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Statistical mechanics and thermodynamics of magnetic and dielectric
systems based on magnetization and polarization fluctuations:
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The quasi-Gaussian entropy~QGE! theory employs the fact that a free-energy change can be written
as the moment-generating function of the appropriate probability distribution function of
macroscopic fluctuations of an extensive property. In this article we derive the relation between the
free energy of a system in an external magnetic or electric field and the distribution of the
‘‘instantaneous’’ magnetization or polarization at zero field. The physical-mathematical conditions
of these distributions are discussed, and for several continuous and discrete model distributions the
corresponding thermodynamics, or ‘‘statistical state,’’ is derived. Some of these statistical states
correspond to well-known descriptions, such as the Langevin and Brillouin models. All statistical
states have been tested on several magnetic and dielectric systems: antiferromagnetic MnCl2 , the
two-dimensional Ising spin model, and the simulated extended simple point charge~SPC/E! water
under an electric field. The results indicate that discrete modeling of magnetization and polarization
is rather essential for all systems. For the Ising model the ‘‘discrete uniform’’ state~corresponding
to a Brillouin function! gives the best description. MnCl2 is best described by a ‘‘symmetrized
binomial state,’’ which reflects the two opposing magnetic sublattices. For simulated water it is
found that the polarization, as well as the type of distribution of the fluctuations, is strongly affected
by the shape of the system. ©2002 American Institute of Physics.@DOI: 10.1063/1.1448290#
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I. INTRODUCTION

In recent articles we demonstrated that it is actua
rather fruitful to approach statistical mechanics from t
point of view of macroscopic fluctuations, as initiated
Einstein1–3 and further developed by Landau and Lifshit4

and by Greene and Callen,5 instead of the usual microscop
Hamiltonian point of view, as proposed by Gibbs.6

It is well known that many free energy changes w
respect to a proper reference state can be written in term
the moment-generating function7–9 of some macroscopic
probability distributionr~X!, whereX corresponds to som
fluctuating macroscopic extensive property, e.g., the inte
energy, enthalpy, volume, or number of particles.10 All infor-
mation to evaluate the free-energy difference as a functio
the intensive parameter, e.g., temperature or pressure, is
tained inr~X!. So, instead of modeling the molecular Ham
tonian and trying to evaluate by some means the parti
function which is usually only possible with severe appro
mations, we can directly model the distributionr~X!, using
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andrea.amadei@uniroma2.it
4420021-9606/2002/116(11)/4426/11/$19.00

Downloaded 25 Mar 2008 to 151.100.4.22. Redistribution subject to AIP
y

of

al

of
on-

n
-

all available physical-mathematical constraints and requ
ments on the distribution. Each model distribution yields
unique and complete set of thermodynamic functions,
‘‘statistical state’’ of the system. It must be stressed th
except for simplified model systems, it is~very! difficult to
obtain from ‘‘first principles’’ the exact distribution. How
ever, because of the macroscopic character of thermo
namic systems, the central limit theorem7 can be invoked to
show thatr~X! is close to a Gaussian distribution, at least
the vicinity of the mode. In the ‘‘quasi-Gaussian entrop
~QGE! theory we therefore simply assume thatr~X! is
‘‘quasi-Gaussian,’’ i.e., it can be described by the convo
tion of distributions corresponding to identical, statistica
independent subsystems. These subsystem distributions
be unimodal-like and are likely to be of relatively low mat
ematical complexity. In general, the information available
a macroscopic system provides several requirements o
strictions that are essential in modeling the distribution fu
tion. Unfortunately, such restrictions are insufficient to pr
vide a unique choice of the model distribution, but t
investigation on many different systems is clearly show
that it is possible to identify a typical distribution for eac
il:
6 © 2002 American Institute of Physics
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instantaneous propertyX that is a good model for a ver
large class of systems.

Using this formalism for fluctuations of the ‘‘potential
energy of the system, we were able to derive a relativ
simple and general, yet very accurate model, the confi
gamma state, for describing the temperature dependenc
thermodynamic properties at constant density.11,12 It also
forms the basis of complete equations of state for
Lennard-Jones fluid13 and water.14,15 The potential power of
the method is indicated by the fact the same model is ap
cable to systems that differ so much in polarity.

In this article we will use the QGE theory to describe t
statistical mechanics and thermodynamics of macrosc
systems as a function of an external magnetic or elec
field. The effect of an external magnetic field is not on
interesting by itself. Because of the strong analogy betw
magnetization and density fluctuations~see, for instance, the
isomorphism between the Ising magnet and the lat
gas16,17! this effect may also point to new ways of obtainin
improved descriptions of the density dependence of ther
dynamic properties.18 In the following paper19 we will inves-
tigate in more detail the construction of complete equati
of state as a function of external field and temperature, ba
on the QGE models derived in this article. Another intere
ing point of magnetic and electric systems is the effect of
shape of the sample on thermodynamics and statistical
chanics, especially on the spontaneous fluctuations tha
of central interest in the QGE theory.

