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In this paper we describe a new Hamiltonian model for polarizable water, whose
reliability should in principle be independent of system dimension. Such a model is
largely based on first principles using the charge density expansion and linear po-
larizability to treat intermolecular interactions. A semi-empirical function is added
only to describe short-range atomic repulsions. The accuracy of this method has
been evaluated comparing the results of our model with highly correlated quantum
chemical calculations (CCSD(T)) performed on a system of two interacting water
molecules. Results show that this model provides a rather accurate description of
the system studied.
© 2002 Elsevier Science B.V. All rights reserved.

1. INTRODUCTION

The accurate description of water molecules is a challenging and longstanding
topic.! A theoretical model for water, both in isolated and condensed state, is of
great relevance for the importance of such substance in many chemical and biological
processes. Two strategies have been essentially used for modeling water molecules:
a detailed electronic description, based on sophisticated quantum-chemical calcu-
lations,? and a more approximated approach which describes intermolecular inter-
actions in terms of atomic-molecular properties. Although the former can be very
accurate, its computational costs are still so heavy to prevent its application to
medium-large systems. On the other hand the latter approach, which cannot de-
scribe accurately the microscopic details of molecular interactions, is very suited
for treating condensed phase conditions. Many of the atomic-molecular models are
based on a semi-empirical molecular Hamiltonian3® which in some cases can also
include terms for molecular polarizability,” and in the last years more theoretically
based Hamiltonians have been also proposed.®® All these models are typically
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based on point charges, atomic polarizability in the linear approximation, if present,
and simplified short range potentials to describe intermolecular interactions. Such
molecular Hamiltonians are efficient in providing many experimental properties, but
their description of the pair interaction is not always satisfactory. In the line of
these atomic-molecular methods we propose in this paper a new water Hamiltonian
based on first physical principles. In our model we still describe many body effects
in terms of atomic-molecular polarizability, in the linear approximation, and short
range atomic interactions via a simple semi-empirical potential. However, we use an
electronic density description beyond the usual atomic point charge approximation,
which includes dipole and quadrupole effects, where all the physical parameters in-
volved in the Hamiltonian are obtained by first principles and direct evaluation of
observables. This paper is organized as follows: in the first part we describe the the-
oretical principles underlying the molecular Hamiltonian model, in the second part
we will show the results obtained applying such a model to simple system defined
by two interacting water molecules; finally we give some conclusions. The aim of
the present work is not to describe in details the potential energy surface of a water
dimer, but rather to provide a general, physically coherent Hamiltonian for the fluid
state, and in particular, for the liquid state.

2. THEORY

2.1. Basic derivations
The water model we propose is based on the following three basic physical ap-
proximations:

e The rototranslational degrees of freedom of each molecule are considered com-
pletely classical mechanical coordinates, while both the electronic and in-
tramolecular nuclear degrees of freedom (i.e. stretching and bending modes),
are considered as quantum mechanical ones;

e For any given rototranslational phase space position of the molecules, we as-
sume that the system is confined in its ground state, i.e. the lowest Hamilto-
nian eigenstate of the system where all the molecules have fixed rototransla-
tional coordinates and conjugated momenta;

o We also assume that the energy changes of the Hamiltonian ground state as a
function of the rototranslational coordinates, defining the Born-Oppenheimer
(BO) surface, do not alter the molecule’s geometry and hence, classically
Speaking, the nuclear intramolecular positions are virtually fixed.

In the case of fluid state water these assumptions are excellent approximations at
least up to 700-800 K.
The total energy on the BO surface is then

U,p) = K@p)+U () ¢y
U(@) = (WolH|T) (2)

where x and p are the rototranslational coordinates and conjugated momenta of the
molecules, K the overall rototranslational kinetic energy that for rigid or semirigid
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molecules is a function only of the momenta, H the Hamiltonian operator of the
electronic and nuclear intramolecular degrees of freedom at a fixed rototranslational
configuration, and ¥, the corresponding ground state eigenfunction. Considering as
a reference condition (unperturbed state) an identical system in the same rototrans-
lational phase space position, but with no intermolecular interactions, we have that
Eq. 2 can be written as

U(z) = <w0|ﬁ°|%>+<%n7|%>

= U + V) + AUY (z) + AV (x) (3)

u' = (wlAes) @)
V@) = (wiIVIep) (5)
AU (@) = (WolHOWo) - (WRIA°|9E) (6)
AV(@) = (WolPI%) - (W5I7I95) (7)

where H° is the unperturbed Hamiltonian operator, V the perturbation operator
providing the intermolecular energy and ¥ is the unperturbed eigenfunction of the
system. From second order perturbation theory!! we have

