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In this article the quasi-Gaussian entropy (QGE) theory has been extended toward statistical-mechanical models
that describe the temperature dependence of thermodynamic properties of fluids at fixed density over a very
large temperature range, up to 15 times the critical temperature. The system’s phase space is divided into
multiple regions, each of which has a “potential” energy distribution that can be described by a simple model,
e.g., a Gamma distribution. The overall “potential” energy distribution, which is directly related to the residual
Helmholtz free energy of the system, then is a “mixture” of Gamma distributions, each with, for example, a
different value of the “minimum” potential energy. Several such multistate models for the free energy were
derived and tested on a series of small molecules at various densities: the hard core Yukawa fluid, the Lennard-
Jones fluid, argon, methane, ammonia, water, and the extended simple point charge (SPC/E) water model. In
almost all systems, a Gamma mixture of Gamma distributions provides a very accurate thermal model over
a large temperature range starting at the coexistence line and applicable from ideal gas to dense liquid, even
in the vicinity of the critical point. The shape of the “potential” energy distribution and its density dependence
reflects the underlying molecular interactions, which are discussed by comparing different systems.

1. Introduction

Knowledge of thermodynamics and phase equilibria forms
the basis of modern chemical process design. Accurate equations
of state (EOS) are therefore an essential tool, and very many
empirical and (semi)theoretical EOS have been proposed; see,
e.g., the review by Sengers et al.1 In the past decades,
tremendous progress has been achieved in the development of
EOS for fluid systems, based on statistical mechanics. An
example is the statistical associating fluid theory (SAFT),2,3

which is basically derived from a hard-body equation of state
with (relatively simple) intermolecular model potentials for
hydrogen bonding and dispersion, included via perturbation
theory. Specific knowledge on the systems enters via “molec-
ular” parameters within the EOS, such as hard-sphere radii,
dipole moments, etc. On the more empirical side, Wagner and
co-workers for example have developed a sophisticated meth-
od to correlate experimental data using a “bank” of polynomial-
like terms for the residual free energy.4 This procedure has been
successfully used to generate thermodynamic tables of various
systems, e.g., argon,5 methane,6 carbon dioxide,7 water,8 etc.
In this case the parameters of the EOS are not directly related
to molecular properties.

Recently, a new statistical-mechanical approach has been
proposed, the quasi-Gaussian entropy (QGE) theory, which
yields (thermal) equations of state based on knowledge of the
distribution of macroscopic (energy) fluctuations in the system.9-11

By using some (relatively simple) “quasi-Gaussian” distribu-

tion12 as a model based on general physical principles, an
analytical expression of the (residual) free energy is obtained.
Parameters are directly related to thermodynamic properties at
one arbitrary state point. Already a mathematically simple model
like the Gamma distribution provides an analytical expression
that accurately describes the thermal properties of, e.g., water
and the Lennard-Jones fluid over a considerable temperature
range.9,13-15 Extensions toward more sophisticated model
distributions resulted in so-called “multistate models”, where
the system’s phase space is divided into several parts, each being
described by different (simple) model distributions. Examples
are the double and triple Gamma state model for ideal gas
molecules,16 and the double state temperature14 and polarization/
magnetization models12 for macroscopic systems.

In this article we present for the first time a general derivation
of such thermal multistate models with an arbitrary number of
states. The corresponding (energy) distributions turn out to be
equivalent to the “mixing distributions” that are known from
the statistical literature.17 Several continuous and discrete
“mixtures” will be derived and the corresponding thermal EOS
applied to a range of different fluids that vary strongly in
polarity: argon, methane, ammonia, water, etc. Especially the
Gamma mixture of Gamma states provides a very accurate
description of the thermal behavior of these systems over a very
large temperature range, i.e., up to 15 times the critical
temperature.

2. Theory

In the canonical ensemble, the excess or confined ideal
reduced Helmholtz free energyA* is defined as9,11,16,18
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whereQ andQ*ref are the partition functions of the actual system
and of the reference state. The reference system is, as explained
in previous articles,9,13,16an “ideal gas” at the same temperature
and density without any semiclassical inter- and intramolecular
potential energy, confined within the same part of phase space
as the actual system. Because of “excluded volume” effects,
only a part of the phase space with volume fractionε is
accessible to the system, at least within the temperature range
of interest (see Figure 1a,b). This confinement gives an extra,
purely entropic contribution to the ideal reduced free energy
A′, i.e., with respect to an “ideal gas” without any semiclassical
potential energy that can have (fully) overlapping atoms:9,11,16,18

If there is no excluded volume effect,ε ) 1 and both free
energies are equal. For small molecules such as the Lennard-
Jones (LJ) fluid and water, the confinement can be well modeled
by a hard-sphere EOS.9,15,18,19The “potential” energy and its
temperature derivatives are not affected by the confinement:
U′ ) U*, C′V ) C*V, etc. For small molecules without
semiclassical internal degrees of freedom (like argon, water,
ammonia, and methane),A′ is equal toAr, the reduced or residual
free energy with respect to a usual ideal gas at the same
temperature and density.9

The ratioQ*ref/Q can be written as the moment generating
function17,20 (MGF) of the probability distribution function
F(U ′) of the “potential” energyU ′ of the system:9

Alternatively, it can also be expressed as the MGF of the
distributionFref(U ′) in the reference ensemble:

As explained previously,10 this latter expression provides a more
direct route to the free energy, as the parameters ofFref(U ′)
are temperature independent, whereas the parameters ofF(U ′)
are implicitly dependent on temperature, and the full temperature
dependence ofA* is in that case only obtained after solving
the so-called thermodynamic master equation.9,13 In this paper
we will use the reference distribution representation, eq 4.

In previous articles we used relatively simple model distribu-
tions to obtain the complete thermodynamics, i.e., thestatistical
stateof the system. Using a Gamma distribution, for example,
we thus obtained the Gamma state that was successfully applied
to, e.g., water9,18 and the LJ fluid15,19 over a considerable
temperature range. However, a single Gamma distribution is
not accurate enough to describe the thermodynamics of the LJ
fluid over a very large temperature range (10-15 times the
critical temperature). Therefore, an improved model has been
developed15 that describes the major part of the accessible part
of phase space by a single Gamma distribution and treats the
remaining part as a perturbation; see Figure 1c. This formed
the basis of a complete equation of state for the LJ fluid.

In this article, instead of directly modeling the accessible part
of phase space by one (relatively simple) model distribution,
we split the accessible part of phase space of the system, as

well as that of the reference state, into a number of regionsi )
1, ...,n (see Figure 1d) in such a way that the thermodynamics
inside each region is at every temperature given by one unique
simple statistical state:14,16

The excess free energy is therefore given by

whereεi ) Q*ref,i/Q*ref is the temperature independent volume
fraction of regioni with ∑i

n
εi ) 1, Ai

/ is the confined ideal
reduced free energy of regioni and∆Ai

/ ) Ai
/ - A1

/ is the free
energy difference with respect to some (arbitrarily chosen)
region 1.

Each regioni with free energy

can be described by a specific statistical state, defined by some
type of distribution Fref,i(U ′;ri) and set of parametersri.
Assuming that all regions can be described by the sametypeof
distributionFref(U ′) but with different parameters, we can sum
over all possible parameter sets{r} instead of regionsi. Hence
eq 7 can be rewritten as

where pε(r) is the multivariate (temperature independent)
discrete probability distribution of a certain parameter setr,
∆r ) r - r1 with r1 a yet unspecified set of parameter values,

A* ) -kT ln{ Q
Q*ref

} (1)

A′ ) -kT ln{ Q
Qref

} ) A* - kT ln ε (2)

Q*ref

Q
) 〈eâU ′〉 ≡ GU ′(â) ) ∫eâU ′F(U ′) dU ′ (3)

Q
Q*ref

) 〈e-âU ′〉ref ≡ GU ′
ref (-â) ) ∫e-âU ′Fref(U ′) dU ′ (4)

Figure 1. Schematic view of phase space: (a) “ideal gas” phase space;
(b) confinement to a fractionε due to excluded volume effects; (c)
confinement and a perturbation region∆ within the accessible part of
phase space; (d) confinement and division of the accessible part of
phase space into multiple regionsi with fractionsεi.