II. THEORY

A. General electromagnetic definitions

In this article we will use the SI formulation of the ele
tromagnetic relations.20–22 We consider a macroscopic sy
tem on which a constant and uniform external magnetic (H0)
or electric field (E0) is applied. The system is assumed
have an ellipsoidal shape~including limiting cases like a
needle, sphere, and disk!, so that the resulting electromag
netic ~em! momentMm5IV or Me5PV ~with V the sample
volume andI and P the magnetization and polarization, r
spectively! inside the system is also homogeneous.22–24 For
simplicity, and without loss of generality, we align the exte
nal field along thez axis, which coincides with one of th
ellipsoidal axes. We also assume, for mathematical con
nience, that the system reacts isotropically; often this i
good approximation,24 and the general tensorial relations b
come the scalar equations that we use in this paper. We
plicitly exclude systems that exhibit hysteresis effects~e.g.,
ferromagnets and ferroelectrics! where the em moment is no
a single-valued function of the external field.21,24–27

The external field~H0 or E0! creates a homogeneou
field ~H or E! inside the sample, which are related via20–24,28

H5H02 f dI or E5E02 f d(P/e0), where f dI and f dP/e0

are thedemagnetizingand depolarizingfields, respectively,
e0 is the vacuum permittivity, andf d is a factor depending on
the shape of the sample: for a thin needle aligned with
field f d50, for a spherical samplef d5 1

3, and for a flat disk
perpendicular to the fieldf d51 ~see Refs. 23 and 29 fo
general formulas off d!. The magnetic or electric susceptibi
Downloaded 25 Mar 2008 to 151.100.4.22. Redistribution subject to AIP
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ity ~xm or xe! is defined viaI 5xmH or P/e05xeE with
xm5m r21 andxe5e r21, wherem r ande r are the relative
permeability and dielectric constant of the sample. The s
ceptibility is independent of the volume and shape of
sample.30,31 From this follows thatI 5xm /(11 f dxm)H0 ,
P/e05xe /(11 f dxe)E0 , H5H0 /(11 f dxm), and E
5E0 /(11 f dxe). To express the magnetic energy in the
system, it is actually more convenient to useB05m0H0 as
the external field, wherem0 is the vacuum permeability.

We introduce at this stage a general notation for b
magnetic and electric systems, withF05$B0 ,E0% the exter-
nal field, M5$Mm ,Me% the total em moment,x5$xm ,xe%
the susceptibility, andz05$m0,1/e0%. Hence, the total mo-
ment is given by

M ~F0!5
V

z0
S x

11 f dx DF0 , ~1!

or vice versa

x~F0!5
z0M /~VF0!

12 f dz0M /~VF0!
. ~2!

Note that for small x ~where z0M /V!F0! we have
approximately20

x~F0!'
z0

V

M

F0
. ~3!

Since the susceptibility is shape independent, it follows t
by reversibly deforming the sample at constant external fi
from a shape with factor0f d and magnetization or polariza
tion 0M to a shape with factorf d , we obtain

M ~F0 , f d!5
0M ~F0!

11~ f d20f d!z0
0M ~F0!/~VF0!

, ~4!

i.e., the total em moment is a function of the shape of
sample, which in fact must be considered a state varia
This suggests that also higher-order moments of fluctuat
of the instantaneous em moment are a function of the sh
Since the em moment is given by the field derivative of t
Helmholtz free energyA(N,V,T,F0),

M ~F0!52S ]A

]F0
D

N,V,T

, ~5!

it follows that free-energy difference with respect to a ref
ence system with the same volume, temperature, and num
of particles at zero external field is thus given as a gen
function of the shape by

DA~F0 , f d![A~N,V,T,F0 , f d!2A~N,V,T,0,f d!

52E
0

F0
0M ~F08!

11~ f d20f d!z0
0M ~F08!/~VF08!

dF08 .

~6!

Clearly, only for very special functional relationships b
tween the moment0M (F0) and the fieldF0 , such as a linear
one ~i.e., linear response in the weak-field limit!, the free
energy expressionDA(F0 , f d) has the same functional form
for each value off d , see, e.g., the expressions of the Gau
ian statistical state@Eqs.~29!–~31!#.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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B. Free energy

Following Davidson,20 the Helmholtz free energy
A(N,V,T,F0) of the total system is statistical-mechanica
defined as

A~N,V,T,F0!52kT ln Q~N,V,T,F0!, ~7!

where the quantum-mechanical partition function is given

Q~N,V,T,F0!5(
n

e2bEn~F0!. ~8!

