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In this work we combine molecular dynamics simulations with the quasi-Gaussian entropy (QGE) theory to
model the statistical mechanics and thermodynamics of ionic solutions. Results showed that the use of the
gamma state model provides an excellent theoretical description of the solution behavior over a wide range
of temperature. Such an approach makes possible, at relatively low computational costs, the evaluation of
partial molar properties such as free energy and entropy which require a heavy computational effort to be
estimated with the usual procedures.

Introduction of the system including the quantum vibrational ground-state
energy,V the overall volume of the systemy, the generalized

Accurate methods to obtain the statistical mechanics and internal (classical) coordinates of a single solute molecule with
thermodynamics of simulated condensed systems are clearly of 9

great importance as they can provide essential information for gi(:stggtg:ﬁrglzgﬁgﬂt ﬁg{géﬁ?etzs\;vi?rﬁgllﬁte((iglsustlgzﬂofggél-ar
describing and predicting the behavior of a molecular complex | VIN. i the int tion limit defined BUN
system. Despite the great importance of the development of the\|\//|0 ume VIts, ."e'h’ € Integra 'O“f'”?éf alre € mel blﬂelf/l
simulation methods, the evaluation of essential thermodynamic horeoverm Is the fmﬁss telnsorac?eotg solvent modecu ,d
properties, such as free energy and entropy, and of many relate € mass tepsor of the solute, _temperat.ure- epen ent.
observables, are very difficult, and typically the methodologies actor including the quantum corrections, defined as folléws:
used can only provide limited “local” information, i.e., a few (G412 ~GM g

thermodynamic properties at a given temperature and density, _ (27kT) (Qrerd) Qe :
requiring a rather heavy computational effort. Moreover, the - n,h(d+ds)(1 + )+ )" @
basic theoretical principles underlining these methods, i.e., '
thermodynamic integration (TI) and cumulant expansion (CE),

can be affected by severe problems due to the slow convergenc ; .
y P g and the solvent respectivelgl,and ds the number of classical

of the average derivatives involved in Tl or the physical q t freedom in th | dol lecul d
incoherence of the truncated expansion used in CE. Itis therefore egrees of freedom In the solute, ameolvent molecules an

. . . . m am

a challenge in theoretical physical chemistry to develope and Qrets @nd Qe the solvent and solute molecular quantum
optimize more analytical methods on the bases of sound theoriesViPrational partlglon functions, respectively, as defined in
providing the thermodynamics of a simulated system at rela- Previous papers:' Finally, the star denotes an integration only
tively low computational costs. In this paper we use the quasi- ©Ver the accessible configurational space of the system as
Gaussian entropy (QGE)heory to describe the complete obtained W|th|n_ t_he solute molecular volunvéN. Defining a
thermodynamics of a solutesolvent system. Such a theoretical éférence condition as the system at the same temperature and
method was recently successfully applied to obtain the statistical 4€NSity but without excess energy, with partition function

mechanics and thermodynamics of flexible molecules simulated

é{vith 1+ y and 1+ ysthe symmetry coefficient for the solute

in vacuo? In this work we extend this approach in order to (SHZV)N . N 12 ~ 1) N

obtain partial molar properties for a liquid mixture defined by Qret = NI © f I_l (detm)~“(detM)™“dx;, dx)” (3)

a solvent and a highly diluted solute. ’ =

Theory we can express the excess (Helmoltz) free enéYgy A —
Basic Derivations. For a fluid state system oN solute At = — KT In Q/Qr as™>

molecules at high dilution, the partition function can be
expressed &g

[e b Il (deti) X detM)*2dx;
8.7'[2 N X n o L )
Q = ( \/) (@ f e—ﬁ//'|—| (detﬁ’lj)llz(detM)llz dXin dX)N A= NkTIn T
N! = (1) f H (detr’q)llz(detl\N/I)l'dein
=

where 7/' is the excess energy, basically the potential energy KTIn ¢ = — NkTIn @—ﬂ//'me — KTIne = NKTIn &% 0
f
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* 172 [ ~ \1/2 V= N (11)

S (detM) ”(dem]) dx,, 57 \aN, 7

ji=
= 5

€ e ®) v= (g—\l\j) (12)

