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Via della Ricerca Scientifica, 1 I-00133 Roma, Italy

ReceiVed: June 13, 2002; In Final Form: August 27, 2002

In this work we combine molecular dynamics simulations with the quasi-Gaussian entropy (QGE) theory to
model the statistical mechanics and thermodynamics of ionic solutions. Results showed that the use of the
gamma state model provides an excellent theoretical description of the solution behavior over a wide range
of temperature. Such an approach makes possible, at relatively low computational costs, the evaluation of
partial molar properties such as free energy and entropy which require a heavy computational effort to be
estimated with the usual procedures.

Introduction

Accurate methods to obtain the statistical mechanics and
thermodynamics of simulated condensed systems are clearly of
great importance as they can provide essential information for
describing and predicting the behavior of a molecular complex
system. Despite the great importance of the development of the
simulation methods, the evaluation of essential thermodynamic
properties, such as free energy and entropy, and of many related
observables, are very difficult, and typically the methodologies
used can only provide limited “local” information, i.e., a few
thermodynamic properties at a given temperature and density,
requiring a rather heavy computational effort. Moreover, the
basic theoretical principles underlining these methods, i.e.,
thermodynamic integration (TI) and cumulant expansion (CE),
can be affected by severe problems due to the slow convergence
of the average derivatives involved in TI or the physical
incoherence of the truncated expansion used in CE. It is therefore
a challenge in theoretical physical chemistry to develope and
optimize more analytical methods on the bases of sound theories,
providing the thermodynamics of a simulated system at rela-
tively low computational costs. In this paper we use the quasi-
Gaussian entropy (QGE)1 theory to describe the complete
thermodynamics of a solute-solvent system. Such a theoretical
method was recently successfully applied to obtain the statistical
mechanics and thermodynamics of flexible molecules simulated
in vacuo.2 In this work we extend this approach in order to
obtain partial molar properties for a liquid mixture defined by
a solvent and a highly diluted solute.

Theory
Basic Derivations. For a fluid state system ofN solute

molecules at high dilution, the partition function can be
expressed as3,4

whereU ′ is the excess energy, basically the potential energy

of the system including the quantum vibrational ground-state
energy,V the overall volume of the system,xin the generalized
internal (classical) coordinates of a single solute molecule with
fixed rototranslational coordinates, andx the (classical) coor-
dinates of then solvent molecules within the solute molecular
volume V/N, i.e., the integration limits are defined byV/N.
Moreoverm̃j is the mass tensor of thejth solvent molecule,M̃
the mass tensor of the solute, andΘ a temperature-dependent
factor including the quantum corrections, defined as follows:4

with 1 + γ and 1+ γs the symmetry coefficient for the solute
and the solvent respectively,d andds the number of classical
degrees of freedom in the solute, andn solvent molecules and
Qref,s

qm and Qref
qm the solvent and solute molecular quantum

vibrational partition functions, respectively, as defined in
previous papers.1,4 Finally, the star denotes an integration only
over the accessible configurational space of the system as
obtained within the solute molecular volumeV/N. Defining a
reference condition as the system at the same temperature and
density but without excess energy, with partition function

we can express the excess (Helmoltz) free energyA′ ) A -
Aref ) - kT ln Q/Qref as1-5

whereε is the fraction of available configurational space2
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The entropic term due to a possible confinement of the system
in configurational space,k ln ε, is usually associated with hard-
body excluded volume.1 The ensemble averages in eq 4 can
also be expressed as

whereFref(U ′),F(U ′) are the probability distribution functions
of the excess energyU ′ in the reference and actual conditions.
Note that the use ofFref or F is fully equivalent and for a given
model distribution they provide identical results. Instead of using
a perturbation expansion, in the QGE theory the free energy is
obtained by modeling such a distribution and, hence, its moment
generating function6,7 or Laplace transform, defined in eqs 6
and 7. Using the central limit theorem and a few basic physical
and mathematical principles, we can restrict the set of acceptable
distribution functions of a macroscopic system to the subgroup
of “quasi-Gaussian” distributions, obtained by the convolution
of unimodal-like distributions.1,2,5,8 Each model distribution
function of the excess energy provides the complete temperature
dependence, the statistical state of the system. It has been
previously shown1,2,9-11 that one of the simplest quasi-Gaussian
distribution, the gamma distribution, yields a simple and fully
physically acceptable statistical state, providing an excellent
model of the fluid state thermodynamics over a wide range
of temperature and density (i.e., gas to liquid experimental
water and methane and simulated Lennard-Jones fluids and
large organic molecules). We can rewrite the total excess free
energy as