The summation runs over all the Hamiltonian eigensta
andEn(F0) is the total energy of the system in staten as a
function of the external field. It is important to note that t
field used in these expressions is the external field, not
internal one.20,30

For the energy as a function ofF0 we use an expansio
of the energy to second order in the external field, based
second-order quantum perturbation theory, giving24,32–37

En~F0!5En
~0!2Mn8F01 1

2AF0
2. ~9!

Here, the first term is the unperturbed energy~i.e., at zero
external field!, including all possible ‘‘internal’’ interactions
like spin–orbit coupling, electron correlations, and exchan
interactions. The second term is the linear Zeeman or S
effect, and the third term the quadratic Zeeman or Stark
fect. The coefficientA is customarily considered to be
constant, independent of the quantum state~and hence of
temperature!.24,34,38 In the magnetic case, for example,A
represents both the diamagnetic and temperat
independent paramagnetic effect,34 which is usually positive
~except when there are low-lying energy levels, in whi
caseA might be negative!. In the dielectric case,A is nega-
tive and can be related to the optical refractive indexnopt via
A52Ve0(nopt

2 21)/@11 f d(nopt
2 21)#; see also Ref. 19.

Hence the free energy and total moment are given b

A~F0!5 1
2AF0

22kT ln (
n

e2b@En
~0!

2Mn8F0#, ~10!

M ~F0!52AF01M 8~F0!, ~11!

where the ‘‘reduced’’ momentM 8 ~excluding the second
order field effect! is

M 8~F0!5^M8&5
(nMn8e

2b@En
~0!

2Mn8F0#

(ne2b@En
~0!

2Mn8F0#
. ~12!

Using Eq.~10!, the free energy differenceDA(F0) @see Eq.
~6!# is thus given by

DA~F0!5A~F0!2A~0!5 1
2AF0

22kT ln GM8
0

~bF0!,
~13!

whereGM8
0 (bF0)5^ebMn8F0&F050 is the moment generatin

function7–9 ~MGF! of the probability distribution function a
zero external field of the em momentM8 evaluated atbF0 .
The zero superscript denotes that the MGF is to be evalu
at zero external field. In general, the MGF of the distributi
of a random variableX is the expectation valueGX(t)
5^etX&. The change in Helmholtz free energyDA when ap-
plying an external field is via Eq.~13! completely deter-
Downloaded 25 Mar 2008 to 151.100.4.22. Redistribution subject to AIP
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mined by the distribution of the~instantaneous! magnetiza-
tion or polarizationM8 at zero field. Hence modeling of thi
distribution directly provides an~analytical! expression of
the free energy and related thermodynamic functions:
‘‘statistical state’’ of the system.

C. Double-state model

Instead of modeling the distribution ofM8 at zero field
within the total available configurational space to obtain e
pressions forDA, we may think of configurational space t
be ‘‘naturally’’ divided into two subspaces. At zero extern
field there must be some symmetry in phase space, bec
of the symmetry of magnetization or polarization wh
changing~for nonferromagnetic or nonferroelectric system!
the direction of the field 180°, and because of the symme
breaking of ferromagnetic or ferroelectric systems: i.e., wi
out a small external field, the remanent moment has no p
erence for the positive or negative direction.17,24,39 Using
such a division, which is by definition independent of t
external field, we obtain a double-state model40,41as follows.

Both the actual and reference partition functions can
written as the sum of subspaces 1 and 2, and hence

DA~F0!52kT ln$e1~T!e2bDA1~F0!

1@12e1~T!#e2bDA2~F0!%, ~14!

where

e1~T!5
Q1~0!

Q~0!
5

(nP1e2bEn
~0!

(ne2bEn
~0! ~15!

and

e2bDAi ~F0!5
Qi~F0!

Qi~0!
5e2~1/2!bAF0

2
^ebM8F0& i ,F050. ~16!

SincebDAi(F0) is of the orderO(N;1023), with DAi the
free energy difference~with respect to zero external field! of
the wholesystem in subspacei, we find thate2bDAi (F0) will
therefore for any macroscopic system behave like a s
function. Already a small difference inDDA(F0)
5DA1(F0)2DA2(F0) is very large with respect tokT; so if
DDA(F0),0 for F0,0, say, subspace 1 is virtually the on
populated part, and vice versa. Moreover, if we require t
at zero external field both subspaces have identical ther
dynamics as a function ofT, and, because of symmetry, th
distributions of M8 in both subspaces are therefore ea
other’s mirror images, we find simply thate1(T)5e2(T)
5 1

2 independent of temperature. Hence, the free energy
total moment are

DA~F0!5 1
2AF0

22H kT ln GM8
0 , 1~bF0! ~F0,0!

kT ln GM8
0 , 2~bF0! ~F0.0!,

~17!