Q ) ∑
i)1

n

Qi (5)

Q*ref ) ∑
i)1

n

Q*ref, i (6)

A*(T) ) -kT ln{∑
i)1

n Qi

Q*ref, i

Q*ref,i

Q*ref
} )

-kT ln{∑
i)1

n

εi〈e
-âU ′〉ref,i}

) -kT ln{∑
i)1

n

εie
-âA* i} ) A1

/(T) - kT ln{∑
i)1

n

εie
-â∆A* i}

(7)

Ai
/ ) -kT ln〈e-âU ′〉ref,i ) -kT ln ∫e-âU ′Fref,i(U ′;ri) dU ′

(8)

A*(T) ) -kT ln{∑
{r}

pε(r)e-âA*(T;r)}

) A*(T;r1) - kT ln{ ∑
{∆r}

pε(∆r)e-â∆A*(T;∆r)} (9)

Quasi-Gaussian Entropy Theory J. Phys. Chem. B, Vol. 107, No. 6, 20031411



A*(T;r) ) -kT ln ∫e-âU ′Fref(U ′;r) dU ′, and∆A*(T;∆r) )
A*(T;r) - A*(T;r1).

Note that the magnitude of the difference in free energy for
different parameter sets∆A*(T;∆r) with respect tokT deter-
mines if the system gradually changes parameters or if a
“macroscopic” phase transition occurs when the temperature is
altered. If the system consists of “isolated” single molecules
(i.e., ideal gas condition),∆A*(T;∆r) ∼ O (kT), and so no phase
transition takes place; see Amadei et al.16 Similarly, a multistate
Gaussian approach was used by Hummer et al.21 to calculate
by Monte Carlo simulations the change in electrostatic solvation
free energy of a solute molecule, withn ) 6 or 8. Also in that
case ∆A*(T;∆r) ∼ O (kT). On the other hand, for the
electromagnetic double state models of Apol et al.,12 where the
free energy change isO (NkT), a macroscopic phase transition
does occur.

In the limit that the gaps between parameter values are
differentials, eq 9 becomes

whereFε(∆r) is the multivariate continuous probability distribu-
tion of the parameters∆r. This distribution is by definition
also temperature independent, but implicitly dependent on
density.

Without loss of generality we can define state 1 by the set of
average parameters:r1 ) 〈r〉E ) ∑{r}pε(r) r or ∫Fε(r)r dr
where〈‚〉ε denotes an average over the parameter distribution
(not to be confused with the ensemble average, eq 3); hence
∆r ) r - 〈r〉ε are the parameter fluctuations around the mean
parameter values. Note that∆A* may also depend onr1;
however, for brevity we will simply write∆A*(T;∆r). The
domain of each (fluctuating) parameter is determined by phys-
ical and mathematical restrictions. For example, in the case of
a positive Gamma state (see eq 16), one of the parameters is
the minimum energyU ′min. Clearly, there must be an overall
minimum energyU ′MIN, soU ′MIN e U ′min. Furthermore, the
probability distributionspε(∆r) andFε(∆r) must be such that
the sum and integral in eqs 9 and 10 are finite.

The overall energy distribution in the reference condition,
Fref(U ′), is simply given by the average

In the statistical literature,17 Fref(U ′) is known as a “mixing
distribution”, as it can be regarded as a “mixture” of distributions
Fref(U ′;r) of the same type with different parameter values,
mixed according to a parameter distributionpε(r) or Fε(∆r). It
must be stressed that the potential energy distribution of the
reference stateFref(U ′) is temperature independent; however,
the corresponding distribution of the actual systemF(U ′) does
depend on temperature:14

Furthermore, the parameter distributionspε(r) andFε(r) are by
definition temperature independent, whereas the probability of
observing the system in a state characterized by a specific
parameter setr is (cf. eq 12) again a function ofT. pε(r) and
Fε(r) can therefore also be interpreted as the probability
distributions of finding the system in a stater at infinite
tempertature. Hence, the ensemble average〈‚〉ref corresponds
to the parameter average〈‚〉ε; see also eq 11.

Clearly, for the mixing distributionFref(U ′) the overall
moment generating functionGU ′

ref (-â) ) 〈e-âU ′〉ref is a mix-
ture of the MGFs of the “basic” distributionsG̃U ′

ref (-â;r) )
∫e-âU ′Fref(U ′;r) dU ′:

Note that the previously derived thermal equations of state for
quantum-mechanical systems (solids)22 can be considered as a
special case of the general approach described above. In that
case the MGF of the (discrete) energy distributionGE L

0 (-∆â)
) ∏i

N g̃εli

0 (-∆â;r) was assumed to be theproductof N MGFs
of “basic” distributions with different parametersr (i.e., the
energy gap∆ε), so that the cumulant generating function17,20

(CGF) KE L

0

is a mixture of the CGFs of the basic distributionsk̃εli

0 ) ln g̃εli

0 .
As explained in ref 22, this corresponds to a special “clustering”
of the physical states of the system, such that the partition
function can be factorized in an inhomogeneous way. This
inhomogeneous factorization cannot be correct in the infinite
temperture limit. However, for solids with finite melting
temperature this is a good approximation. The completely
general splitting of phase space according to eqs 5 and 6 is
correct even in the infinite temperature limit.

The simplest possible distribution for the parameters is a
multivariate single state discrete distribution or a multivariate
Dirac delta function, for which eq 10 simply reduces to the
single statistical state defined by the average parameters. As a
more complicated model we can assign a nontrivial distribution
to one of the parameters,∆R1, e.g, and assume that the
distributions of the remainingp - 1 parameters are so “narrow”
around the average, that they still can be modeled as fixed:

3. Statistical States

The simple Gamma statistical state is rather successful in
describing the thermodynamics of both polar and apolar fluids
over a considerable temperature range. The model distribution
Fref(U ′) is for a simple Gamma state a three-parameter Gamma
distribution:20,23

A*(T) ) A*(T;r1) - kT ln ∫Fε(∆r)e-â∆A*(T;∆r) d∆r (10)

Fref(U ′) ) 〈Fref(U ′;r)〉ref ) 〈Fref(U ′;r)〉ε
) ∑

{r}
pε(r) Fref(U ′;r)

) ∫Fε(r) Fref(U ′;r) dr (11)

F(U ′) ) 〈F(U ′;r)〉 ) ∑{r}F(U ′;r) pε(r)e-âA*(T;r)

∑{r}pε(r)e-âA*(T;r)

)
∫F(U ′;r) Fε(r)e-âA*(T;r) dr

∫Fε(r)e-âA*(T;r) dr
(12)

GU ′
ref (-â) ) ∑

{r}
pε(r)G̃U ′

ref (-â;r)

) ∫Fε(r)G̃U ′
ref (-â;r) dr (13)

KE L

0 (-∆â) ≡ ln GE L

0 (-∆â) ) N∑
{r}

pε(r) ln g̃εli

0 (-∆â;r)

