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In this article, we investigate molecular dynamics (MD) trajectories of a butane molecule, as obtained using
different types of thermostats. Results show that at low temperature, where the harmonic approximation holds,
the Nose’-Hoover (NH) thermostat fails to reproduce the statistical mechanical behavior, even using simulation
lengths of millions of time steps, whereas the Gaussian isokinetic (IG) thermostat reproduces quite well the
expected statistical mechanical values. The Berendsen’s coupling (BC) provides good results for basic properties
such as the average potential and kinetic energies but fails in reproducing the canonical fluctuations. Moreover,
using the speed of divergence of initially nearby trajectories in phase space as a measure of the dynamical
chaoticity, we found that the NH thermostat provides very slow divergence for the physical phase space
degrees of freedom, concentrating most of its chaoticity in the dynamics of the thermostat virtual degree of
freedom. On the contrary, the IG thermostat provides always highly diverging trajectories in phase space,
characterized by a high chaoticity of each degree of freedom. Finally, the BC thermostat provides a moderate
chaotic behavior for all of the degrees of freedom. Such results suggest that even assuming for both the
“rigorous” algorithms (NH and IG) a full ergodic behavior the NH thermostat could require an extremely
long time to achieve convergence of the time averaged properties.

1. Introduction

In classical molecular dynamics (MD) computer experiments
time averages are assumed to be equivalent to ensemble averages
(ergodic hypothesis). In fact, the Nekhoroshev theorem1 suggests
that this hypothesis can in general be valid in the infinite time
limit; but for finite time simulations, one should be concerned
with the time required for the trajectory to fill densely the phase
space or at least to have a sampling sufficient to achieve that
time averages of the observables of interest coincide with the
ensemble averages.

In this paper, we analyze the results of computer experiments
at constant temperature. The most widely used “rigorous”
thermostating algorithms for MD simulations are the Gaussian
isokinetic (IG) and Nose’-Hoover (NH) thermostats. The use
of these algorithms, assuming ergodicity for the simulated
trajectory, provides by way of time averages the correct
statistical mechanical values of the system’s properties. Even
assuming a full ergodic behavior, the minimal time necessary
to achieve a sufficient sampling of phase space still remains an
open problem. The NH thermostat has been extensively studied
for one-dimensional harmonic systems, where incorrect phase-
space sampling was reported.2-8 In many of these papers, more
sophisticated NH-like algorithms have been proposed, which
provide a correct phase space sampling at least of a system of
one-dimensional harmonic oscillators. However, such more

complex thermostats cannot be easily applied in general as the
coupling parameters, necessary to obtain a correct sampling,
are difficult to evaluate for each different case; moreover, they
require a rather heavy computational load. For these reasons,
the NH thermostat is still widely used for the simulation of
realistic systems, assuming that the phase space sampling
improves with the increase of dimension and complexity of the
simulated system, although no systematic investigation has been
performed in this direction.4-6,8 On the other hand, the IG
thermostat can produce a correct canonical distribution in the
configurational space9,10 but not in the momenta space, as the
total kinetic energy is constrained. However, the momenta space
properties can be easily obtained via basic statistical mechanics
once the configurational distribution is available.10 Note that
the IG thermostat is not equivalent to the NH limit case of
infinitely fast thermostat relaxation,11 because the latter ther-
mostat still allows kinetic energy fluctuations, whereas the IG
method really constrains the total kinetic energy to a fixed value.

In this work, we investigate MD simulations of a small but
yet dynamically complex system like a butane molecule, to
obtain information on the reliability of MD simulations when
different thermostats are used. We systematically compare three
of the most used thermostating algorithms: the IG, the NH,
and finally the Berendsen’s coupling (BC);12 the latter does not
reproduce exactly the canonical distribution but is one of the
most used thermostats because of its stability and efficiency in
MD simulations. At low temperature, where the harmonic
approximation holds, we could directly compare the behavior
of significant quantities computed through time averages with
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the corresponding statistical mechanical values. At higher
temperature, we performed an analysis of the dynamics of the
system measuring the level of chaos associated with the
trajectories. As a matter of fact, it has been found that there
exists a threshold for the energy per degree of freedom (DOF),
called strong stochasticity threshold (SST13,14), such that when
the energy is higher a fast diffusion in phase space occurs
(Anosov diffusion), whereas when the energy is lower, the
dynamical diffusion is definitely slower (Arnold diffusion). To
have equivalence between time and ensemble averages on the
typical simulation time scale, the system must clearly be
endowed with an energy per DOF higher than the SST.
Nevertheless, this condition is not sufficient. It has been shown
that even in systems that exhibit a chaotic behavior as a whole
different DOFs may be endowed with quite different levels of
chaos.15 If such is the case, time averages of functions depending
on the microscopic variables that have a slow diffusion in the
phase space may turn out to be different from the ensemble
averages, at least over times that are typical for a computer
experiment. Here we used the rate of divergence in phase space
of initially nearby trajectories, considering the whole system
as well as each DOF, as a measure of the dynamical chaoticity
of the system, according to Lyapunov’s theory.15-17 Fast
diverging trajectories for each DOF should correspond to a
chaotic sampling of phase space, with presumably a higher
efficiency (fast diffusion), whereas trajectories characterized by
slow divergence of even a subset of the DOFs should correspond
to a partly “ordered” sampling of phase space, with presumably
a lower efficiency (slow diffusion).