[ (dethy¥? |‘| (detm)"dx;, PN
= /’"s = Hs T Urets (13)
The entropic term due to a possible confinement of the system P (14)

in configurational space In ¢, is usually associated with hard- HZ T Mt
body excluded volumé.The ensemble averages in eq 4 can P =P — Pres (15)

also be expressed as
where pres is the pressure in the reference statgnsus the

@/3//'%2fpref(//')eﬂ//'d‘g/' (6) partial molecular volumes of the solute and solvent in the actual
fluid (which are in general different from the ones in the
@ = /P d 7 reference state) anduer the chemical potential in the actual
f’o( ) ) fluid and in the reference condition, respectively. At high

wherepre( #/'),p( /") are the probability distribution functions ~ dilution the solvent partial molecular properties and all the
of the excess energy’ in the reference and actual conditions. intensive thermodynamic properties are virtually identical to the
Note that the use gfs Of p is fully equivalent and for a given ~ Pure solvent ones (hence independent of the solute), and so their
model distribution they provide identical results. Instead of using derivatives in the solvent molecular number, at fixed pressure,
a perturbation expansion, in the QGE theory the free energy is Must be virtually zero. Assuming thats + a can be well
obtained by modeling such a distribution and, hence, its momentModeled by a single gamma statee have

generating functiot?’ or Laplace transform, defined in eqs 6 R ,

and 7. Using the central limit theorem and a few basic physical nas+a = Uy, = ToGoA(T) —KTine (16)
and mathematical principles, we can restrict the set of acceptable

distribution functions of a macroscopic system to the subgroup A(T) = (% + T >IN {1—46(M} a7)
of “gquasi-Gaussian” distributions, obtained by the convolution o Ty

of unimodal-like distributions:258 Each model distribution

function of the excess energy provides the complete temperature S(T) = Todo

dependence, the statistical state of the system. It has been M= T(1 — S¢) + Tod, (18)

previously showh?%11 that one of the simplest quasi-Gaussian

distribution, the gamma distribution, yields a simple and fully with Uy and C{o the excess internal energy and heat capacity
physically acceptable statistical state, providing an excellent of the system, defined by a single solute moleculerasdlvent
model of the fluid state thermodynamics over a wide range ones, at the reference temperatlirek In € the entropy term

of temperature and density (i.e., gas to liquid experimental due to configurational confinement, amg a dimensionless
water and methane and simulated Lennard-Jones fluids andintensive propertyindependent of the temperature, that in our
large organic molecules). We can rewrite the total excess freecase (high dilution) is determined by the solvent. The gamma

energy as state expressiohswould then provide any thermodynamic
property of such a system. Using the fact thiakfgNs)ptn =
A(T) =N(nas+ &) (8) 0 (high solute dilution), we then obtain
wherena, + a is the excess free energy of the system defined aA aA\ [[990 30,
by the solute molecular volume which containssolvent N EONALE oV /N NSUS =0 (19
) . . p,T,N o/T V,N '

molecules and a single solute molecul, is the partial

molecular excess (Helmoltz) free energy of the solvent and gnd hence

clearlya' is the partial molecular excess (Helmoltz) free energy

of the solute. It is worth noting that the solvent and solute partial (00¢/dNgy N (20)
4 : : po= —— 9 VN

molecular excess free energies are obtained at fixed pregsure s (3050,

for the actual fluid and not in general at fixed pressure for the
reference state. This is because the reference state is define
with the same volume and molecules number of the actual
condition. This means, defining wits = Nn the total number

c}he last equation clearly shows that both the solute and solvent
partial molecular volumes are, along the isochore, temperature
of solvent molecules independent. This result_ points out a gpecifiq feature of_the

’ gamma state model at high solute dilution. It is worth noting

) oA, that the use of the more complex multigamma state model,

a. = (%) - (%) _ ( ef) = (%J + introduced in previous papérs and based on the partition of
® WNgorn \ONgprn \ONsfprn \ONgv T phase space into a set of gamma state regions, may provide
9A 0A ¢ 0A o . . temperature dependent partial molecular volumes. From the
v s N “ov s= s Plus (9) previous equations, subtracting the solvent partial excess free
NoT.N S/V.TN NoTN energy from eq 16, we readily obtain

oy (%) _ (%) _ (aAfef) _ (%) L . (oA on o _
ON/ptN  \ON/p TN ON /pTN  \ON/v,TN a= (m)v,n\g—i_ (W)NS,T,NU = Uy — CuoTeA(T) — KkTIn €