) N∫Fε(r) ln g̃εli

0 (-∆â;r) dr

(14)

pε(∆r) ) pε(∆R1) ∏
j)2

p

δ∆Rj

Fε(∆r) ) F(∆R1) ∏
j)2

p

δD(∆Rj) (15)
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whereU ′x is some extreme excess energy value. For apositiVe
Gamma distribution,θ > 0, U ′x ) U ′min is the energy
minimum soU ′ g U ′x and the distribution is asymmetric to
the right. For anegatiVe Gamma distribution,θ < 0, U ′x )
U ′max is the energy maximum soU ′ e U ′x and the distribu-
tion is asymmetric to the left. Only a positive Gamma distribu-
tion is physically completely correct (because every system must
have an overall energy minimum); a negative Gamma distribu-
tion must be regarded as a (good) approximation to a more
complex distribution.9 The moment generating function is

The free energy is via eqs 1 and 4 given byA*(T) ) -kT ln
GU ′

ref (-â). Differentiating the resulting expression inT and
equating the expressions ofU*(T), CV

/(T), and∂CV
/(T)/∂T at an

arbitrary temperatureT0 to the corresponding thermodynamic
valuesU0

/, CV0
/ , and∂CV0

/ /∂T (denoted by the zero subscript),
one can solve the parametersU ′x, a andθ in terms ofU0

/, CV0
/ ,

and ∂CV0
/ /∂T. We define, moreover,θ ) â0(1 - δ0)/δ0 with

â0 ) 1/kT0, andUΓ0
/ andCVΓ0

/ ) kaδ0
2, the excess energy and

heat capacity in the Gamma region. In this case, where a single
Gamma state is being used, the thermodynamic properties are
identical to those of the average Gamma region (denoted by a
subscriptΓ): e.g., UΓ0

/ ) U0
/, CVΓ0

/ ) CV0
/ , and ∂CVΓ0

/ /∂T )
∂CV0

/ /∂T. In this way the familiar expressions are obtained9,13

In these equations, as usual,

is a measure of the skewness of the energy distributionF(U ′)
within the Gamma region atT0, defined by the ratio of the third
and second central moments ofU ′, i.e.,M3,0[U ′] andM2,0[U ′],
evaluated atT0. For δ0 < 0, δ0 f 0, and 0< δ0 < 1, the
distribution is left-skewed, symmetrical (Gaussian) or right-
skewed, respectively. The model has three parameters (U ′x, a,
andθ of the reference state, or equivalentlyU0

/, CVΓ0
/ , andδ0)

that are related to three physical properties at the arbitrary
reference temperatureT0, e.g.,U0

/, CV0
/ , and∂CV0

/ /∂T.

A very simple set of mixing distributions arises if we assume
that different regions of phase space are characterized by
Gamma distributions with the same parametersa and θ, but
with a different extreme energy valueU ′x. From eq 18 follows
that in that case∆A*(T;∆r) ) U ′x - 〈U ′x〉ε ) U ′x - U ′xΓ )
∆U ′x, where we indicate the parameters of the average Gam-
ma state byΓ. From eqs 9 and 10 it immediately follows that

where G∆U ′x
ε (-â) is the moment generating function of the

distribution of∆U ′x, evaluated int ) -â, andAΓ
/(T) is given

by eq 18. Any model parameter distribution must have a finite
moment generating function for finiteâ. For U ′x as a continu-
ous variable, eq 24 directly yields a relation between the free
energyA* and the distributionFε(∆U ′x):

In case one assumesU ′x to be a discrete variable, the simplest
implementation (cf. Apol et al.22) is to setU ′x ) U ′X + l‚∆ε

where∆ε is the energy gap between different values ofU ′x,
and l ) 0, 1, .... Note that, similar to the Gamma distribution,
for a right-skewed distribution∆ε > 0 with U ′X ) U ′MIN, the
absolute energy minimum, whereas for a left-skewed distribution
∆ε < 0 with U ′X ) U ′MAX, the absolute energy maximum. In
this way, the free energy is related to the (T-independent)
probability pl of a certain levell as

3.1. Gaussian[U ′x] Mixture of Gamma[ U ′] States. The
simplest possible continuous parameter distributionFε(∆U ′x),
although not completely physically allowed (because it is
defined from-∞ to +∞), is the Gaussian distribution,20,23

Evaluating eq 25 yields withø0
/ ≡ CV0

/ - CVΓ0
/ ) σ2/kT0

2

Fref(U ′) )
|θ|θa-1

Γ(a)
(U ′ - U ′x)

a-1e-θ(U ′-U ′x) (16)

GU ′
ref (t) ≡ 〈etU ′〉ref ) etU ′x( θ

θ - t)
a

(17)

A*(T) ) AΓ
/(T) ) UΓ0

/ -
T0CVΓ0

/

δ0
-

TCVΓ0
/

δ0
2

ln(1 - δ) (18)

U*(T) ) UΓ
/(T) ) UΓ0

/ + (T - T0)CVΓ0
/ ( δ

δ0
) (19)

CV
/(T) ) CVΓ

/ (T) ) CVΓ0
/ ( δ

δ0
)2

(20)

S*(T) ) SΓ
/(T) )

CVΓ0
/

δ0
2

[δ + ln(1 - δ)] (21)

δ(T) )
T0δ0

T(1 - δ0) + T0δ0

(22)

δ0 )
T0

∂CVΓ0
/

∂T

2CVΓ0
/

+ 1 )
M3,0[U ′]Γ

2kT0M2,0[U ′]Γ
(23)

A*(T) ) AΓ
/(T) - kT ln G∆U ′x

ε (-â) (24)

A*(T) ) AΓ
/(T) - kT ln ∫Fε(∆U ′x)e

-â∆U ′x d∆U ′x (25)

A*(T) ) AΓ
/(T) - kT ln eâ∆ε〈l〉εGl

ε(-â∆ε)

) AΓ
/(T) - 〈l〉ε∆ε - kT ln∑

l)0

∞

ple
-â∆ε·l (26)

Fε(∆U ′x) ) 1

x2πσ2
exp{-

(∆U ′x)
2

2σ2 } (27)

A*(T) ) AΓ
/(T) - 1

2
T0ø0

/(T0

T)
) U0

/ -
T0CVΓ0

/

δ0
-

TCVΓ0
/

δ0
2

ln(1 - δ) + T0ø0
/(1 -

T0

2T)
(28)

U*(T) ) UΓ
/(T) - T0ø0

/(T0

T)
) U0

/ + (T - T0)CVΓ0
/ δ

δ0
+ T0ø0

/(1 -
T0

T) (29)

CV
/(T) ) CVΓ

/ (T) + ø0
/(T0

T)2

(30)

S*(T) ) SΓ
/(T) - 1

2
T0ø0

/(T0

T) (31)
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whereAΓ
/(T), UΓ

/(T), CVΓ
/ (T), SΓ

/(T), andδ(T) are given by eqs
18-22. The model has four parameters (U ′x, a, θ, andσ of the
reference state, or equivalentlyU0

/, CVΓ0
/ , δ0, andø0

/) that are
related to four physical properties at the arbitrary reference
temperatureT0, e.g.,U0

/, CV0
/ , ∂CV0

/ /∂T, and∂2CV0
/ /∂T2. ø0

/ is a
measure of the variance ofU ′ at T0 due to the spread inU ′x,
i.e.,σ2. The skewness of the distribution of the extreme energy
U ′x is, being a symmetric Gaussian, obviously zero. A mea-
sure of the skewness of the overall potential energy distribution
F(U ′) at T0, defined analogous toδ0 (eq 23), is given by

Just as for the single Gamma state, the heat capacityCV
/(T)

is monotonically descreasing with temperature. This statis-
tical state, which we can write symbolically as Gaussian-
[U ′x]×Gamma[U ′], must be regarded as an approximation to
a physically correct state, such as the following.