AV
> (8)

and hence assuming Eq. 8 valid in general

AUY =~ —

U(z) = U + V() + % )

Note that we describe ¥/ only in terms of electric interactions neglecting magnetic
and exchange interactions; the former are very weak and the latter must be used
only in the case a significant electron mixing between molecules is present. In the
condition of interest of this paper, i.e. not very low temperature and fluid state
behaviour which does not involve relevant chemical events, magnetic and exchange
interactions can be safely disregarded in the Hamiltonian. The three terms in Eq. 9
can be evaluated as follows. The first term 4% is simply the Hamiltonian ground
state eigenvalue for the unperturbed system which is independent of the coordinates
z and given by the vibroelectronic ground state of an isolated molecule. The second
term V°(z), providing the intermolecular energy due to the unperturbed molecu-
lar charge distribution, can be approximated expanding the oxygen and hydrogens
charge distributions up to the quadrupoles. Finally the last term, AV (z), provides
the interaction energy shift due to the molecular polarizability, and is approximated
in our model expanding the variation of the molecular charge distribution up to
the dipoles. Such approximations are clearly not valid at short intermolecular dis-
tance where the higher order energy terms become relevant. In our model, as it will
be shown, we treat such short range interactions via a semi-empirical energy term
(Buckingham potential) which in principle includes all the energy terms disregarded
in the expansions mentioned above.
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In order to evaluate the unperturbed atomic charges, dipoles and quadrupoles
we made the reasonable assumption that the hydrogen unperturbed dipole and
quadrupole are virtually zero. In figure 1 we show a water molecule, in the un-
perturbed vibroelectronic ground state, in the molecular reference frame, centered
in the molecular center of mass, which diagonalizes the molecular quadrupole matrix.

Figure 1. Water molecule in the molecular reference frame that diagonalizes the
molecular quadrupole matrix, centered in the molecular center of mass. The water
geometry used is defined in table 1 as well as in the text.

We can easily set a system of equations which can be used to evaluate the unper-
turbed atomic charges (gu1, gu2, go), the unperturbed oxygen dipole (1, 1y, 1d,);
and the unperturbed (diagonal) oxygen quadrupole elements (Q%,,, @y, @2..)-
Note that the atomic dipole and quadrupole are defined using as origin of the charges
coordinates the nuclear position. In fact, from the molecular charge, dipole and
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quadrupole, and using the definition of dipole and quadrupole we have

0 = gm+3qm2+4qo (10)
B = ph,=0 (11)
8 = =0 02
1 = zmam + zr2qm2 + 2090 + 1O, (13)
% = Qou (14)
oy = qmYin + a2y + Qdyy (15)
% = amzi + w2 + 9025 + 22010, + Q0s. (16)

gm = qH2 =4qH (17)

with pd, p9, 12, @3, Q5> @7, the unperturbed molecular dipole and quadrupole com-

ponents and the atomic coordinates given by the corresponding nuclear positions.

Table 1

Parameters of the model and input molecular properties used. Unperturbed molecu-
lar, u°, and oxygen, pd, dipole moments are along the z-axis defined in figure 1, and
hence we give in the table only their z components. Note that @0 is the unperturbed
molecular quadrupole matrix.

property value

d(O-H) 0.96 A
angle(HOH) 105.00 degrees
qo0 -1.185 a.u.

qu 0.5925 a.u.
Bo 10.254999 a.u.
Co 1.4376648 a.u.
Br 3.3899 a.u.
Cy 1.79039 a.u.
Tr(a)/3 9.94 a.u.

uo -2.141059 D
1Y, 1.059 D
Tr(Q%)/3 -4.66 a.u.

The previous 8 equations are insufficient to solve the 9 parameters needed, hence
we used a further approximation Q%,, = Q%,, in order to obtain all the atomic
parameters. Interestingly, solving such nine equations we obtained rather similar
oxygen quadrupole (diagonal) elements (maximum relative shift about 14%). This
means that the unperturbed oxygen quadrupole is nearly degenerate and hence its
effects on the interaction energy are not relevant, except at very short intermolecular

distances. We can then simplify our derivation, keeping an accurate description of
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the interaction energy, considering the unperturbed oxigen quadrupole as really

" 0
degenerate, i.e. QY. = QOyy Ozz*

2.2. Energy of the unperturbed charge distribution
Using the general electro-magnetic theory we can express V°(z) as follows

UCEIDH WS | heae (18)