(%) ”‘(aAref) ‘(aAref) v=u'—pv (10) e
OV/IN,TN oN Jv,TN oV IngTN wop where
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) Uy aUg a confinement behavior is typically present also in systems
Up = N VTl\g+ Vv I (22) where no unaccessible regions are strictly pred&hin this
- o casek In € must be regarded as an effective confinement term

aC, aCl, due to the presence of high energy phase space regions which
Cyo = (—) (—) v (23) are virtually unaccessible in the whole temperature range of
N JvTN A OV INGTN interest. From egs 10 and 21 we also have
__[9ln€ dln e * —f — *
- ¥ = Uy = CToA(T) + pro (28)
Ine ( N )V,T,l\g+( R, )NS,T,NU (24) o 0
pr=p —&T (29)

are temperature independent {ais temperature independent)
and then correspond to the partial molecular excess internal E= k(3 In 6)
energy and heat capacity, evaluated at the reference temperature oV NN
To, and —KT In € to the partial molecular excess free energy
due to the confinement. Using general thermodynamic relations, whereA(T), p*, p', and§, being intensive properties, are given
the gamma state expressions for the various thermodynamicby the gamma state obtained by the pure solvent simulations.
properties and the fact that the partial molecular volumes are Fitting «* as obtained by eq 26, with eq 28, we can evaluate
temperature independent, we can obtain any possible thermoLb, Cvo, and the partial molecular volume In this article we
dynamic property at high dilution, e.g., or the partial internal focus on water-ions systems where the confinement behavior
can be well described by a hard sphere médEehis means
(B_U’) _ (B_U') _ (8_U’) )= (M) (25) that in the infinite temperature limit the excess termodynamics
ONJvNT  \ON/pNT VOV INNT B Jvinn of the theoretical model we use, will reduce to that of a hard
sphere mixture of the same molar fraction. Hence, using the

(30)

energyu’ and heat capacitg, well-known thermodynamic relation
u = (3_U) - (@) - (Op/IN)y T
NJon,T | 38 Jvinn N P Y N (31)
U+ (T— Ty __Gelo N
0 “T1 - 0g) + 0oTg in the infinite temperature limit, where the pressure is given by
the equation of state of the hard sphere mix{drge can obtain
, (BC(,) (3uf) , [ To ]2 the hard sphere radius of the solute. Note that the confinement
&= o =57 =Cvo roperties of the solvent, including the solvent hard sphere
aN aT T(L— &) + 6T prop , g p
PRT ViNn ( o 0o, radius, were obtained using the homogeneus hard sphere

equation of state proposed by Carnah&tarling>14From the
estimate of the solute hard sphere radius it is straightforward to
obtain @ In €/oN)y 1, Via the excess chemical potential of the
solute hard sphere in the hard sphere mixture following
Lebowitz13 Hence, from eq 24 we can evaluate the free energy
confinement term Ire = (9 In €/dN)p1n, Via

Combining Simulation Data with Theory. The previous
equations describe how we can use the QGE theory in order to
treat partial molecular properties. In this subsection we show
how it is possible to combine the general derivations of the
previous subsection with accurate molecular simulation data.
Equation 8 states that we can obtain the whole thermodynamics
of a solute-solvent system, at high solute dilution, only using aln e aln e
information from simulations of a single solute molecule “PUTON )p’T’,\g - ( aN
embedded in the solvent. Using canonical ensemble simulations
in a wide temperature range, we can obtain the excess Helmoltz\yith these results we can reconstruct the whole excess
free energy for a pure solvent system as well as for the samethermodynamics of the system along the isochore.
system added of a single solute molecule, i.e., at fixed volume.