3.2. Gamma[U ′x] Mixture of Gamma[ U′] States. The
first continuous model distribution forFε(∆U ′x) that can be
completely physically allowed is the Gamma distribution,20,23

which has the same mathematical form as eq 16 but now
expressed in terms of fluctuations around the average. Evaluating
eq 25 and with a reparametrization similar to the single Gamma
state [i.e.,τ ) â0(1 - q0)/q0 and ø0

/ ≡ CV0
/ - CVΓ0

/ ) kbq0
2],

one obtains

whereAΓ
/(T), UΓ

/(T), CVΓ
/ (T), SΓ

/(T), andδ(T) are given by eqs
18-22. The model has five parameters (U ′x, a, θ, b, andτ of
the reference state, or equivalentlyU0

/, CVΓ0
/ , δ0, ø0

/, and q0)
that are related to five physical properties at the arbitrary

reference temperatureT0, e.g., U0
/, CV0

/ , ∂CV0
/ /∂T, ∂2CV0

/ /∂T2,
and∂3CV0

/ /∂T3. In this case,

is a measure of the skewness of the potential energy distribution
F(U ′) at T0 due to the distribution ofU ′x. Note that the central
momentsMn,0[U ′x] ) 〈(U ′x - 〈U ′x〉0)n〉0 of the extreme energy
U ′x are given in terms of ensemble averages; i.e., they are
moments of the principle temperature-dependent probability
distribution of finding the system in a state characterized by a
specific value ofU ′x; q0 is in fact also the skewness of this
distribution atT0.

The skewness of the overall potential energy distribution at
T0 (cf. eq 32) is given by the weighted average

Whenδ0 andq0 are both positive, the model can be considered
completely physically allowed because in that case the energy
is always larger thanU ′MIN. Just as for the single Gamma state
and the Gaussian mixture of Gamma states, the heat capacity
CV

/(T) is monotonically descreasing with temperature. The
model can be written symbolically as Gamma[U ′x]×Gamma-
[U ′].

Note that the above expressions are (mathematically) sym-
metrical with respect to exchange of the parameters{CVΓ0

/ , δ0}
and{ø0

/, q0}. One can, however, physically distinguish the two
sets of parameters. Because for positive Gamma states (δ0 >
0) the effect of a distribution ofU ′x values should be most
pronounced at low temperature (whereU ′ is relatively close
to U ′x), the parameters should be assigned in such a way that
the contribution of the “average” Gamma stateCVΓ

/ (T) to the
total heat capacityCV

/(T) increases with temperature. The
assignment can also be facilitated by comparing the parameter
sets of the Gaussian[U ′x]×Gamma[U ′] model with the Gam-
ma[U ′x]×Gamma[U ′] model, because in the former case the
parameters are mathematically distinct.

The Gamma[U ′x]×Gamma[U ′] expressions resemble those
of the perturbed Gamma state that was used for the Lennard-
Jones fluid over a very large temperature range (ref 15, eqs
46-49). One can convert the perturbed Gamma state parameters
∆Umax andγ to the Gamma mixture parametersø0

/ andq0 with
the help of the equationsCV0

/ - CVΓ0
/ ) ø0

/ ) 2∆UmaxγT0/
(T0 + γ)3 (cf. eq 52 of ref 15) and eq 39, where∂ø0

//∂T )
∂CV0

/ /∂T - ∂CVΓ0
/ /∂T ) -2∆Umaxγ(2T0 - γ)/(T0 + γ)4 (cf. eq

53 of ref 15). The result is

3.3. Negative Binomial[U ′x] Mixture of Gamma[ U ′]
States.In case one assumes that for some physical reason the
extreme energyU ′x can only assume discrete values separated
by an energy gap∆ε, one of the simplest discrete distributions
of theT-independent level probabilitypl is the negative binomial
distribution,17

∆0 ≡ M3,0[U ′]
2kT0M2,0[U ′]

)
T0

∂CV0
/

∂T

2CV0
/

+ 1 ) δ0(CVΓ0
/

CV0
/ ) (32)

Fε(∆U ′x) ) |τ|τb-1

Γ(b) (∆U ′x +b
τ)b-1

e-τ(∆U ′x+b/τ) (33)

A*(T) ) AΓ
/(T) -

T0ø0
/

q0(1 - q0)
-

Tø0
/

q0
2
ln (1 - q)

) U0
/ -

T0CVΓ0
/

δ0
-

TCVΓ0
/

δ0
2

ln(1 - δ) -

T0ø0
/

q0
-

Tø0
/

q0
2

ln(1 - q) (34)

U*(T) ) UΓ
/(T) -

T0ø0
/

1 - q0
( q
q0

)
) U0

/ + (T - T0)CVΓ0
/ ( δ

δ0
) + (T - T0)ø0

/( q
q0

) (35)

CV
/(T) ) CVΓ

/ (T) + ø0
/( q

q0
)2

(36)

S*(T) ) SΓ
/(T) +

ø0
/

q0
2
[q + ln(1 - q)] (37)

q(T) )
T0q0

T(1 - q0) + T0q0

(38)

q0 )
T0

∂ø0
/

∂T

2ø0
/

+ 1 )
M3,0[U ′x]

2kT0M2,0[U ′x]
(39)

∆0 ) δ0(CVΓ0
/

CV0
/ ) + q0( ø0

/

CV0
/ ) (40)

ø0
/ )

2∆UmaxγT0

(T0 + γ)3

q0 ) 3γ
2(T0 + γ)

(41)
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for l ) 0, 1, .... Evaluating eq 26 and defining the characteristic
temperatureΘ ) ∆ε/k, one obtains

where AΓ
/(T), UΓ

/(T), CVΓ
/ (T), SΓ

/(T), and δ(T) are given by
eqs 18-22 and whereN ) 1 - (1 - p)e-Θ/T andN 0 ) 1 -
(1 - p)e-Θ/T0. In these expressions we also useds )
(ø0

//k)(T0/Θ)2N 0
2/[(1 - p)e-Θ/T0] and ø0

/ ) CV0
/ - CVΓ0

/ . The
model has five parameters (U ′x, a, θ, s, and ∆ε of the
reference state, or equivalentlyU0

/, CVΓ0
/ , δ0, ø0

/, and Θ) that
are related to five physical properties at the arbitrary reference
temperatureT0, e.g., U0

/, CV0
/ , ∂CV0

/ /∂T, ∂2CV0
/ /∂T2, and ∂3

CV0
/ /∂T3. A measure of the skewness of the potential energy

distribution atT0 due to the distribution ofU ′x (cf. eq 39) is
given by

and the total skewness of the overall potential energy distribution
at T0 (cf. eq 32) is the weighted average

The thermal behavior of the heat capacityCV
/ is a combination

of the “classical” monotonic decrease with temperature (like
the Gamma state) with superimposed an initial increase followed
by a decrease to zero of the “quantum” contribution (like the

heat capacity of solids22). The statistical state can be symboli-
cally written as NBin[U ′x]×Gamma[U ′].

4. Results and Discussion

In this section the new statistical states, especially the
Gamma[U ′x]×Gamma[U ′] state, will be applied to several
systems consisting of small molecules without semiclassical
intramolecular degrees of freedom, for which the reduced or
residual propertiesXr (with respect to the ideal gas) are identical9

to the ideal reduced propertiesX′. Note that the ideal reduced
energy (U′) and temperature derivatives such as the heat capacity
(C′V) are also identical to the confined ideal reduced properties
(U* and CV

/). As indicated in the previous sections, for all
models a limited set of input data at one temperatureT0 is
sufficient, e.g., the “potential” energyU0

/ and some tempera-
ture derivatives such asCV0

/ , ∂CV0
/ /∂T, .... In the following

applications, the experimental value ofU0
/ is being used, and

the remaining two to four parameters of the model at hand
(CVΓ0

/ , δ0, ...) are obtained by fitting theU*(T) expression to
experimental data within some specified temperature interval.
This is conceptually equivalent to fitting a polynomial to selected
U*(T) data aroundT0 and evaluating the required energy
derivativesCV0

/ , ..., ∂nCV0
/ /∂Tn to obtain all parameters of the

model. Previously9,16,18we have shown that the QGE Gamma
model, eq 19, can extrapolate thermodynamic functions over
large temperature ranges only on the basis of information close
to T0. In this study, we would like to show, in general, the ap-
plicability of the Gamma[U ′x]×Gamma[U ′] model for vari-
ous systems and conditions. Therefore, to obtain the most
accurate parameters, we used a fitting procedure within a
specified temperature window.