2. The Model

In this work, we used a skeletal model of a butane molecule
(C4H10), where the hydrogen atoms were included into the
carbons (united atoms model,18 with four identical pseudo-
atoms). The mass of each pseudoatom is the mass of the whole
molecule divided by 4, i.e.,m ) [4(12) + 10(1)]/4) 14.5 amu.
The potential energy consists of the sum of three different
terms: the vibrational energy of the covalent bonds (stretching),
the vibrational energy of the valence angles (bending), and the
energy associated to the dihedral torsion. The stretching energy
is represented19 by a harmonic termVS ) 1/2∑i)1

3 ki(bi - b0)2,
whereb0 andbi are respectively the equilibrium distance and
the actual distance between atomsi and i + 1. The bending
energy is represented18 by a sum of quadratic terms of the cosine
of the bending angleθ: Vb ) ∑i)1

2 k2(cosθi - cosθ0)2, where
θ0 andθi are respectively the equilibrium angle and the actual
angle between atomsi, i + 1, andi + 2. The potential energy
entailed in the dihedral angleγ is represented20 asVd ) ∑i)1

5 ai

cos iγ. We have used the leapfrog algorithm for the numerical
integration of the equations of motion, as it is suitable for the
implementation of the thermostating techniques. The time step,
as usual, is fixed as a small fraction of the shortest vibration
period. In our case, we used a time step of 1 fs, which is1/20 of
the stretching vibration period. With this choice, the fluctuations
of the total energy, in microcanonical simulations, were less
than 0.01%. The initial velocities were chosen in such a way
as to obtain the required temperature and to set to zero the
overall translational and angular momenta of the molecule. The
used thermostats keep these constraints during the dynamical
evolution. Simulations were performed in the temperature range
T ) 15 ÷ 1100 K using the IG,9,10 NH,2,11,21,22 and BC12

thermostats, with initial equilibration runs of 0.1 ns and
production runs in the range from 10 to 15 ns. Such long
equilibration and production runs were used, especially when

the NH thermostat is utilized,23,24 to ensure equilibration from
the initial phase space position of the MD trajectories and a
good convergence of the time averages. Note that for the NH
thermostat the length of the equilibration and production runs
as well as the choice of the “mass” parameterτ are crucial to
obtain a correct phase space sampling, in the simulation time
length, as reported in the literature.23-25 We always used time
lengths of the equilibration and production runs larger than the
ones used in the recent literature.24 Concerning the “mass”
parameter, we followed the indications given in a paper by
Toxvaerd and Olsen,26 where the authors identify the optimal
value (τ ) 0.01) for an isolated butane molecule via a sensitivity
analysis of different runs based on differentτ values. Finally,
we employed for the BC thermostat the usual relaxation time
of 0.1 ps.27

3. Statistical and Dynamical Analysis

To compare the reliability of the two “rigorous” thermostats,
we first investigated the low temperature regime. At low
temperature, all classical mechanical systems, with an overall
stationary point energy minimum, behave as harmonic ones,
and the internal energy and heat capacity as a function of
temperature can be easily obtained from statistical mechanics.
One has to take into account that our trajectories, with center
of mass at rest, have three constrained degrees of freedom (the
center of mass coordinates). Moreover, at low temperature,
where we deal with a semirigid molecule, fixing to zero the
angular momentum is equivalent to constrain the three rotational
degrees of freedom of the molecule. Hence, for our butane
model, using basic statistical mechanics and the harmonic
approximation, the molecular internal energy (considering the
overall minimum as zero) and heat capacity are

wherek is Boltzmann’s constant,U, K , andU′ are the total,
kinetic, and potenial energy, respectively. The total, kinetic and
potential energy heat capacities, used in the previous formula,
can be expressed in terms of the second central energy moments