7 ]>z l;

where ¢ and j refer to the molecules, l; and I; to the atoms of the molecules ¢ and
j respectively, @2 is the unperturbed electric potential due to the /; atom and felt
at a given position in the I; atom region, p?j is the unperturbed charge density in
atom [;, the position vector r is taken with respect to the laboratory frame, and
finally the integral subscript means that the integration is taken only over the space
in the I; atom region. Note that in the previous equation we omitted the implicit
dependence of @g and p?j on the rototranslational coordinates @. If in the previous
equation we expand the electric potential around the /; atom nuclear position r N
up to the second order

T Avli (rth )

(r) = B (rw,) + VL (rw,) - (r—rw,) + (r—7T,) 5

S (8%‘{, )
i 6rk8rk1 ,,.:er]

we obtain, after some algebra

@)= TS |ofa, + Vollen,) i 41303 408

T—TN,)

o> b k 1k'=1
(19)
where

qQ; = /lp?j(r)dr (20)
J

= / (1) (r -, )dr (21)
J

& = [ Ao rh, e =k, yir (22)
3

are the total charge, the unperturbed dipole (electric moment) and the k, &’ element
of the unperturbed quadrupole moment of I; atom, respectively. Furthermore we
can also expand the electric potential in terms of the I; atom charge distribution,
again up to the quadrupole

u’?‘- : [”'N:j - TN:,—]
|3

B (ry,) = Ka—r—+ Ky

I”‘Nz‘ - TN('.I |TN[J. - rN[i

3 3 k _ .k K K

K Ok & (TNIJ- TN:,—) (TNz TNI 5k,k'
Z Z — 5 - _ 3

2 b1 k=1 erxj rNuI l"'sz er,vl
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with K¢ = 1/(4mep) and O the Kroenecker’s delta. As mentioned above, in our
model we consider the unperturbed hydrogen quadrupole and dipole to be zero and
the unperturbed oxygen quadrupole to be degenerate, i.e. the quadrupole matrix is
diagonal with three identical eigenvalues. With such an approximation and inserting
in Eq. 19 the matrix A;, elements we obtain, disregarding the terms proportional to
1/|rN,j =7y, |* with n > 3,

SCED )99 AT
i >t U l; ‘j —TN' |
qu ll'li . [TN‘j - rin] qu; p‘lj ' [erj - TN‘i]
I"'sz - TN, |3 |erj - TN, |3
0,0
+ B By
l"'Nz,- — TN, |3

0 0
K |TN,, — TN, M.‘[”'N4"‘7'N<
3 l; [ i x,] 1 i t,]jl (23)

Ierj - rNx,- |5

Note that the last equation cannot be valid at short interatomic distances where
the higher order energy terms, disregarded in Eqs 19 and 23, become relevant.

2.3. Polarizability effects

For a given rototranslational configuration, in our model, molecular polarization
results from the effect of the electric field due to the other molecules and can be
treated, disregarding higher order effects, i.e. hyperpolarizabilities, via the molecular
polarizability matrix &, defined at zero electric field,

-l =G Z E, (24)

where the ¢ subscript refers to the i-th molecule and E; is the electric field felt by
the i-th molecule due to the j-th one. Note that in the previous equation the j
index is never equal to ¢. In Eq. 9 the only term due to such molecular polarizability
is AV which is the energy difference between the actual interaction, including the
polarizability, and the interaction energy only due to the stationary unperturbed
charge distribution. Such a term, which includes the dispersion energy (dipole-
induce dipole interactions), is small for most of the configurations in our BO surface
and hence, for not too short intermolecular distances, it could be approximated using
only dipolar terms

AV = - Z (u, > E; - pl- ZEO) (25)
i>i 7>
-V Hi K (rGj - "'G.-) _
F1 Ire;, — ral? lre, — ral? (re, =) (26)
0 0. R
L ML ML i) N @)

- ITGj - rG’ila |7'Gj - TG.‘IS
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where 7g,,Tg, are the positions of the j-th and i-th molecular centers of mass.
Combining now Egs 26 and 24 we obtain, using the matrix notation,

pi—n = &y D (28)
J
Dk’kl (ng - Tgi)(rgj - Tgi) 6k,k'
Gy 5 - 3 (29)
IrGj - rg] |"°Gj - ral

From the last equations, defining with g and p® the multidimensional vectors of the
actual and unperturbed molecular dipoles, we have

pp’ +0Op (30)

where if N is the total number of molecules, u and u® are 3N dimensional vectors
and © is a 3N x 3N matrix defined as

gl 1 El,? ~~~~~ 01,N

- 92 1 02,2 ..... 02,]\]