4.1. Hard Core Yukawa Fluid. The first system that was
studied is the hard core Yukawa fluid, with an interaction
potential of the form

where the parameterz determines the interaction range. For a
valuez ) 1.8 the system is claimed to give results similar to
the Lennard-Jones system.24 The potential is, e.g., used as a
model potential for charged colloids with screened Coulombic
interactions. Duh and Mier-y-Tera´n24 have formulated an explicit
EOS for this system by means of an analytical continuation and
summation of the first five terms of the high-temperature free
energy expansion given by Henderson and co-workers25 within
the mean spherical approximation (MSA). At various state
points, the EOS very accurately reproduces the exact MSA
results of Henderson et al.,26 and for various values ofz, the
EOS yields coexistence lines that compare well with results from
Gibbs Ensemble Monte Carlo simulations, except very close to
the critical point. According to the EOS, forz ) 1.8 the critical
point (in reduced units) isTc = 1.24 andFNc = 0.319. Using
the EOS,U*(T) data at 22 isochores with densityFN ) 0.01,
0.03, 0.05(0.05)1.0 were generated from the coexistence line
up toT ) 6 (i.e.,∼5Tc), and the reference temperature was set
to T0 ) 1.5 at all isochores.

For this large temperature interval, a single Gamma state (eq
19) provides a very accurate description of the data from the
coexistence line on. Parameters are shown in Figure 2. Extension
of the temperature range up toT ) 20 (∼16Tc) and T ) 50
(∼40Tc) yields exactly the same parameters with the same
accuracy, suggesting that the Gamma distribution is a very good

u(r) ) {∞ r < σ

-ε
e-z(r-σ)/σ

r/σ
r g σ

(49)

pl ) (l + s - 1
l )(1 - p)lps s > 0, 0< p < 1 (42)
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+
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/
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-

TCVΓ0
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δ0
2

ln(1 - δ) -
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/(T0
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/(T0

Θ)2 N 0
2

(1 - p)e-Θ/T0
ln(N

p ) (43)
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/(T0

Θ) N 0
2
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× 1 - e-Θ/T

N
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/ + (T - T0)CVΓ0

/ δ
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+
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/(T0
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2
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N
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N 0
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CV
/(T) ) CVΓ

/ (T) + ø0
/(T0

T)2(N 0

N )2

e-Θ(1/T-1/T0) (45)

S*(T) ) SΓ
/(T) - ø0

/(T0
2

TΘ)N 0
2

N
e-Θ(1/T-1/T0) -

ø0
/(T0

Θ)2 N 0
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2(Θ

T0
)(1 + (1 - p)e-Θ/T0
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∆0 ) δ0(CVΓ0
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CV0
/ ) + k0( ø0
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CV0
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approximation to the real potential energy distribution within
the MSA. In fact, it was impossible to obtain reliable parameters
for the Gaussian[U ′x]×Gamma[U ′] or Gamma[U ′x]×Gam-
ma[U ′] state models (eqs 29 and 35). Obviously, the EOS (and
data used) are based on the MSA, but an analysis based on
fluid data from Monte Carlo simulations, for example, would
probably yield reasonably similar results.

Interestingly, at all densities the distribution is left-skewed
(δ0 < 0) due to the attractive interactions and the lack of
continuous repulsive forces. The distribution is most asymmetric
around the critical density. For negative Gamma states, as
encountered here, there is a singular temperatureT/ ) -T0δ0/
(1 - δ0) > 0 for δ0 < 0 at which the thermodynamics is
undefined.9 In Figure 2 this temperature is shown, together with
the coexistence lineTcoex. At all densities,T/ is well belowTcoex.
Interestingly, atFN f 0 the singular temperature goes exactly
to zero, meaning that there is no singularity in the ideal gas
limit, as should be. Finally, also the infinite temperature energy
limit Uinf

/ ) limTf∞U*(T) ) U0
/ + T0CVΓ0

/ /(1 - δ0) (see ref 9)
is shown in Figure 2, along with exact MSA results from
Henderson.26 Both sets match extremely well, again showing
that a single Gamma state is a perfect description of the hard
core Yukawa fluid within the MSA.

4.2. Lennard-Jones Fluid.We also reanalyzedU*(T) data
of the truncated and shifted Lennard-Jones (LJ) system,15 for
10 isochores with density (in reduced LJ units)FN ) 0.1(0.1)1.0
and temperatures from the coexistence line up toT ) 20. The
data are identical to those used to parametrize a full EOS for
the LJ system based on a perturbed Gamma state.15 The critical
point of the truncated and shifted LJ system usingNVT
simulations (without long-range and shift corrections) isTc =
1.29 andFNc = 0.348 (ref 15). The reference temperature was
set toT0 ) 2.0.

For such a large temperature interval (∼15Tc) a single Gamma
state (eq 19) is not accurate enough. However, for a more
restricted temperature range (T e 6.0 ∼ 4Tc) a single Gamma
state is accurate for “liquid” isochores (FN g 0.6). The Gamma-
[U ′x]×Gamma[U ′] state model (eq 35), however, perfectly

describes the simulation data over the entire temperature range.
Parameter values for the 10 isochores, obtained by fitting eq
35 to theU*(T) simulation data, are given in Figure 3. Also
the parameter values of the perturbed Gamma state expression
from ref 15, converted to Gamma[U ′x]×Gamma[U ′] state
parameters via eq 41, are shown in the same figure. There is a
perfect agreement between the two sets of parameter values,
indicating that the perturbed Gamma state is in fact just a good
approximation to the Gamma[U ′x]×Gamma[U ′] state, and the
“average” Gamma state of the Gamma[U ′x]×Gamma[U ′]
model coincides with the Gamma state region of the perturbed
Gamma state model, cf. the white region in Figure 1c,d. As
explained in section 3.2, the parameters were assigned in such
a way that the contribution of the average Gamma state to the
heat capacity is increasing with temperture. The asymmetry of
the basic Gamma distributions of the mixture is more or less
density independent and very positive (δ0 ∼ 0.98), and the
Gamma heat capacityCVΓ0

/ increases monotonically with den-
sity. The distribution ofU ′x is left-skewed (q0 < 0) for
densities below∼0.5, and right-skewed for larger densities. In
this way also the overall potential energy distribution changes
from left-skewed at low density (∆0 < 0, cf. eq 40) to right-
skewed (∆0 > 0) at high density, due to a changing balance
between attractive and repulsive interactions. Similar behavior
has been observed for water and methane14 and in the previous
analysis of the LJ fluid;15 see also section 4.8. From an analysis
of the relative contribution ofCVΓ

/ (T) to the total heat capacity
CV

/(T) it follows that the mixing contribution is especially
important for gas densities at relatively low temperature.

4.3. Argon. Data of the residual energyUr ) U* of argon
were obtained from the equation of state of Tegeler, Span, and
Wagner5 at 25 isochores (0.001, 0.005, 0.01, 0.05, 0.1, 0.25,
0.5, 0.75, 1, 1.5, 2, 2.5(2.5)35 mol/dm3) from the coexistence
line to 700 K. The critical point is located atTc ) 150.7 K and
FNc ) 13.41 mol/dm3. The reference temperature was set to
T0 ) 180 K.