Note that the correlation〈(K - 〈K 〉)(U ′ - 〈U ′〉)〉 in the
canonical ensemble is zero even when the mass tensor is a
function of the coordinates, and hence, kinetic and potential
energies are not statistically independent (see appendix A). In
Figure 1, we compare the average kinetic and potential energies,
obtained by simulations, with the expected harmonic behavior
〈K 〉 ) 〈U ′〉 ) 3kT. For the average kinetic energy, we show
only the values obtained by NH simulations, as in the IG
simulations where the kinetic energy is by definition fixed to
the correct value. In Figure 2, we compare the kinetic and
potential energy heat capacity, obtained via the second central
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moment, with the expected harmonic behavior (∂〈K 〉/∂T) )
(∂〈U ′〉/∂T) ) 3k. As in the previous figure, the kinetic energy
heat capacity is reported only for the NH simulations. For these
latter simulations, we also compare, in Figure 3, the total energy
heat capacity, obtained by the total energy second central
moment and by the sum of the kinetic and potential energy
second central moments, with the expected harmonic behavior
given by formula 2. From these three figures, it is evident that
at low temperature, where the harmonic approximation should
hold, only the IG thermostat simulations show a good agreement
with the expected behavior, whereas the results obtained with
the NH thermostat are clearly incorrect, except for the average
kinetic energy. This suggests that NH simulations, at least at
low temperature, could require an extremely long time to provide
well converged time averages. The exceedingly high values of
the fluctuations in the NH simulation are reminiscent of a similar
phenomenon found at low temperature in fcc Lennard-Jones
lattices with up to 32 768 atoms.28 In that case, the computer
experiment simulated a microcanonical ensemble, and the large
and long lasting fluctuations of the kinetic (or potential) energy

were due to a lack of interaction among normal modes. We
will resume this point later. The poor convergence of the NH
simulation results is also demonstrated by the nonzero correla-
tion coefficient

between kinetic and potential energies, as shown in Figure 4.
As previously mentioned, it is well-known that for a one-
dimensional harmonic chain the NH thermostat provides incor-
rect sampling of phase space, at least within the simulation
time.2-8 The results presented here show rather clearly that such
an incorrect sampling is extended to three-dimensional harmonic
systems. We also studied the NH limit of infinitely fast
thermostat relaxation (τ f 0). For numerical reasons in such a
limit, the mass parameter must be set equal to the time step. It
is worth noting that these NH-limit simulations do not reproduce
the IG results and still provide incorrect properties. This is
summarized by Table 1, where we use data at 140 K

Figure 1. Average kinetic and potential energy for IG and NH
simulations and theoretical harmonic behavior, as a function of
temperature.

Figure 2. Kinetic and potential energy heat capacity for IG and NH
simulations and theoretical harmonic behavior, as a function of
temperature.

Figure 3. Total (energy) heat capacity and sum of kinetic and potential
energy heat capacities for NH simulations, compared with the theoretical
harmonic behavior, as a function of temperature.

Figure 4. Correlation coefficient between average kinetic and potential
energies for NH simulations, as a function of temperature.

r )
〈(K - 〈K 〉)(U′ - 〈U ′〉)〉

[〈(K - 〈K 〉)2〉〈(U′ - 〈U ′〉)2〉]1/2
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comparing the values of average energy and heat capacity for
both the limit-NH thermostat and the IG one. We also
investigated the low temperature behavior of the BC thermostat,
and in Figures 5 and 6, we show the average kinetic and
potential energies and corresponding heat capacities as obtained
by MD trajectories with the BC algorithm. This nonexact
temperature coupling reproduces correctly the average potential
and kinetic energies but not more complex properties based on
higher order energy moments or correlations, like the heat
capacity. Interestingly, the approximate fluctuation formula for
the BC thermostat, recently proposed in ref 29 in order to obtain
correct heat capacities values, is unable to reproduce the
expected values providing still too low kinetic and potential
energy heat capacities (R instead of 3R).