Assuming a gamma state behavior for both systems we canSimulation Methods

parametrize the corresponding gamma state models fitting the
average excess (potential) energies in temperatang, hence
obtain the solute excess chemical potential, excluding the
confinement contribution

)v,m FETY (32)

We used four different sets of molecular dynamics (MD)
simulations over a wide temperature range (28200 K). In
the first set we simulated a cubic box of 256 simple point charge
(SPC}® water molecules, at 55.32 mol/L. In the second and
A third sets we simulated the same SPC box, adding a single
u*=u' +KTlne= (3_N)VT = AA* (26) sodium or chloride ion. Finally, in the fourth set we simulated
T a larger SPC box (2180 molecules) at the same density (55.32
A=A +KkTlne (27) mol/L). All the simulations were performed using Gromacs
software packadé 8 modified to use the isokinetic temperature
whereAA* is the difference between the excess Helmoltz free coupling?® This was done in order to obtain results fully
energies without the confinement terms (confined ideal reduced consistent with statistical mechani® For all the simulations
Helmoltz free energy of the solute-solvent system and the the number of steps was 2500000 with three differents time
pure solvent one, at fixed volume. Note that the confinement step: 2 fs for simulations in the range 288050 K, 1 fs up to
termk In €, corresponding to a pure entropic term, is due to the 800 K and 0.5 fs up to 1200 K. Hence the corresponding
presence of unaccessible phase space regions due to hard bodsimulation time lengths are about 5, 2.5 and 1.25 ns. In each
contacts. In principle such unaccessible configurations should simulation the initial 100000 steps were used as equilibration
be characterized by an infinite energy or at least should be run. The long-range electrostatics was calculated using the
separated by the others by an infinite energy barrier. In practice particle mesh Ewald (PME) method, with 34 wave vectors in
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TABLE 1: Properties of the Theoretical Models, Equation
21, for SPC in the Large Simulation Box (SP@, SPC in the
Small Simulation Box (SPC), Chloride (Cl), and Sodium

(Na)p |
SPG SPC cl Na 0|

d (nm) 0.2426 0.2426 0.4252 0.3440 3

v (I/mol) 0.0181 0.0181 0.0456 00310 5 |

up (kd/mol)  —41.354 —41.375 —382.873 —406.368 E

Clo (I/mol K)  46.058 46.272 41.021 46.102 2

do 0.6387 0.6565 0.6565 0.6565

301
a Diameter of the moleculd, partial molar volume, partial molar L

excess internal energy at the reference temperagueand partial molar

excess heat capacity at the reference temperatyreNote that the 40

intensive gamma state propetlyis always given by the pure solvent

model (highly diluted solution).

| L |
1000 1200

} . L | !
%00 400 600 800

each dimension and a fourth order cubic interpolation. Note that T(K)
in the PME procedure the interaction between the ion and its Figure 1. Gamma state prediction of the molecular average potential
replicae is removed; hence, the simulation box, with 256 solvent energy (solid line) and simulation results (circles) for the small box of

molecules and a single ion, can be considered at high dilution. pure SPC water. In the figure we also show the gamma state prediction
of the molecular excess Helmotz free energy (dashed line), for the same

system.
Results Y

We parametrized our theoretical models, described in the
theory section, using only the average potential energy (excess L
internal energy) and pure solvent pressure in the whole |
temperature range, i.e., by fitting these values with the corre-
sponding to theoretical models. To reduce the noise due to |
energy fluctuations and properly compare our results with L =
literature computational data where typically a small simulation
box is used, we utilized a small (i.e., 256 molecules) simulation
box at the typical liquid water density (55.32 mol/L) over a L
large temperature range (280200 K). To be sure that such a L
reduced box was not seriously changing the thermodynamics 4L
of the system, we compared the results obtained for pure SPC L
using this small box and a larger one (i.e., 2180 molecules), at |-
the same density and over the same temperature range. In Table s
1 we summarize the physical properties defining the gamma
state models for SPC and the two ions, see theory section. From T&)
the first two columns of the table, where we compare the large Figure 2. Gamma state prediction of the molecular excess heat capacity
and small SPC simulation models, it is evident that these are (solid line) and simylation results (circles) for the small box qf pure
very similar providing virtually identical thermodynamics. It is izcmvgfggﬁlg? é?(?;eﬂs%u;t\:l:psligazg%g ltit:]z)ge]}(r)r;r?ﬁes;gtrigrse}ggmn of
also worth noting that the hard sphere diameter we obtained ' '
for SPC is a bit smaller than that obtained for experimental 1600 ; . | ; : : . :
water! This is probably due to the fact that SPC molecules have
the pair minimum energy at a shorter distance than real water,
hence providing a smaller hard core. In Figure 1 we compare 1200
the excess internal energy as given by the gamma state model
with the simulation results for the pure SPC system. Note that
on this scale the energy error bars are to small to be shown. In< 800 .
the same figure we also show the gamma state prediction of £
the excess Helmotz free energy. In Figures 2 and 3 we compare,
for the same pure SPC system, the gamma state prediction of 4% .
the specific heat capacity and pressure with the corresponding i i
simulation results computed from the fluctuations of the potential
energy (heat capacity) and from the virial (pressure). The error
bars reported for the simulation heat capacity, as well as in the L ]
other figures, are given by plus and minus one sigma; for T 00 500 000 00
pressure the error bars are again too small to be shown. In Figure