A single Gamma state model (eq 19) for temperatures up to
700 K (∼5Tc) is not accurate enough, except at high densities
(FN g 22.5 mol/dm3), just like for the LJ system. For a more
restricted range up to 300 K (∼2Tc), a single Gamma state

Figure 2. ParametersU0
/, CVΓ0

/ and δ0 of the Gamma[U ′] state, eq
19, for the hard core Yukawa fluid at various densities forT e 6 with
T0 ) 1.5 ([). Also shown are the coexistence lineTcoex(s), the singular
temperatureT/ of the negative Gamma state (- - -), and the infinite
temperature potential energy of the Gamma state,Uinf

/ ([), together
with values of Henderson et al. within the MSA26 (×). The critical
point is indicated by *.

Figure 3. Parameters of the Gamma[U ′x]×Gamma[U ′] state for the
Lennard-Jones fluid at various densities withT0 ) 2.0: (1) direct use
of eq 35 ([); (2) conversion of perturbed Gamma state parameters
(ref 15) using eq 40 (s).
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provides an accurate description almost from the coexistence
line for typical “gas” (FN j 7.5 mol/dm3) and “liquid” densities
(FN J 22.5 mol/dm3). For intermediate densities a single Gamma
state still provides a fair description; see also Figure 5. The
corresponding parameters are shown in Figure 4. A Gamma-
[U ′x]×Gamma[U ′] model (eq 35), however, provides an
excellent description of the system over the entire temperature
range, including the vicinity of the critical point. In Figure 4
the corresponding parameters are shown as a function of density.
There is a clear similarity between these parameters and the
parameters of the LJ fluid (Figure 3). Also in this case the
Gamma distributions of the mixture are very right-skewed
(δ0 ∼ 0.96-0.98). In contrast to the decrease ofCV0

/ of the
single Gamma state model between 12.5 and 20 mol/dm3, CVΓ0

/

in the Gamma[U ′x]×Gamma[U ′] model increases monotoni-
cally; this is compensated by the behavior ofø0

/, as CV0
/ )

CVΓ0
/ + ø0

/. Figure 5 shows the critical isochore (FN ) 13.41
mol/dm3) with the single Gamma states (T e 300 K, T e 700

K) and the Gamma[U ′x]×Gamma[U ′] model that is able to
describe the behavior ofU*(T) and CV

/(T) over the whole
temperature range. Obviously, the Gamma mixture model cannot
describe the true divergence ofCV

/ at the critical point.
However, part of the steep increase ofCV

/ that is also present in
general close to the coexistence line at other noncritical
isochores, can be accurately described by the model. Note that
the parameters are very smooth functions of density, even around
the critical point. A detailed description of the critical point
and its close vicinity would require additional theory, e.g.,
renormalization group theory with a “crossover” equation of
state.27-29

4.4. Methane. Data of the residual energyUr ) U* of
methane (CH4) at 13 selected isochores (0.5, 1.0, 2.5(2.5)25.0
and 28.0 mol/dm3) were obtained from the NIST Chemistry
Webbook,30 on the basis of the equation of state of Setzmann
and Wagner6 from the coexistence line up to 621 K. The critical
parameters areTc ) 190.6 K andFNc ) 10.14 mol/dm3. The
reference temperature was set toT0 ) 301 K.

Just as for the LJ system and argon, for this temperature range
(up to∼3Tc), a single Gamma state (eq 19) accurately describes
“gas” isochores (FN e 5 mol/dm3) and “liquid” isochores
(FN g 17.5 mol/dm3). The corresponding parameters are given
in Figure 6, and the behavior in density is very similar to argon.
The Gamma[U ′x]×Gamma[U ′] model (eq 35), however, per-
fectly describes the data over the entire temperature range,
including the coexistence line and the vicinity of the critical
point for all isochores. Parameters are shown in Figure 6, and
also these parameters are very similar to those of the LJ system
and argon (Figures 3 and 4): the Gamma energy distributions
of the mixture are rather right-skewed (δ0 ∼ 0.6-0.85) but less
asymmetric than for the LJ system and argon. At∼20 mol/dm3

and above, theCVΓ0
/ values of a single Gamma state and the

Gamma[U ′x]×Gamma[U ′] model virtually coincide, indicat-
ing that the influence of the “mixture” is negligible (ø0

/ ≈ 0),
so the mixture model reduces to the single “average” Gamma
model. Hence the values ofq0 are numerically rather ill-defined
in this region; i.e., the model is rather insensitive to the precise
value ofq0. In the figure this is indicated by open symbols. Up
to ∼20 mol/dm3, the behavior ofq0 is (within the noise) smooth

Figure 4. Parameters of the Gamma[U ′x]×Gamma[U ′] state, eq 35,
for argon at various densities forT e 700 K ([) and of the single
Gamma state, eq 19, forT e 300 K (s) with T0 ) 180 K.

Figure 5. Potential energyU* and heat capacityCV
/ of argon vs

temperature at the critical isochore 13.41 mol/dm3 and Gamma[U ′]
and Gamma[U ′x]×Gamma[U ′] state models (eqs 19 and 35).

Figure 6. Parameters of the Gamma[U ′x]×Gamma[U ′] state, eq 35,
for methane at various densities ([) and of the single Gamma state,
eq 19 (s) with T0 ) 301 K. Ill-defined parameter values of the Gamma
mixture model (see text) are indicated by].
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and similar to the previous systems. In Figure 7, the data of
U*(T) and CV

/(T) for the near-critical isochoreFN ) 10 mol/
dm3 are shown, together with the single Gamma state model
and Gamma[U ′x]×Gamma[U ′] model. The latter model per-
fectly reproduces the potential energy and heat capcity, including
a very large part of the divergence ofCV

/ at the critical point,
even though the parameters such as for argon are all very
smoothly depending on density, even around the critical point.
Note that the behavior ofCV

/(T) at intermediate densities
(including the critical one) is very regular, i.e., smoothly
decreasing with temperature, in contrast to the behavior that
was observed using older experimental data.14

4.5. Ammonia. Data of the residual energyUr ) U* of
ammonia (NH3) at 23 isochores (0.01, 0.1, 0.25, 0.5, 1.0, 1.5,
2.5(2.5)42.5 mol/dm3) were obtained from the NIST Chemistry
Webbook,30 on the basis of the equation of state of Tillner-
Roth, Harms-Watzenberg, and Baehr31 from the coexistence line
up to 700 K. The critical point isTc ) 405.4 K andFNc ) 13.21
mol/dm3. The reference temperature was set toT0 ) 430 K.

For the given temperature range (∼1.7Tc), a single Gamma
state is actually very accurate for typical “gas” (FN e 4 mol/
dm3) and “liquid” densities (FN g 20 mol/dm3). For intermediate
densities the accuracy is good, but only close to the coexistence
line, there is a small temperature window with some deviations.
Parameters are shown in Figure 8.

The Gamma[U ′x]×Gamma[U ′] model (eq 35) significantly
improves the accuracy at those intermediate densities and
provides an excellent description from the coexistence line up
to 700 K at all isochores. The parameters are shown in Figure
8. There are two density regions that show some special
features: at high density (FN g 30 mol/dm3) the parametersδ0

andq0 are virtually equal, meaning that in fact the mixture model
reduces to a single (positive) Gamma state. In the figure clearly
the values ofδ0 of the single Gamma state coincide at high
density with theδ0 values of the Gamma mixture model, and
the values ofø0

/ ()CV0
/ - CVΓ0

/ ) and q0 are therefore numeri-
cally rather ill-defined. In the figure they are indicated by open
symbols. The other region is at very low density (FN < 2.5 mol/
dm3), where the “average” Gamma state parametersCVΓ0

/ and
especiallyδ0 are rather ill-defined: for a broad range ofCVΓ0

/

andδ0 values the model provides virtually the same behavior.

From the analysis of the relative contribution ofCVΓ
/ (T) to the

total heat capacityCV
/(T) it follows that at low density the heat

capacity is completely determined by the parametersø0
/ andq0.