At higher temperature, where the system is no more in the
harmonic regime, there are no simple prescriptions for the
behavior ofU(T) andCV(T). To ascertain the reliability of the
simulations’ results, we have investigated the rate of divergence

of nearby trajectories by means of the maximum Lyapunov
exponent,30,31 defined as

wherew is the distance vector in phase space of two trajectories
starting from close points (w(0) tending to zero). Note that in
such a limit the vectorw defines the “tangent space” of the
phase space of the system. A positive value ofλ1 means that
the trajectories will diverge exponentially in the long-time scale.
In Figure 7, we show the maximum Lyapunov’s exponentλ1

vs time, for both the IG and NH simulations at different
temperatures. From the figure, it is clear that in the IG
simulations the convergence is faster; moreover, we obtain larger
values ofλ1. As previously mentioned, the larger the value of
λ1, the faster the divergence of the trajectories in phase space;
we can hence conclude that the IG simulations provide a more
chaotic sampling of phase space. Similarly, in Figure 8, we show
the maximum Lyapunov’s exponent for the BC trajectories. For
this last thermostat, we observe a convergence rate similar to

TABLE 1

limit NH potential IG potential Harmonic prediction

U/R (K) 523 432 432
CV/R 4.4 2.8 3.0

Figure 5. Average kinetic and potential energy for BC simulations
and theoretical harmonic behavior, as a function of temperature.

Figure 6. Kinetic and potential energy heat capacity for BC simulations
and theoretical harmonic behavior, as a function of temperature.

Figure 7. Maximum Lyapunov exponent for IG and NH simulations
as function of time, at different temperatures.

Figure 8. Maximum Lyapunov exponent for BC simulations as
function of time, at different temperatures.

λ1 ) lim
tf∞

1
t

ln
|w(t)

w(0)
(6)
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the IG case, but the values are lower than the IG ones. To
investigate the chaoticity of single DOFs in the system, it is
convenient to use generalized coordinates which are, in general,
different from the Cartesian ones. We used the essential
dynamics (ED)32-37 method to separate DOFs with possibly a
different level of chaos. In this approach, which is based on
the principal component analysis of the atomic positional
fluctuations, it is possible to separate the DOFs of the system
into two different sets: an “essential” one, which is responsible
for the larger portion of the positional fluctuations, and the
remaining one, containing most of the DOFs, characterized by
nearly constrained motions. The definition of the essential DOFs
is obtained from the diagonalization of the covariance matrix
of the atomic displacements, with the essential DOFs being
identified by the eingenvectors associated to the larger eigen-
values. The eigenvalues are the average squared fluctuations
(variances) in the configurational space, occurring along the
corresponding eigenvectors, and hence their sum provides a
measure for the amount of sampled configurational phase space.
This is a different but complementary information with respect
to that obtained from the maximum Lyapunov exponent, and
we have found that they are in agreement, as the total squared
fluctuation of the simulations with the IG thermostat is always
higher than that with the NH and BC thermostats (data not
shown). Because we are interested in the chaoticity of single
DOFs, i.e., in the rate of divergence of single DOFs on initially
nearby trajectories, we can quantify this property using the
coherence angles CAs defined by15-17

wherewi is the vector obtained by projectingw on theith DOF
plane, defined by a coordinate and its conjugated momentum
(the momentum of an eigenvector DOF can be easily obtained
projecting the Cartesian momenta onto the eigenvector);Ri is
the ith CA corresponding to the asymptotic value (infinite time
limit) of the angle between theith DOF plane and the direction
corresponding to the maximum Lyapunov’s exponent (see
appendix B). A DOF associated with a small CA will diverge
with a high rate, being aligned close to the maximum Lyapunov’s
exponent direction (maximum expansion direction); it will hence
be characterized by a highly chaotic dynamics. On the contrary,
DOFs associated with high CA values will be characterized by
a slow divergence and, hence, by a less chaotic dynamics. As
∑i)1