2 we also show the gamma state prediction of the excess
g P Figure 3. Gamma state prediction of the excess pressure (solid line)

entropy. From these three flgures It is eV|dent'the e?(cellent and simulation results (circles) for the small box of pure SPC water.
agreement between the theoretical model and simulation data.

Interestingly the SPC excess chemical potential at 300 K (0.6—1.0 nm) in the simulations. It is worth to note that in the
obtained by our theoretical model +s25.81 kJ/mol which is case of the heat capacity at the lowest temperatures there is a
rather close to its estimate by2f(about—24 kJ/mol). However, possible small (always within one or two sigmas) systematic
the TI value is higher probably because of the use of cut off deviation between the theoretical model and simulation data.

KJ/mol K
=)
I

| | . 1
800 1000 1200

0 —

T (K)
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-380 TABLE 2: Excess Chemical Potentials for Sodiumuj,™ and
Chloride ut~ at 298 K as Obtained by Theoretical and
Experimental Works

a b c d e f

una" (kJ/mol) —388 —398 —508 —459 —478 —365
uci-(kd/mol)  —362 —371 —315 -—237 —365 —340

aTheorical results from our work.Theorical results from Hummét.
¢ Theorical results from Straatsma and Berend4ehTheorical results
from Migliore.?> € Theorical results from Jayarath. ' Experimental
data from Marcug?

-390~

-400 |-

KJ / mol

410~

Xy 3 %EI‘ T i
-420 - 33
2l Oxygen - Oxygen ]
\_
R . | . I . | . | . I S
%00 400 600 800 1000 1200
T (K) 0 . .
Figure 4. Gamma state predictions and simulation results (circles) of
(8U'/aN)y, 1, for chloride ion (solid line) and sodium ion (detlashed 8r Sodium - Oxygen ]
line). S
24
I I ' "ﬁMMNWMHvaA‘WV,,#%‘,,_ R
0 e T} et 1 1 -
250 — 4
Cloryde - Oxygen
L B %2 L B
N Mt oot ot
3 =300~ n 0 | L L L
E 0.15 0.3 0.45 0.6 0.75
v} r (nm)

Figure 6. Radial distribution function for the small box of pure SPC
water and for the chloride and sodium solus®lvent systems,
respectively.

a remarkably simple expressiéhThe Tl methods require a
- | . | rather heavy computational effort and thus typically provide only
400 500 1000 the chemical potential at a single temperature. Interestingly our
TK) estimates of the excess chemical potentials at 298 K are very
Figure 5. Gamma state predictions of the excess chemical potentials Clos.e to recent and SOph'St'CaFed Computatlonal reStiliad
for chloride (solid line) and sodium (dashed line). are in reasonable agreement with experimental Hatate that
no information on the error bars were available in the compu-
This is probably due to the fact that in such a large temperature tational pape® and for our model the chemical potential error
range phase space regions become accessible which cannot bears (one sigma) are about -105 kJ/mol in the whole
always described very accurately with a unigue gamma statetemperature range. Finally in Figure 6 we show the radial
model. Within the temperature range we used in this paper thesedistribution functions obtained for the pure solvent and the two
possible deviations are still within the statistical noise but solute-solvent systems at 300 K. The squares indicate the
probably a larger temperature range, resulting in a smaller distance obtained summing the solvent and solute hard core radii
effective confinement, would require a multigamma state as given in Table 1 (in the case of the pure SPC system we
approach:21tn Figure 4 we show the derivative of the average consider the SPC hard core diameter). The first curve shows
potential energy in the solute molecular number at constant the radial distribution of the pure solvent system and as expected,
volume for the two ions. Note that this thermodynamic property virtually no SPC molecules can be closer than the hard sphere
coincides with the difference of the average potential energies diameter. In the case of the chloride ion the square is located
of the systems with and without the ion (we simulated with very close to the maximum of the distribution implying that
only one ion as solute). Again the theoretical predictions of the about half of the first hydration shell is actually involved in the
gamma state models, for both solutions, are within the error partial molecular volume of this ion. Moreover, the fluctuations
bars excellent. In the case of chloride we can observe that aof the solvent molecular number within such a distance is not
well defined minimum is at relatively high temperature sug- negligible, indicating that the corresponding solvent molecules
gesting a relevant temperature dependence of the solventinvolved are not rigidly structured around the ion and hence
structure close to the ion. This is not the case for sodium wherethe interaction energy between the ion and solvent is not well
a shallow minimum is present at the lowest temperatures. In optimized. This could perhaps explain the well defined minimum
Figure 5 the two ions excess chemical potentials, as obtainedat relatively high temperature of{'/aN)y 1 n showed in Figure
by the theoretical models, are shown as a function of temperature4. In the case of sodium the square coincides with the first
along the isochore, and in Table 2 we compare these at 298 Kminimum, meaning that the complete first hydration shell is
with experimental dafd and literature computational results involved in the partial molecular volume of the ion. In this case
obtained via different types of Tl based calculat®&n® and the fluctuations of the solvent molecular number within such a
via a computational procedure based on a peculiar approximationdistance are quite negligible indicating that the whole first
of the moment generating function (renormalization) providing hydration shell is rigidly structured around this ion, as also




