MRS 2400  0.125 650 —10.9801(43) 0.0082
« -05 « Pad 1 2800 0.125 650 —7.8892(46) 0.0073
-1.0 K\,’/Q/ ]
1507 ‘ ‘ ] are therfore numerically less well defined, and hence the
20 0 20 40 60 “irregularities” of these parameters in density are very likely

Density p,, (mol/dm®) not physically meaningful; in fact, there is a rangegef(and

Figure 9. Parameters of the single Gammid]] state, eq 19, for water ~ Xo) Values that give almost identical results. In the figure they
at various densities witfip = 673 K: (1) based on data within the  are therefore indicated by open symbols. It is interesting to note

rangeT < 1273 K (#); (2) based on data within the range< 2073 that the density behavior of the parameters around the critical
K (). point is very smooth, as with the other systems. It is worth
_ 0 remarking that, similar to the case of methane, the irregular
§ —;g g “'MM 1 behavior ofC{(T) that was observed in a previous analysis at
< 30 L AR S S P high density'* must be attributed to artifacts of the older
> 40 0 20 40 60 experimental data, very likely the mathematical shape of the
£ o003f P w ] function to correlate raw experimental measurements.
£ 002p * R e o I SRR 4.7. SPC/E Water.To investigate the behavior of water over
5 0'08 L ‘ ] a very large temperature interval in more detail, molecular
o 19 20 40 60 dynamics simulations were performed with the extended simple
0 eSS S Saaaaa point charge (SPC/E) water moéfet a liquid density of 55.509
SRR IR e mol/dn?® (=1.0 g/cnd) for temperatures between 250 and 2800
-2, 20 " 60 K. This model has bee.n chosen becausg it reproduces in the
< 0.006 v s , , best way, among the different (non)polarizable water models,
g 0004 | o *e . . 1 various static and dynamic properties of wéfee®> Simulations
£ 0002 [+ S Lo T P00 d ] were performed using the GROMACS 3.0 software pacRagg,
= °3 20 ‘ 40 " 60 with periodic boundary conditions, particle mesh Ewald sum-
_g T .. > o matior#®4°(PME) with conducting boundary conditions for the
& -10 ., s long-range electrostatic interactions, and a leapfrog Verlet
:;8 teeeo \ . ] integration algorithm. The temperature was kept constant by a
0 20 40 60 Berendsen thermostatvith coupling timert = At mimicking

. 3,
Density py, (mol/dm’) a Gaussian thermost#4#® Constraints were handled by

Figure 10. Parameters of the Gamma[] xGammal/'] state, eq SETTLE* Each state point was equilibrated for 100 ps, and
35, for water at various densities for< 1273 K (®) and of the s_ingle the total length of the production runis) is given in Table 1,
S;r;m:t::%:[u‘g %gégcr::)(szgri }i(ngg;’;’gg;z 673 K. lll-defined as well as the values of the time stapand average potential
energyU*. Error bars were determined by the block-average
the accuracy close to the coexistence line. On the other hand,method?547 The heat capacity was calculated from fluctuations
the Gammaf/ ] xGammap/'] model is able to describe the  of the total potential energlp:16
residual energy up to the coexistence line, including the vicinity 5 single Gamma state model was fitted to ti&(T) data
of the critical point. Parameters are shown in Figure 10, together o or the entire temperature range, as well as in the low-250
with the single Gamma state parameters. In contrast to theggg K) and high-temperature range (16800 K). Also the
previous systemsCyr, is not monotonically increasing with  Gaussian and Gamma mixtures of Gamma states were used.
density but behaves rather similar@, of the single Gamma  parameters are presented in Table 2, and some models are shown
state, indicating that a single Gamma state is already a veryin Figure 11. Although a single Gamma state fitted over the
accurate model. It follows from the figure, as well as from complete temperature range gives a very reasonable description
evaluating the relative contribution of the average Gamma state of the potential energy, some discrepancies in the heat capacity
Cyr(T) to the total heat capacit@y(T), that the effect of the  are visible. A Gamma state fitted at low temperature (250
mixing distribution is most pronounced at “gas” densities below 800 K) provides locally a very accurate model, but extrapola-
the critical isochore. For typical “liquid” isochorepy = 25 tions to 2800 K are less accurate. However, the Gaussian-
mol/dn?) the average Gamma state is by far the dominant part [ 7/:] xGamma}/'] and Gamma}/!]xGamma}/'] models
(more than 95-99% contribution to the heat capacity; note that provide an excellent description over the whole temperature
in this region theCjy, of the single Gamma and Gamma range, including “metastable” states at low temperature. Interest-
mixture models virtually coincide). The parametgfsand go ingly, the parameter€, and oy of both the Gaussian and
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TABLE 2: Various Statistical States of SPC/E Water and Experimental Water at 55.509 mol/driiwith To = 300 K