wherena′s + a′ is the excess free energy of the system defined
by the solute molecular volume which containsn solvent
molecules and a single solute molecule,a′s is the partial
molecular excess (Helmoltz) free energy of the solvent and
clearlya′ is the partial molecular excess (Helmoltz) free energy
of the solute. It is worth noting that the solvent and solute partial
molecular excess free energies are obtained at fixed pressurep
for the actual fluid and not in general at fixed pressure for the
reference state. This is because the reference state is defined
with the same volume and molecules number of the actual
condition. This means, defining withNs ) Nn the total number
of solvent molecules,

wherepref is the pressure in the reference state,V ansVs the
partial molecular volumes of the solute and solvent in the actual
fluid (which are in general different from the ones in the
reference state) andµ,µref the chemical potential in the actual
fluid and in the reference condition, respectively. At high
dilution the solvent partial molecular properties and all the
intensive thermodynamic properties are virtually identical to the
pure solvent ones (hence independent of the solute), and so their
derivatives in the solvent molecular number, at fixed pressure,
must be virtually zero. Assuming thatna′s + a′ can be well
modeled by a single gamma state1 we have

with U′0 andC′V0 the excess internal energy and heat capacity
of the system, defined by a single solute molecule andn solvent
ones, at the reference temperatureT0, k ln ε the entropy term
due to configurational confinement, andδ0 a dimensionless
intensive property1 independent of the temperature, that in our
case (high dilution) is determined by the solvent. The gamma
state expressions1 would then provide any thermodynamic
property of such a system. Using the fact that (∂Λ/∂Ns)p,T,N )
0 (high solute dilution), we then obtain

and hence

The last equation clearly shows that both the solute and solvent
partial molecular volumes are, along the isochore, temperature
independent. This result points out a specific feature of the
gamma state model at high solute dilution. It is worth noting
that the use of the more complex multigamma state model,
introduced in previous papers2,12 and based on the partition of
phase space into a set of gamma state regions, may provide
temperature dependent partial molecular volumes. From the
previous equations, subtracting the solvent partial excess free
energy from eq 16, we readily obtain

where
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are temperature independent (asV is temperature independent)
and then correspond to the partial molecular excess internal
energy and heat capacity, evaluated at the reference temperature
T0, and -kT ln εj to the partial molecular excess free energy
due to the confinement. Using general thermodynamic relations,
the gamma state expressions for the various thermodynamic
properties and the fact that the partial molecular volumes are
temperature independent, we can obtain any possible thermo-
dynamic property at high dilution, e.g., or the partial internal

energyu′ and heat capacityc′V

Combining Simulation Data with Theory. The previous
equations describe how we can use the QGE theory in order to
treat partial molecular properties. In this subsection we show
how it is possible to combine the general derivations of the
previous subsection with accurate molecular simulation data.
Equation 8 states that we can obtain the whole thermodynamics
of a solute-solvent system, at high solute dilution, only using
information from simulations of a single solute molecule
embedded in the solvent. Using canonical ensemble simulations
in a wide temperature range, we can obtain the excess Helmoltz
free energy for a pure solvent system as well as for the same
system added of a single solute molecule, i.e., at fixed volume.
Assuming a gamma state behavior for both systems we can
parametrize the corresponding gamma state models fitting the
average excess (potential) energies in temperature,1 and hence
obtain the solute excess chemical potential, excluding the
confinement contribution

where∆A* is the difference between the excess Helmoltz free
energies without the confinement terms (confined ideal reduced
Helmoltz free energy1) of the solute-solvent system and the
pure solvent one, at fixed volume. Note that the confinement
termk ln εj, corresponding to a pure entropic term, is due to the
presence of unaccessible phase space regions due to hard body
contacts. In principle such unaccessible configurations should
be characterized by an infinite energy or at least should be
separated by the others by an infinite energy barrier. In practice