N cos2 Ri ) 1, it is possible to define an em average angle
of the DOFsR as

Deviations ofRi from the average angle give a measure of the
different level of chaos of the DOFs. In the case of IG and BC
simulations, the total number of DOFs is 12, and hence the
average angle is 73°; for NH simulations, there is one more
DOF, and the average angle becomes 74°. Because the CAs
are defined by asymptotic time averages, they become meaning-
ful only when a good convergence is reached. Such a conver-
gence was obtained for the IG, NH, and BC simulations on a
time scale between 10 and 15 ns. In Figure 9, we report the
CAs for two high temperature IG and NH simulations. As
expected, in all simulations, the angles of the DOFs 10, 11,
and 12 are exactly equal to 90°, being therefore orthogonal to

the maximum expansion direction. These DOFs, corresponding
to the zero eigenvalues of the covariance matrix, are in fact
associated with the three exact holonomic constraints that fix
the center of mass of the molecule. For the other DOFs, the
situation is quite different. In the case of the IG thermostat, the
physically relevant DOFs, from 1 to 9, are collected in a rather
narrow strip around the average angle, and this means that these
DOFs behave chaotically and in a similar way (the structure of
this spectrum of CAs will be analyzed in a forthcoming paper38).
On the contrary, from the simulations with the NH thermostat,
the DOFs from 1 to 9 exhibit angles close to 90°, and only the
angle of the 13th DOF, corresponding to the added thermostat
variable, is quite low (16° at T ) 720 K and 20° at T ) 1080
K). These last results mean that the direction associated in the
tangent space with the added variable is close to the maximum
expansion direction, wich is almost orthogonal to the other,
physical DOFs. The 13th DOF entails hence most of the
chaoticity of the system, whereas the motions in the physical
subspace are characterized by a very low chaos. This kind of
pattern is probably the reason underlying the large, noncanonical
undulations of the instantaneous kinetic energy found some years
ago in a two-dimensional Lennard-Jones fluid simulated with
a NH thermostat.23 In that case, as in the case of the fcc lattice
mentioned before,28 a poor energy transfer among DOFs
restricted the diffusion of the simulated trajectory in the phase
space, producing results not matching the statistical mechanical
expectations. In the simulations of the butane molecule we
performed using the NH thermostat, only the thermostat variable
seems to be endowed with a motion chaotic enough to allow
an efficient sampling of its phase subspace. In Figure 10, we
also compare at the same temperatures as in Figure 9 the IG
CAs with the ones obtained by the NH thermostat in the limit
of infinitely fast relaxation. It is worth noting that once again
the limit-NH thermostat is not equivalent to the IG one and
provides virtually the same CAs pattern of the NH simulations
using the optimal “mass” parameter. In Figure 11, we present
the same analysis for two BC and microcanonical (MC) high-
temperature simulations. From this last figure, it is clear that
BC and MC simulations provide a set of CAs similar to the IG
ones.

cos2 Ri ) lim
tf∞

1
t ∫0

t |w(t′)|2
w(t′)|2

dt′ (7)

R ) arccosx1

N
∑
i)1

N

cos2 Ri ) arccosx1

N
(8)

Figure 9. Coherence angles spectrum for IG and NH simulations at
different temperatures.
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4. Conclusions

Molecular dynamics simulations in ensembles other than the
microcanonical one involve the use of specific thermostating
algorithms that should reproduce the correct statistical mechanics
of the simulated system. Even assuming that the ergodic
hypothesis holds, this is possible only if in the time of the
simulation the time averaged properties converge, i.e., the
simulated trajectory fills densely all of the physically allowed
phase space. The correct choice of an efficient thermostating
algorithm is essential. In this work, we compared the MD results
obtained using the IsoGaussian, IG, and the Nose’ Hoover, NH
thermostats, which should provide in principle the correct
canonical statistical mechanics. We also compared the previous
coupling methods with the BC thermostat, which is not exact
but is widely used.

At low temperature, where the harmonic approximation
should hold, the direct comparison of some significant physical
properties, such as the internal energy and heat capacity, with
the expected theoretical values clearly shows that the NH
thermostat is unable to reproduce the expected behavior, whereas
the IG thermostat does. Interestingly, the BC thermostat does

provide correct average energy values, but it cannot reproduce
properly the energy fluctuations. At higher temperature, where
there are no simple theoretical prescriptions, we used some
indirect indicators (maximum Lyapunov exponentλ1 and
coherence angles) to obtain information on the efficiency of
MD sampling. Our results indicate that the IG algorithm
produces trajectories characterized by a highly chaotic behavior,
suggesting a fast sampling of phase space. On the contrary, the
NH thermostated trajectories seem to be endowed with a partly
ordered dynamics in the physical phase space, with most of the
chaoticity concentrated in the behavior of the added nonphysical
variable (thermostat variable). The BC simulations, similarly
to the MC simulations, are somewhat between the NH and IG
ones, showing a moderate chaoticity of the dynamics. From
these results, we can conclude that, at least for our small system
and for the time lengths investigated, only the IG simulations
can reproduce accurately the physical behavior, providing the
required sampling and the expected statistics. The phase space
sampling of the NH thermostated trajectories probably requires
exceedingly long times to provide correct time averages, being
characterized by a poorly chaotic behavior. Finally, the BC
simulations, although unable to provide the correct fluctuations
and correlations, seem to converge and be reliable as far as more
basic properties are concerned.
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Appendix A