6=\ ... .. . (31)
91\’ 1 5[\7,2 ..... ON N

which the diagonal 3 x 3 matrices 5,4,1- are always zero elements matrices and @;] =
a;D;;. Eq. 30 can be easily solved by inversion

o (T - é)_l u (32)

providing at each BO surface position the molecular dipoles which can be used into
Eq. 25 in order to obtain the energy term AV (zx). Note that Eq. 32 provides good
estimates of the perturbed molecular dipoles only for polar molecules where the non
linear effects of the perturbing field are rather small compared to the linear ones.
For apolar molecules, on the contrary, such hyperpolarizability effects become very
relevant and hence cannot be properly treated by Eq. 24 which disregards any non
linear dependence.

2.4. Short range interatomic interactions

In the previous subsections we derived very general expressions to approximate V°
and AV making use only of basic physical mathematical principles. However, these
expressions are not accurate at short interatomic distances where the energy terms
disregarded in Egs 19, 23 and 25, become relevant. Hence, to construct an accurate
model which can treat also short range interactions we must include an extra energy
term. In this paper we model this term using a repulsive Buckingham potential
to describe the short range oxygen and hydrogen interactions. Such semi-empirical
potential is widely used as it is rather accurate and any more “rigorous” derivation
is very difficult and computationally demanding. We can then rewrite Eq. 9 as

Uy ()
2

U'(x) —U" =Ul(x) + + U p(x) (33)
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where
;91
u = K
CEDHH R [W v
3>l
0
gy i ey =] g [y — ]
|"’N,j - TN, N |"'sz — TN, 1
B 1
S e—
Irth - rNx,-l
B ,u'?, : [TNIJ- - rNI,-] ”?j ) [TN’]' — TN’-'] (34)
Irw, — 7w, [°
ite) = -3 (SBT3 )
j>i j>i
Usp(z) = ZZEZB&BW—CHCUINH -Tw,| (36)
R > A PR 71

and in Eq. 35 p; and E; are given according to the previous subsection. Note also
that in the short range Buckingham potential, Ugp, there are only four adjustable
parameters (two for the oxygen and two for the hydrogen) since we only used re-
pulsive interactions as the short range attractive ones should be largely involved in
Eq. 35 (i.e. induced dipole-induced dipole interaction).

3. QUANTUM CHEMICAL CALCULATIONS

Water dimer represents a challenging aspect of quantum chemistry.'>'® Several
studies have indeed demonstrated that only with highly correlated methods and with
the use of very large atomic basis sets, a reliable description of the intermolecular
interaction can be obtained.'® Anyhow, even when very accurate calculations are
carried out, the basis set superposition error (BSSE) still represents a further limita-
tion whose solution is still at the centre of substained interest.!” In the light of these
well known warnings, we decided to adopt for our reference calculations, the highly
correlated coupled cluster theory in its standard implementation which includes all
the single and double excitations with a non iterative inclusion of the triples.® The
Pople’s triple zeta with diffuse and polarization functions 6-311+g(d,p)*® basis set
has been chosen. The BSSE effect was then added through the counterpoise method
of Boys and Bernardi.?® In the dimer calculations the two molecules were kept at
a fixed geometry consisting of an OH distance of 0.96 A and a valence angle of
105.0 degrees. The quantum chemical results we obtained were in good agreement
with literature quantum chemical data, i.e. energy and Oxygen-Oxygen distance in
the H-bond configuration.?! Also the dipole moment of the isolated monomer was
calculated at the CCSD(T) / 6-3114g(d,p) level of theory and resulted as large as
2.1 Debye, about 0.2 Debye larger than the experimental one.?? On the other hand,
the polarizability tensor, determined at the same level, showed diagonal elements
as large as 9.52, 9.85 and 10.32 a.u. in good agreement with the experimental val-

es.?3 All these calculations were done using Gaussian 98 package DEC-AIXP-OSF
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version, revision A.7.24

4. RESULTS

In the present paper we limit our attention to the energy of the water dimer accord-
ing to different relative positions of the monomers. However, as already remarked in
the introduction, the method is absolutely general and its extension to medium to
large sized water clusters is presently under investigation. The Hamiltonian model,
presented in this paper, was obtained as follows:

e High level, i.e. highly correlated, quantum chemical calculations were carried
out in order to obtain the BO surface energy of the different relative orienta-
tions of the water dimer used, as reported in figures 2-6.

e For the same orientations ¢} and Uj; terms, described in the Theory section,
were evaluated.

e The short range atomic repulsive interaction of oxygen and hydrogens, mod-
eled using the semi-empirical potential Ugg, was parametrized fitting the en-
ergy difference between the free quantum chemical calculation and the energy
obtained summing U; and Uj,, for two different dimer orientations reported in
figures 2 and 3.

e The complete “force field” was finally tested by comparing the calculated
model energy with the quantum-mechanical curves, for all the dimer orien-
tations.