a confinement behavior is typically present also in systems
where no unaccessible regions are strictly present.2,11 In this
casek ln εj must be regarded as an effective confinement term
due to the presence of high energy phase space regions which
are virtually unaccessible in the whole temperature range of
interest. From eqs 10 and 21 we also have

whereΛ(T), p*, p′, andê, being intensive properties, are given
by the gamma state obtained by the pure solvent simulations.
Fitting µ* as obtained by eq 26, with eq 28, we can evaluate
u′0, c′V0, and the partial molecular volumeV. In this article we
focus on water-ions systems where the confinement behavior
can be well described by a hard sphere model.1 This means
that in the infinite temperature limit the excess termodynamics
of the theoretical model we use, will reduce to that of a hard
sphere mixture of the same molar fraction. Hence, using the
well-known thermodynamic relation

in the infinite temperature limit, where the pressure is given by
the equation of state of the hard sphere mixture,13 we can obtain
the hard sphere radius of the solute. Note that the confinement
properties of the solvent, including the solvent hard sphere
radius, were obtained using the homogeneus hard sphere
equation of state proposed by Carnahan-Starling.1,14 From the
estimate of the solute hard sphere radius it is straightforward to
obtain (∂ ln ε/∂N)V,T,Ns via the excess chemical potential of the
solute hard sphere in the hard sphere mixture following
Lebowitz.13 Hence, from eq 24 we can evaluate the free energy
confinement term lnεj ) (∂ ln ε/∂N)p,T,Ns via

With these results we can reconstruct the whole excess
thermodynamics of the system along the isochore.

Simulation Methods

We used four different sets of molecular dynamics (MD)
simulations over a wide temperature range (280-1200 K). In
the first set we simulated a cubic box of 256 simple point charge
(SPC)15 water molecules, at 55.32 mol/L. In the second and
third sets we simulated the same SPC box, adding a single
sodium or chloride ion. Finally, in the fourth set we simulated
a larger SPC box (2180 molecules) at the same density (55.32
mol/L). All the simulations were performed using Gromacs
software package16-18 modified to use the isokinetic temperature
coupling.19 This was done in order to obtain results fully
consistent with statistical mechanics.3,20 For all the simulations
the number of steps was 2500000 with three differents time
step: 2 fs for simulations in the range 280-450 K, 1 fs up to
800 K and 0.5 fs up to 1200 K. Hence the corresponding
simulation time lengths are about 5, 2.5 and 1.25 ns. In each
simulation the initial 100000 steps were used as equilibration
run. The long-range electrostatics was calculated using the
particle mesh Ewald (PME) method, with 34 wave vectors in
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each dimension and a fourth order cubic interpolation. Note that
in the PME procedure the interaction between the ion and its
replicae is removed; hence, the simulation box, with 256 solvent
molecules and a single ion, can be considered at high dilution.

Results

We parametrized our theoretical models, described in the
theory section, using only the average potential energy (excess
internal energy) and pure solvent pressure in the whole
temperature range, i.e., by fitting these values with the corre-
sponding to theoretical models. To reduce the noise due to
energy fluctuations and properly compare our results with
literature computational data where typically a small simulation
box is used, we utilized a small (i.e., 256 molecules) simulation
box at the typical liquid water density (55.32 mol/L) over a
large temperature range (280-1200 K). To be sure that such a
reduced box was not seriously changing the thermodynamics
of the system, we compared the results obtained for pure SPC
using this small box and a larger one (i.e., 2180 molecules), at
the same density and over the same temperature range. In Table
1 we summarize the physical properties defining the gamma
state models for SPC and the two ions, see theory section. From
the first two columns of the table, where we compare the large
and small SPC simulation models, it is evident that these are
very similar providing virtually identical thermodynamics. It is
also worth noting that the hard sphere diameter we obtained
for SPC is a bit smaller than that obtained for experimental
water.1 This is probably due to the fact that SPC molecules have
the pair minimum energy at a shorter distance than real water,
hence providing a smaller hard core. In Figure 1 we compare
the excess internal energy as given by the gamma state model
with the simulation results for the pure SPC system. Note that
on this scale the energy error bars are to small to be shown. In
the same figure we also show the gamma state prediction of
the excess Helmotz free energy. In Figures 2 and 3 we compare,
for the same pure SPC system, the gamma state prediction of
the specific heat capacity and pressure with the corresponding
simulation results computed from the fluctuations of the potential
energy (heat capacity) and from the virial (pressure). The error
bars reported for the simulation heat capacity, as well as in the
other figures, are given by plus and minus one sigma; for
pressure the error bars are again too small to be shown. In Figure
2 we also show the gamma state prediction of the excess
entropy. From these three figures it is evident the excellent
agreement between the theoretical model and simulation data.
Interestingly the SPC excess chemical potential at 300 K
obtained by our theoretical model is-25.81 kJ/mol which is
rather close to its estimate by TI21 (about-24 kJ/mol). However,
the TI value is higher probably because of the use of cut off