Probably the temperature range is too small to define in a stable
way the “average” Gamma state that should dominate at high
temperature. Hence in Figure 8 the parametersCVΓ0

/ andδ0 are
in this region also indicated by open symbols. At all isochores,
the energy distributions of the mixture are rather right-skewed
(δ0 ∼ 0.6-0.7), but significantly less asymmetric than for the
LJ system and argon.

4.6. Water.Data of the residual energyUr ) U* of water at
34 isochores (0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5,
2.0, 2.5(2.5)60.0 mol/dm3) were obtained from the EOS by Saul
and Wagner8 from the coexistence line up to 1273 K (∼2Tc).
The critical point is located atTc ) 647.1 K andFNc ) 17.87
mol/dm3. The reference temperature was set toT0 ) 673 K.

In accordance with previous results,9,13,14,18for all isochores
already a single Gamma state model (eq 19) very accurately
describes the data within this temperature range, except for a
small temperature window of at most∼5 K located at the
coexistence line for 2.0e FN e 25 mol/dm3. Parameters are
shown in Figure 9. For densities below 32 mol/dm3, the potential
energy distribution is left-skewed (δ0 < 0) due to predominant
attractive interactions, above that density the distribution is right-
skewed (δ0 > 0).

Experimental data over an even larger temperature range are
difficult to obtain; therefore we used the Saul and Wagner EOS
to generate data up to 2073 K (∼3Tc). Although the EOS has
been parametrized up to 1273 K, its description of shock-wave
experiments8 suggests that it might be used to extrapolate over
a larger temperature range. Again, a single Gamma state model
perfectly describes the data, with parameters that are almost
identical to the parameters up to 1273 K (see Figure 9). This
confirms that a single Gamma distribution is an excellent model
for the potential energy distribution of water.

Because the distributiuon is so close to a single Gamma
distribution, it is somewhat difficult to obtain reliable parameters
for mixing distributions, such as a Gaussian[U ′x]×Gamma-
[U ′] (eq 29) or Gamma[U ′x]×Gamma[U ′] model (eq 35). In
fact, a Gaussian[U ′x]×Gamma[U ′] model does not improve

Figure 7. Potential energyU* and heat capacityCV
/ of methane vs

temperature at the near-critical isochore 10 mol/dm3 and Gamma[U ′]
and Gamma[U ′x]×Gamma[U ′] state models (eqs 19 and 35).

Figure 8. Parameters of the Gamma[U ′x]×Gamma[U ′] state, eq 35,
for ammonia at various densities ([) and of the single Gamma state,
eq 19 (s) with T0 ) 430 K. Ill-defined parameter values of the Gamma
mixture model are indicated by]; see text.
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the accuracy close to the coexistence line. On the other hand,
the Gamma[U ′x]×Gamma[U ′] model is able to describe the
residual energy up to the coexistence line, including the vicinity
of the critical point. Parameters are shown in Figure 10, together
with the single Gamma state parameters. In contrast to the
previous systems,CVΓ0

/ is not monotonically increasing with
density but behaves rather similar toCV0

/ of the single Gamma
state, indicating that a single Gamma state is already a very
accurate model. It follows from the figure, as well as from
evaluating the relative contribution of the average Gamma state
CVΓ

/ (T) to the total heat capacityCV
/(T), that the effect of the

mixing distribution is most pronounced at “gas” densities below
the critical isochore. For typical “liquid” isochores (FN g 25
mol/dm3) the average Gamma state is by far the dominant part
(more than 95-99% contribution to the heat capacity; note that
in this region theCVΓ0

/ of the single Gamma and Gamma
mixture models virtually coincide). The parametersø0

/ andq0

are therfore numerically less well defined, and hence the
“irregularities” of these parameters in density are very likely
not physically meaningful; in fact, there is a range ofq0 (and
ø0
/) values that give almost identical results. In the figure they

are therefore indicated by open symbols. It is interesting to note
that the density behavior of the parameters around the critical
point is very smooth, as with the other systems. It is worth
remarking that, similar to the case of methane, the irregular
behavior ofCV

/(T) that was observed in a previous analysis at
high density9,14 must be attributed to artifacts of the older
experimental data, very likely the mathematical shape of the
function to correlate raw experimental measurements.

4.7. SPC/E Water.To investigate the behavior of water over
a very large temperature interval in more detail, molecular
dynamics simulations were performed with the extended simple
point charge (SPC/E) water model32 at a liquid density of 55.509
mol/dm3 ()1.0 g/cm3) for temperatures between 250 and 2800
K. This model has been chosen because it reproduces in the
best way, among the different (non)polarizable water models,
various static and dynamic properties of water.33-35 Simulations
were performed using the GROMACS 3.0 software package,36-38

with periodic boundary conditions, particle mesh Ewald sum-
mation39,40(PME) with conducting boundary conditions for the
long-range electrostatic interactions, and a leapfrog Verlet
integration algorithm. The temperature was kept constant by a
Berendsen thermostat41 with coupling timeτT ) ∆t mimicking
a Gaussian thermostat.42,43 Constraints were handled by
SETTLE.44 Each state point was equilibrated for 100 ps, and
the total length of the production runs (tsim) is given in Table 1,
as well as the values of the time step∆t and average potential
energyU*. Error bars were determined by the block-average
method.45-47 The heat capacity was calculated from fluctuations
of the total potential energy.15,16

A single Gamma state model was fitted to theU*(T) data
over the entire temperature range, as well as in the low (250-
800 K) and high-temperature range (1000-2800 K). Also the
Gaussian and Gamma mixtures of Gamma states were used.
Parameters are presented in Table 2, and some models are shown
in Figure 11. Although a single Gamma state fitted over the
complete temperature range gives a very reasonable description
of the potential energy, some discrepancies in the heat capacity
are visible. A Gamma state fitted at low temperature (250-
800 K) provides locally a very accurate model, but extrapola-
tions to 2800 K are less accurate. However, the Gaussian-
[U ′x]×Gamma[U ′] and Gamma[U ′x]×Gamma[U ′] models
provide an excellent description over the whole temperature
range, including “metastable” states at low temperature. Interest-
ingly, the parametersCVΓ0

/ and δ0 of both the Gaussian and

Figure 9. Parameters of the single Gamma[U ′] state, eq 19, for water
at various densities withT0 ) 673 K: (1) based on data within the
rangeT e 1273 K ([); (2) based on data within the rangeT e 2073
K (s).

Figure 10. Parameters of the Gamma[U ′x]×Gamma[U ′] state, eq
35, for water at various densities forT e 1273 K ([) and of the single
Gamma state, eq 19, forT e 1273 K (s) with T0 ) 673 K. Ill-defined
parameter values (see text) are indicated by].

TABLE 1: Molecular Dynamics Results of SPC/E Water as
a Function of Temperature at 55.509 mol/dm3

T (K) ∆t (fs) tsim (ps) U* (kJ/mol) CV
/ [kJ/(mol K)]

250 3.0 12000 -49.5199(22) 0.0628
275 2.0 12000 -47.9928(16) 0.0750
300 2.0 9000 -46.4680(14) 0.0545
350 2.0 6500 -43.7998(14) 0.0449
400 1.0 5000 -41.6348(14) 0.0404
500 1.0 3000 -37.9149(17) 0.0315
600 1.0 3000 -34.9234(17) 0.0259
800 0.5 1500 -30.2647(24) 0.0198

1000 0.5 1500 -26.6189(24) 0.0162
1200 0.5 1500 -23.5697(24) 0.0138
1600 0.25 1400 -18.5772(26) 0.0111
2000 0.25 1400 -14.4875(27) 0.0093
2400 0.125 650 -10.9801(43) 0.0082
2800 0.125 650 -7.8892(46) 0.0073
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Gamma mixture models are very similar to the values ofCV0
/

and δ0 of the single Gamma state model fitted at high
temperature; see Table 2. This is also an indication that the
assignment of the parameters{CVΓ0

/ , δ0} and {ø0
/, q0} is

physically the correct one. For comparison, in the table also
parameter values are shown of a single Gamma state using
U*(T) data of real water.8 The parameters are remarkably similar
to those of SPC/E, taking into account the lowering of potential
energy in SPC/E due to the “self-polarization” energy32 of 5.22
kJ/mol.