The theta matrix was built up using the atomic charges, the dipole moment and
the polarizability tensor, reported in table 1 together with the four parameters of
the Buckingham function. Such a matrix was inverted using a standard procedure
as implemented in the LAPACK library.

The results concerning the dimer interaction energy are reported in the a panels
of figures 2-6, where the orientations considered are shown below each panel a. Here
the CCSD(T) curves, indicated with circles, are compared to the present model,
shown by a solid line. The values above 0.1 a.u. were always skipped out by the
figure since such values, hardly reached during molecular simulations of water in fluid
state at thermal regimes, are out of the interest of the present work. The agreement
is always very good also for the three orientations not used in the parametrization,
figures 4-6(a), and it is rather remarkable that the ’perpendicular’ hydrogen-bond
curve, figure 4(a), is also accurately reproduced. The maximum errors never exceed
1073 a.u., see figure 5(a), and the Hamiltonian model reproduces accurately the
curves shape. Note that the effects of the short range potential become negligible
from about 4 — 54 and hence beyond such a distance the energy of the model is
only due to the terms derived from first principles. Finally in the b panels we show
the dipole shift of the dimer due to the polarizability, i.e. the dipole difference
between the actual dimer and two water molecules with the same orientation but
not interacting. In the figures the CCSD(T) results are compared with the values
obtained using our model, in the same orientations and distance range used in a
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Figure 2. Oxygen repulsive orientation of coplanar water molecules. In the figure
are shown the energy interaction (panel a) and Ay (panel b) at different Oxygen-
Oxygen distances. CCSD(T) values are shown by circles and our model’s values by
a solid line.
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Figure 3. Oxygen attractive orientation of coplanar water molecules. In the figure
are shown the energy interaction (panel a) and Ay (panel b) at different Oxygen-
Oxygen distances. CCSD(T) values are shown by circles and our model’s values by
a solid line.
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Figure 4. Perpendicular attractive orientation (the H-donor is orthogonal to the
acceptor water molecule plane). In the figure are shown the energy interaction
(panel a) and Ap (panel b) at different Oxygen-Oxygen distances. CCSD(T) values
are shown by circles and our model’s values by a solid line.
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Figure 5. Hydrogen repulsive orientation. In the figure are shown the energy inter-
action (panel a) and Ay (panel b) at different Oxygen-Oxygen distances. CCSD(T)
values are shown by circles and our model’s values by a solid line.
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Figure 6. Perpendicular Oxygen repulsive orientation. In the figure are shown the
energy interaction (panel a) and Ay (panel b) at different Oxygen-Oxygen distances.
CCSD(T) values are shown by circles and our model’s values by a solid line.
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panels. The agreement is rather good also for this observable which was not used
in the parametrization, and hence such a result shows that the induction effects are
well reproduced by the model. Finally the different energy components, defined in
the Hamiltonian, have been compared and the results concerning the dimerization
orientation are reported in figure 7.

Not surprisingly, the charge-charge term is quantitatively important at whatever
oxygen-oxygen distance and the polarization one, up to 3.04, approximatively ac-
counts for the 5 — 10% of the overall interaction energy. More interestingly is, on
the other hand, the role played by the dipole-charge term which, although resulting
very relevant even at long distances, is mostly neglected in the common molecular
force fields.

5. CONCLUSIONS

In this article we propose a new molecular Hamiltonian for water which is essen-
tially derived from first principles, with only the short range atomic repulsion de-
scribed by a semi-empirical function. Using charge density expansion up to atomic
quadrupole and molecular polarizability in the linear approximation, our model can
reproduce with high accuracy both the interaction energy as well as the total dipole
moment of a water dimer, in different orientations and distances, as obtained by
sophisticated quantum chemical calculations. The results presented suggest that
this model can be very efficient in the simulation of liquid water and in particular
for simulating complex solute-solvent systems, such as solvated biological macro-
molecules, ions, etc.. It is also worth noting that a reliable polarizable water model
can be essential for treating quantum mechanical centers in a classical environment,
e.g. QM/MM approaches. Finally such a model could be of great relevance for per-
forming accurate predictions on water thermodynamics and statistical mechanics,
which are currently under investigation in our groups.
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dashed).
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