model T range (K) Ug (kJd/mol) Clro [kJ/(mol K)] do 26 [kd/(mol K)] Qo
SPC/E
Gammap/'] 250—2800 —46.4680 0.0450 0.7613
Gammap/'] 250—-800 —46.4680 0.0554 0.5701
Gammap/'] 1000—-2800 —39.9160 0.0236 0.8989
Gaussian{/;] xGammaf/'] 250—2800 —46.4680 0.0199 0.9049 0.0398
Gammap/;]x Gammafp/'] 250—2800 —46.4680 0.0106 0.9621 0.0460 0.3697
Water
Gammap/'] 315—-800 —41.3378 0.0461 0.6452
0 T T 1 T T T T T
-10 |
? 20 0.5
2
. =30
5
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g N — — Gamma[U'] 250-800K —— methane
S 004t ‘
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0 R 2000 3000 Figure 12. AsymmetryA, of the potential energy distributios(7/")
Temperature T (K) for various systems as a function of density at a common reference

Figure 11. Potential energy* and heat capacitZ, of SPC/E water temperaturelo/Tc = 1.5.

Vs temperature afy = 55.51 n_’loI/dn%: simulation data¢) and some (3) Roughly speaking, the polarity of the molecules simply
QGE statistical states witfi, = 300 K. )
shifts theAq curves upward or downward. The curves of very
apolar systems (LJ fluid, argon, methane) are all very similar,
and do of the single Gamma state model fitted at high as to be expected. For ammonia, and espec_:ially wgter, which
. - R are (very) polar, the long-range electrostatic interactions are at
temperature; see Table 2. This is also an indication that the N ) . .

. " X . relatively low density £0.50nc) very attractive and result in a
assignment of the paramete{€yr, 50}. and. {0 Qo} Is distribution that is much more left-skewed than systems with
physically the correct one. For comparison, In the table als_o only van der Waals interactions (LJ, argon, methane). At higher
pérameter values are shown of a single Gamma state ys'ngdensity, the long-range character of the Coulombic interactions
U*(T) data of real Wate?_f.Th.e parameters are remgrkably S|m|I§r results via the central limit theorem again in a more Gaussian
teong]rc;/eir?fSiFC):C/:IéEd,Jilfflcr)]?r:gt‘?sgﬁ?sjgiitzhaiifr:l‘\’/eer:lé%;yff g?ztgntlal Iil_<e (_jistr_ibution. Inde_ed, at liquid dens_ity, the potential energy

distribution of water is less asymmetric than that of ammonia,

kd/mol. ) which in turn is less asymmetric than pure van der Waals

4.8. General Remarksln Figure 12 we show the asymmetry  gystems. In this respect, water is a much “simpler” liquid than
of the potential energy distributiof, (eq 32) for all systems  argon, as the energy distribution of the former is much more
as a function of the scaled density/onc at a common reference  Gayssian and a single Gamma state is able to extrapolate over
temperaturélo = 1.5Tc. The figure suggests several points for 5 much larger temperture range than in the case of argon.
systems of small molecules: Moreover, within a temperature range o2T, in the case of

(1) A system with only (continuous) attractive interactions water a single Gamma state can accurately describe the
(like the hard core Yukawa fluid) is characterized by a left- thermodynamic data at all isochores, whereas for argon a single
skewed potential energy distribution. The maximum skewness Gamma state only provides an accurate model at low and high
occurs very close to the critical point. With a further increase densities within the same temperature range. Interesting, it seems
of density, the number of interactions per molecule also that the complexity of a system according to the “distribution
increases, and so using a form of the central limit thect®itn,  point of view” is the opposite of the “molecular Hamiltonian
is plausible that the distribution of the total potential energy, point of view” 1!
being the sum of all individual contributions, becomes more Another interesting point is the fact that for typical liquid
Gaussian, i.ego — 0. densities the Gamma distributions of the “mixtures” are all very

(2) (Continuous) repulsive interactions (present in all other right-skewed §o ~ 1), especially for the LJ fluid, argon, and
systems) superimpose an extra effect on the previous densitySPC/E water. This suggests that the potential energy “landscape”
behavior of the skewnegs: with increasing density repulsions  of these systems may be described as a collection of almost
become more pronounced, resulting in a (very) asymmetric harmonic wells (for whichy, would be exactly uniti#19. This
right-skewed distribution. This shifts the density of maximum also fits very well with the idea of a (potential) energy landscape
left-skewness to values lower than the critical density. of harmonic wells, as worked out for liquids and glasses by

Gamma mixture models are very similar to the valueChHf
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Stillinger and Debenedetfi>° and for biomacromolecules by  the overall free energy and related thermodynamic functions,
Amadei et aP! Interestingly, the potential energy wells of including, as shown very recently (ref 53), the partial molar
(experimental) water, ammonia, and methane are less harmonigroperties.
(00 ~ 0.5-0.85) than those of the LJ fluid, argon, and the
(simulated) SPC/E water model. Further reseach in this direction Acknowledgment. This research was supported by the
is in progress. Training and Mobility of Researchers (TMR) Program of the
EU, and by the Dutch Technology Foundation (STW). M.E.F.A.
thanks Prof. Debenedetti for some reprints and stimulating
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