11848 J. Phys. Chem. B, Vol. 106, No. 45, 2002 D’Alessandro et al.

shown by the fact that the minimum of the radial distribution References and Notes
is close_to _zero_llke for an interface. Interestln_gly, the estimates (1) Amadei, A: Apol, M. E. F.: Berendsen, H. J. @.Chem. Phys.
of the ionic diameter based on the experimental chemical 1997 106,1893-1912.

potential in water, coupled with a simple Born approximafion, (2) Amadei, A.; lacono, B.; Grego, S.; Chillemi, G.; Apol, M. E. F.;

provide for both ions remarkably close values (sodilim 0.336 Paci, E.; Delfini, M.; Di Nola, A.J. Phys. Chem. 2001 105

nm; chlorided = 0.388 nm) to our results. On the contrary, (3) Amadei, A.; Chillemi, G.; Ceruso, M. A.; Grottesi, A.; Di Nola,
. . fitv28 A. J. Chem. Phys200Q 112,9-23.

thesg estimates When based on experimental moblllty ata, (4) Amadei, A; Apol, M. E. F.; Brancato, G.; Di Nola, A. Chem.

also in water, provide a good agreement only for sodium but Phys.2002 116,4437-4449.

not for chloride which appears to be much smaller (soddim (5) Apol, M. E. F.; Amadei, A.; Berendsen, H. J. C.; Di Nola, &.

= 0.328 nm; chlorided = 0.215 nm). This relevant difference Che(rg)' 'F;g:Il%ggKlllKlﬁggil:‘éﬁj Owen. b. Bandbook of Statistical
between the “thermodynamic” and “kinetic” radius in the case pjsyibutions Marcel ngker:' New York, 1976.

of chloride could indeed reflect the low rigidity of the solvent (7) Stuart, A.; Ord, J. KKendall's Adanced Theory of StatisticSth
molecules close to the ion, as pointed out by the simulation ed.; Griffin: London 1987; Vol. 1.
data. (8) Apol, M.; Amadei, A. In preparation.

(9) Apol, M. E. F.; Amadei, A.; Berendsen, H. J. Chem. Phys. Lett.
. 1996 256,172—178.
Conclusions (10) Roccatano, D.; Amadei, A.; Apol, M. E. F.; Di Nola, A.; Berendsen,

In this'paper we shoyved that the qombined use of the QGE H. (Jl'lc):‘i'migi??Aﬁhxli?ga_lggﬁﬁsgﬁi_nzﬁg%_; Berendsen, H. J. C.: Di
theory with MD simulations can provide the whole thermody- nNola, A. Mol. Phys.1999 96, 1469-1490.