Consider a molecular system in the classical limit, where the
kinetic energy is given by

where π are the conjugated momenta of the generalized
coordinatesê and M̃ is the mass tensor of the system, a
symmetric matrix, which is in general not diagonal and depends
on the coordinates. The covariance between kinetic and potential
energy can be obtained from

where

and the integrals in the last equation are defined at fixedê.
Using in eq 13 theπ sets that diagonalize the mass tensor at

Figure 10. Coherence angles spectrum for IG and limit NH (τ f 0)
simulations at different temperatures.

Figure 11. Coherence angles spectrum for BC and MC simulations
at different temperatures.

K ) πT M̃-1

2
π (9)

〈∆K ∆U ′〉 )
∫e-âU′∆U ′ dê ∫e-âK∆K dπ

∫e-âU ′ dê ∫e-âK dπ

)
∫e-âU ′ (detM̃)1/2∆U ′(〈K〉ê - 〈K〉) dπ

∫e-âU ′ (detM̃)1/2 dê

(10)

∆K ) K - 〈K 〉 (11)

∆U ′ ) U ′ - 〈U ′〉 (12)

〈K〉ê )
∫e-âKK dπ

∫e-âK dπ
(13)
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each configuration, we obtain that the corresponding average
kinetic energy, evaluated at fixed coordinates, is

whereMi is the ith diagonal element of the diagonalized mass
tensor,N is the total number of degrees of freedom, and each
Mi is a function of the coordinatesê. Note that because we used
an orthogonal transformation of the momenta to diagonalize the
mass tensor, and hence its inverse, the corresponding Jacobian
in eq 13 is 1. From the last equations, we readily obtain

which must be valid for any possible configuration, and hence
〈∆K ∆U ′〉 ) 0

Appendix B

In this appendix, we show how we can relate the dynamics
in the tangent space and the expansion directions characterized
by the Lyapunov exponents with the coherence angles. We will
use a simplified mathematical approach without addressing the
more complex details. A mathematically rigorous derivation of
the relevant properties of the tangent space is given in refs 30
and 31. A detailed description of the CAs can be found in refs
15-17.

Consider the Hamiltonian form of the equations of motion
defined by a first order set of ordinary differential equations

wherex(t, x0) is the phase space point describing the trajectory
which is fully defined as a function of time and initial position
x0. Varying the previous equation with respect to the initial
positionx0 and considering that this derivation commutes with
the time derivative, we obtain

where

and

hence

with τ a differential time interval. Dividing the whole timet
into a set ofL differential intervals we obtain, fort G τ:

wherew0 ) w(0). Expressing the matrix product in terms of

exponential matrixes, we have

where

hence

Let us assume that in the limitL f ∞ Z̃ converges to a stable
value, i.e., the time average becomes stationary. Given the
transformationB̃ that diagonalizesZ̃, it follows from the Taylor
expansion of the exponential matrix that it diagonalizes also
eZ̃; we can therefore write for the long time scale:

with

and

where the time independent matrixΘ̃ is diagonal and hence
eΘ̃ is also diagonal;Θi,i is in general a complex number such
that Θi,i/τ ) λi + (-1)1/2γi/τ, whereλi corresponds to theith
Lyapunov exponent and theith column of B̃ provides the
corresponding eigenvector in the original basis set. Note that
the convergence ofZ̃ is the key point in this derivation, and we
assume it without addressing all of the necessary mathematical
requirements.

In the infinite time limit, we hence have, from eq 24

wherew′(0) ) B̃-1w0 and hencew′1(0) is the component ofw0

along the eigenvector corresponding to the largest Lyapunov
exponent, obtained expressing the vector of the tangent space
in the eigenvectors basis set. From the last equation, it is easy
to derive eq 6 and the angle between the maximum expansion
direction and a given subspace:

wherebi,1 is the component along theith vector of the original
basis set of the projection on a given subspace of the eigenvector
corresponding toλ1. The value of cos2 Ri as computed through
eq 7 can be formally expressed through the last equation when
the subspace is defined by a coordinate and its conjugated
momentum.
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