4.8. General Remarks.In Figure 12 we show the asymmetry
of the potential energy distribution∆0 (eq 32) for all systems
as a function of the scaled densityFN/FNc at a common reference
temperatureT0 ) 1.5Tc. The figure suggests several points for
systems of small molecules:

(1) A system with only (continuous) attractive interactions
(like the hard core Yukawa fluid) is characterized by a left-
skewed potential energy distribution. The maximum skewness
occurs very close to the critical point. With a further increase
of density, the number of interactions per molecule also
increases, and so using a form of the central limit theorem,20 it
is plausible that the distribution of the total potential energy,
being the sum of all individual contributions, becomes more
Gaussian, i.e.,δ0 f 0.

(2) (Continuous) repulsive interactions (present in all other
systems) superimpose an extra effect on the previous density
behavior of the skewness∆0: with increasing density repulsions
become more pronounced, resulting in a (very) asymmetric
right-skewed distribution. This shifts the density of maximum
left-skewness to values lower than the critical density.

(3) Roughly speaking, the polarity of the molecules simply
shifts the∆0 curves upward or downward. The curves of very
apolar systems (LJ fluid, argon, methane) are all very similar,
as to be expected. For ammonia, and especially water, which
are (very) polar, the long-range electrostatic interactions are at
relatively low density (∼0.5FNc) very attractive and result in a
distribution that is much more left-skewed than systems with
only van der Waals interactions (LJ, argon, methane). At higher
density, the long-range character of the Coulombic interactions
results via the central limit theorem again in a more Gaussian
like distribution. Indeed, at liquid density, the potential energy
distribution of water is less asymmetric than that of ammonia,
which in turn is less asymmetric than pure van der Waals
systems. In this respect, water is a much “simpler” liquid than
argon, as the energy distribution of the former is much more
Gaussian and a single Gamma state is able to extrapolate over
a much larger temperture range than in the case of argon.
Moreover, within a temperature range of∼2Tc, in the case of
water a single Gamma state can accurately describe the
thermodynamic data at all isochores, whereas for argon a single
Gamma state only provides an accurate model at low and high
densities within the same temperature range. Interesting, it seems
that the complexity of a system according to the “distribution
point of view” is the opposite of the “molecular Hamiltonian
point of view”.11

Another interesting point is the fact that for typical liquid
densities the Gamma distributions of the “mixtures” are all very
right-skewed (δ0 ∼ 1), especially for the LJ fluid, argon, and
SPC/E water. This suggests that the potential energy “landscape”
of these systems may be described as a collection of almost
harmonic wells (for whichδ0 would be exactly unity13,16). This
also fits very well with the idea of a (potential) energy landscape
of harmonic wells, as worked out for liquids and glasses by

TABLE 2: Various Statistical States of SPC/E Water and Experimental Water at 55.509 mol/dm3 with T0 ) 300 K

model T range (K) U0
/ (kJ/mol) CVΓ0

/ [kJ/(mol K)] δ0 ø0
/ [kJ/(mol K)] q0

SPC/E
Gamma[U ′] 250-2800 -46.4680 0.0450 0.7613
Gamma[U ′] 250-800 -46.4680 0.0554 0.5701
Gamma[U ′] 1000-2800 -39.9160 0.0236 0.8989
Gaussian[U ′x]×Gamma[U ′] 250-2800 -46.4680 0.0199 0.9049 0.0398
Gamma[U ′x]×Gamma[U ′] 250-2800 -46.4680 0.0106 0.9621 0.0460 0.3697

Water
Gamma[U ′] 315-800 -41.3378 0.0461 0.6452

Figure 11. Potential energyU* and heat capacityCV
/ of SPC/E water

vs temperature atFN ) 55.51 mol/dm3: simulation data ([) and some
QGE statistical states withT0 ) 300 K.

Figure 12. Asymmetry∆0 of the potential energy distributionF(U ′)
for various systems as a function of density at a common reference
temperatureT0/Tc ) 1.5.
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Stillinger and Debenedetti48-50 and for biomacromolecules by
Amadei et al.51 Interestingly, the potential energy wells of
(experimental) water, ammonia, and methane are less harmonic
(δ0 ∼ 0.5-0.85) than those of the LJ fluid, argon, and the
(simulated) SPC/E water model. Further reseach in this direction
is in progress.

5. Conclusions

In this article a general derivation of multistate thermal models
for fluid systems has been given, on the basis of a physical
partitioning of the system’s phase space into multiple regions.
Within the framework of the quasi-Gaussian entropy (QGE)
theory, the (residual) Helmholtz free energy is given by the
moment generating function of the potential energy distribution.
For the new multistate models, this distribution is a “mixture”
of “simple” distributions, mixed according to some parameter
distribution.

Some multistate models have been derived using a mixture
of Gamma distributions for the potential energyU ′, each with
a different value of the extreme energyU ′x (i.e., potential
energy minimum in most cases). They have been applied to
and tested on several small molecules: the hard core Yukawa
fluid, the Lennard-Jones (LJ) fluid, argon, methane, ammonia,
water, and the SPC/E water model. In almost all systems, the
Gamma[U ′x]×Gamma[U ′] model, eq 35, is really necessary
to describe very accurately at all isochores, from ideal gas to
dense liquid, the system’s thermal behavior over an extended
and very large temperature range (up to∼15Tc). Only the hard
core Yukawa fluid and water can be very well described by a
single Gamma model over a considerable temperature range.
This suggests some kind of inverse relation between the
complexity of the molecular Hamiltonian and the complexity
of the macroscopic energy distribution of the system.

The previously derived “perturbed Gamma state” model as
used for the LJ fluid, is in fact just a good approximation to
the more physical Gamma[U ′x]×Gamma[U ′] model. In gen-
eral, fluids are well described by a continuous mixture of
(Gamma) distributions. However, in the case of systems
involving large flexible molecules, e.g., proteins, the discrete
(negative binomial) mixture of Gamma states (eq 44), might
be used.16,52

Molecular properties are (indirectly) reflected in the shape
of the potential energy distribution, e.g., the skewness∆0 (eq
32): attractive van der Waals forces result in a left-skewed
distribution; (continuous) repulsive forces superimpose a (strongly)
right-skewed contribution that dominates at high density, and
the presence of long-range electrostatic interactions reduces the
asymmetry again at higher densities, resulting in a simpler, more
Gaussian-like thermodynamics.

The Gamma[U ′x]×Gamma[U ′] model, especially, may
well serve as the basis of a complete theoretical density-
temperature EOS, or be used to smooth and correlate raw
experimental date, instead of via polynomial-like terms.

The Gamma distributions of the mixture are typically rather
right-skewed, with the skewness parameterδ0 close to unity
(the harmonic limit). This suggests an interesting relation
between the Gamma[U ′x]×Gamma[U ′] QGE model and the
(Gaussian) energy landscape picture of (supercooled) liquids
and glasses, as well as macromolecules in solution. Work into
this direction is in progress.

Finally, the multistate QGE models as presented here are also
directly applicable to (chemical) mixtures, e.g., mixtures of LJ
fluids or argon with methane. The QGE models can provide

the oVerall free energy and related thermodynamic functions,
including, as shown very recently (ref 53), the partial molar
properties.
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