(0.6-1.0 nm) in the simulations. It is worth to note that in the
case of the heat capacity at the lowest temperatures there is a
possible small (always within one or two sigmas) systematic
deviation between the theoretical model and simulation data.

TABLE 1: Properties of the Theoretical Models, Equation
21, for SPC in the Large Simulation Box (SPCl), SPC in the
Small Simulation Box (SPC), Chloride (Cl), and Sodium
(Na)a

SPCl SPC Cl Na

d (nm) 0.2426 0.2426 0.4252 0.3440
V (l/mol) 0.0181 0.0181 0.0456 0.0310
u′0 (kJ/mol) -41.354 -41.375 -382.873 -406.368
c′V0 (J/mol K) 46.058 46.272 41.021 46.102
δ0 0.6387 0.6565 0.6565 0.6565

a Diameter of the moleculed, partial molar volumeV, partial molar
excess internal energy at the reference temperatureu′0, and partial molar
excess heat capacity at the reference temperaturec′V0. Note that the
intensive gamma state propertyδ0 is always given by the pure solvent
model (highly diluted solution).

Figure 1. Gamma state prediction of the molecular average potential
energy (solid line) and simulation results (circles) for the small box of
pure SPC water. In the figure we also show the gamma state prediction
of the molecular excess Helmotz free energy (dashed line), for the same
system.

Figure 2. Gamma state prediction of the molecular excess heat capacity
(solid line) and simulation results (circles) for the small box of pure
SPC water. In the figure we also show the gamma state prediction of
the molecular excess entropy (dashed line), for the same system.

Figure 3. Gamma state prediction of the excess pressure (solid line)
and simulation results (circles) for the small box of pure SPC water.
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This is probably due to the fact that in such a large temperature
range phase space regions become accessible which cannot be
always described very accurately with a unique gamma state
model. Within the temperature range we used in this paper these
possible deviations are still within the statistical noise but
probably a larger temperature range, resulting in a smaller
effective confinement, would require a multigamma state
approach.2,8,11In Figure 4 we show the derivative of the average
potential energy in the solute molecular number at constant
volume for the two ions. Note that this thermodynamic property
coincides with the difference of the average potential energies
of the systems with and without the ion (we simulated with
only one ion as solute). Again the theoretical predictions of the
gamma state models, for both solutions, are within the error
bars excellent. In the case of chloride we can observe that a
well defined minimum is at relatively high temperature sug-
gesting a relevant temperature dependence of the solvent
structure close to the ion. This is not the case for sodium where
a shallow minimum is present at the lowest temperatures. In
Figure 5 the two ions excess chemical potentials, as obtained
by the theoretical models, are shown as a function of temperature
along the isochore, and in Table 2 we compare these at 298 K
with experimental data22 and literature computational results
obtained via different types of TI based calculations23-25 and
via a computational procedure based on a peculiar approximation
of the moment generating function (renormalization) providing