namics of a solutesolvent system, including all the partial (12) Apol, M. E. F.; Amadei, A.; Berendsen, H. J. &.Chem. Phys.
molar properties. We investigated two ionic solutions, at high 1996 104,6665-6678. _

dilution, along the typical liquid water isochore. Results showed 35;3) Lebowitz, J. L; Rowlinson, J. S. Chem. Phys1964 41,133~
that within a wide range of temperature the QGE theoretical  (14) carnahan, N. F.; Starling, K. B. Chem. Phys1969 51, 635—
models provide a coherent and accurate description of all the 636.

partial molar properties of solute and solvent as a function of ~ (15) H. J. C. Berendsen, J. P. M. Postma, W. F. v. G.; Hermans, J.
the temperature. Comparison with recent Tl based calculdtions géerérpe%lﬁtcullz;%igrpcr’ess%lilgzgnn. B., Ed.; D. Reider Publishing Company:
at 298 K shows a remarkable agreement, although the two ~ (16) van der Spoel, D.; van Drunen, R.; Berendsen, H. GRoningen
methods are completely different. Interestingly, from the partial MAchine for Chemical SimulationBepartment of Biophysical Chemistry,
molar volumes, obtained by the theoretical models, and the ngea’;'nggsigg‘ 'E_S#;Ui}?i L\gﬁgggggh‘; er-37}”7 AG, Groningen, The
simulation radial distributions it was also possible to characterize (17) van der Spbel, D.: 'Vagn Buuren, A. R.;-Ap?c.)l, E.: Meulenhoff, P. J.:
the first hydration shell around the ions, finding a very different Tieleman, D. P.; Sijbers, A. L. T. M.; van Drunen, R.; Berendsen, H. J. C.
penavior between cioride and soduim, In agreement with SIECaN Research Instiute: Nijenborgh & NLL97L1 AG, Groningen. Thel
experllme'ntal d.ata' We gxpec'F this theoreuca.l .appr.oaCh’ n Netherlands, 1996. Internet: ht%p://ruggme.chem.rug.nltygrthg%.g ’
comblnfatlon with MI_D _S|mulat|ons,_ to be efficient in t_he (18) van Gunsteren, W. F.; Billeter, S. R.; Eising, A. A mberger,
evaluation of the statistical mechanics and thermodynamics of p. H.; Kriger, P.; Mark, A. E.; Scott, W. R. P.; Tironi, I. ®iomolecular
complex systems where Tl based methods, which are presentlyign;ﬁlté%?i ETTZE z(i]iFégMzouﬁgﬁ '\{lgggal and User Guitleichschulverlag
used, t_yplcally_prowde a Ilm.lted nw.nber. of thermodynamlc (19) Evans, D. J.; Morriss,é. Btatistical Mechanics of Nonequilibrium
properties at single state points. Difficulties could arise from | jquids Academic Press: London, 1990.

the complexity of the energy fluctuations in flexible solutes and  (20) D’Alessandro, M.; Tenenbaum, A.; Amadei, A.Phys. Chem. B
from the non hard sphere confinement behavior due to complex2002 106,5050-5057.

shapes and charge distributions. However, such possible prob-llézégfgfrg;%gf' J.; Pathiaseril, A.; Anderson.JAAm. Chem. Sod988
lems could be solved by the use of the multigamma state model (22 marcus, Y. JJ. Chem. Soc., Faraday Tran991, 87, 2995,

to correctly describe the energy fluctuations, and by more  (23) Hummer, G.; Pratt, L. R.; Gaxcla, A. E.J. Phys. Chem. B996
sophisticated hard body equations of state or even direct100,1206-1215.

computational evaluation to obtain a good estimate of the 58§26‘f)8§"aatsma' T. P.; Berendsen, H. JJOChem. Phys1988 89 (9),

confinement term. (25) Migliore, M.; Corongiu, G.; Clementi, E.; Lie, G. @. Chem. Phys.
1988 88, 7766.
Acknowledgment. We acknowledge Dr. M. E. F. Apol for (26) Jayaram, B.; Beveridge, D. . Phys. Chem199Q 94, 7288~

the usefull and stimulating discussions. This work was supported 7293. , _ o
by the European Comunity Research Training Network Program 2(9297) Daune, MMolecular BiophysicsOxford University Press: Oxford,

“PrOtein (mis)-folding” and 'PR”\' 2001 “Structural Biology and (Zé) Atkins, P.Physical ChemistryOxford University Press: Oxford,
Dynamics of Redox Proteins”. 1998.