a remarkably simple expression.26 The TI methods require a
rather heavy computational effort and thus typically provide only
the chemical potential at a single temperature. Interestingly our
estimates of the excess chemical potentials at 298 K are very
close to recent and sophisticated computational results,23 and
are in reasonable agreement with experimental data.22 Note that
no information on the error bars were available in the compu-
tational paper23 and for our model the chemical potential error
bars (one sigma) are about 10-15 kJ/mol in the whole
temperature range. Finally in Figure 6 we show the radial
distribution functions obtained for the pure solvent and the two
solute-solvent systems at 300 K. The squares indicate the
distance obtained summing the solvent and solute hard core radii
as given in Table 1 (in the case of the pure SPC system we
consider the SPC hard core diameter). The first curve shows
the radial distribution of the pure solvent system and as expected,
virtually no SPC molecules can be closer than the hard sphere
diameter. In the case of the chloride ion the square is located
very close to the maximum of the distribution implying that
about half of the first hydration shell is actually involved in the
partial molecular volume of this ion. Moreover, the fluctuations
of the solvent molecular number within such a distance is not
negligible, indicating that the corresponding solvent molecules
involved are not rigidly structured around the ion and hence
the interaction energy between the ion and solvent is not well
optimized. This could perhaps explain the well defined minimum
at relatively high temperature of (∂U′/∂N)V,T,Ns showed in Figure
4. In the case of sodium the square coincides with the first
minimum, meaning that the complete first hydration shell is
involved in the partial molecular volume of the ion. In this case
the fluctuations of the solvent molecular number within such a
distance are quite negligible indicating that the whole first
hydration shell is rigidly structured around this ion, as also

Figure 4. Gamma state predictions and simulation results (circles) of
(∂U′/∂N)V,T,Ns for chloride ion (solid line) and sodium ion (dot-dashed
line).

Figure 5. Gamma state predictions of the excess chemical potentials
for chloride (solid line) and sodium (dashed line).

TABLE 2: Excess Chemical Potentials for Sodiumµ′Na
+ and

Chloride µ′Cl
- at 298 K as Obtained by Theoretical and

Experimental Works

a b c d e f

µ′Na
+ (kJ/mol) -388 -398 -508 -459 -478 -365

µ′Cl
-(kJ/mol) -362 -371 -315 -237 -365 -340

a Theorical results from our work.b Theorical results from Hummer.23

c Theorical results from Straatsma and Berendsen.24 d Theorical results
from Migliore.25 e Theorical results from Jayaram.26 f Experimental
data from Marcus.22

Figure 6. Radial distribution function for the small box of pure SPC
water and for the chloride and sodium solute-solvent systems,
respectively.
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shown by the fact that the minimum of the radial distribution
is close to zero like for an interface. Interestingly, the estimates
of the ionic diameter based on the experimental chemical
potential in water, coupled with a simple Born approximation,27

provide for both ions remarkably close values (sodiumd ) 0.336
nm; chlorided ) 0.388 nm) to our results. On the contrary,
these estimates when based on experimental mobility data,28

also in water, provide a good agreement only for sodium but
not for chloride which appears to be much smaller (sodiumd
) 0.328 nm; chlorided ) 0.215 nm). This relevant difference
between the “thermodynamic” and “kinetic” radius in the case
of chloride could indeed reflect the low rigidity of the solvent
molecules close to the ion, as pointed out by the simulation
data.

Conclusions

In this paper we showed that the combined use of the QGE
theory with MD simulations can provide the whole thermody-
namics of a solute-solvent system, including all the partial
molar properties. We investigated two ionic solutions, at high
dilution, along the typical liquid water isochore. Results showed
that within a wide range of temperature the QGE theoretical
models provide a coherent and accurate description of all the
partial molar properties of solute and solvent as a function of
the temperature. Comparison with recent TI based calculations23

at 298 K shows a remarkable agreement, although the two
methods are completely different. Interestingly, from the partial
molar volumes, obtained by the theoretical models, and the
simulation radial distributions it was also possible to characterize
the first hydration shell around the ions, finding a very different
behavior between chloride and sodium, in agreement with
experimental data. We expect this theoretical approach, in
combination with MD simulations, to be efficient in the
evaluation of the statistical mechanics and thermodynamics of
complex systems where TI based methods, which are presently
used, typically provide a limited number of thermodynamic
properties at single state points. Difficulties could arise from
the complexity of the energy fluctuations in flexible solutes and
from the non hard sphere confinement behavior due to complex
shapes and charge distributions. However, such possible prob-
lems could be solved by the use of the multigamma state model
to correctly describe the energy fluctuations, and by more
sophisticated hard body equations of state or even direct
computational evaluation to obtain a good estimate of the
confinement term.
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