M ~F0!52AF01H M18~F0! ~F0,0!

M28~F0! ~F0.0!,
~18!

with, obviously, Mi8(F0)5^M8& i the average ‘‘reduced’’
magnetization or polarization of subspacei.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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D. Model distribution functions

There are several general remarks to make about m
distributionsr(F0).

First, because of the macroscopic nature, the system
be subdivided into a large numberNe of identical and inde-
pendent thermodynamic subsystems, where such subsys
can never be smaller than the elementary systems12 ~the
minimal independent thermodynamic subsystems!. Note that
since the magnetization and polarization are a function of
sample shape@Sec. II A, Eq.~4!#, the elementary systems, a
well as the subsystems, must have the same shape a
overall sample, i.e., an ellipsoid. Since the subsystems
statistically independent, with the total momentM8 equal to
the sum of the moments per subsystem, the distribution
M8 is theNe-fold convolution of the distribution of the sub
system moment, and the MGFGM8

0 (t) is simply the product
of the corresponding subsystem moment genera
functions.7–9 As we did for the quantum energy distributio
of solids,42 we assume that the distribution of each of theNe

subsystems can be mathematically decomposed intoNs

simple ‘‘basic’’ distributions of ‘‘basic’’ momentsm8, with
corresponding MGFg̃m8

0 (t). Hence the total MGF is given
by

GM8
0

~bF0!5@$g̃m8
0

~bF0!%Ns#Ne5$g̃m8
0

~bF0!%N, ~19!

with N5NeNs the total number of ‘‘basic’’ distributions and
MGF’s used to model the system. Note that for distributio
that are closed under convolution43 ~i.e., the distribution after
convolution is of the same type as the original distributio
which is the case for a Gaussian, gamma, or binomial dis
bution, to mention a few!, it is the same to model the distr
bution of m8 or directly that ofM8, andN is a redundant
quantity. Because of the central limit theorem,7,44 it also fol-
lows from Eq.~19! that the overall distribution ofM8 must
be very close to a Gaussian, at least in the vicinity of
mode~maximum!. In the QGE theory we model such ma
roscopic fluctuation distributions as ‘‘quasi-Gaussian’’ dist
butions, i.e., via the convolution of relatively simple analy
cal ‘‘basic’’ distributions which may be unimodal-like.

Second, if at zero field the distribution ofM8 or m8 is
symmetric around zero, there is no spontaneous magne
tion or polarization, which is the case for the systems un
consideration.

Third, since the free energyDA(F0) is finite for any
finite external field, the moment generating functionGM8

0 (t)
or g̃m8

0 (t) of any suitable model distribution must conver
for any finite t5bF0 .

Fourth, it is very reasonable to assume that the dom
of M8 or m8 is finite and is symmetric around zero. How
ever, if the mode of the distribution is very far from one
the borders of the domain, the distribution on that side m
be well approximated by a distribution that is analytica
defined up to infinity. This may be the case with the dou
state model, Eq.~17!, where for physical reasons the distr
bution of subspace 1 (F0,0) has necessarily a lower limit
but may be formally defined up to infinity~since this limit is
only important forF0@0, where in any caseDA1.DA2!,
Downloaded 25 Mar 2008 to 151.100.4.22. Redistribution subject to AIP
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and likewise the distribution of subspace 2 must have
upper limit but may be formally defined from minus infinity

Finally, because of the quantum-mechanical origen
magnetism, the magnetization is also quantized, and
should in principle use a discrete distribution. However,
macroscopic systems the separation of magnetization or
larization levels may be so small that one could use a c
tinuous model distribution.20,35

We will focus in general on the description of the ‘‘ba
sic’’ distribution of the momentm8. A continuousdistribu-
tion r0(m8) is thus defined on the interval@2m08 ,1m08#,
and so

g̃m8
0

~bF0!5E
2m08

1m08ebm8F0r0~m8!dm8. ~20!

For discretemagnetization or polarization levels within th
same interval@2m08 ,1m08#, the simplest assumption we ca
make is to express the moment in thel th level as

ml852m081 lDm8, l 50,1,...,n, n52m08/Dm8, ~21!

with Dm8 the separation between two magnetization or p
larization levels. Hence

g̃m8
0

~bF0!5e2bm08F0g̃l
0~bDm8F0!

5e2bm08F0(
l 50

n

ebDm8F0l pl
0, ~22!

wherepl
0 is the ‘‘basic’’ discrete probability distribution o

the magnetization or polarization levell at zero external
field.

Finally, note that an elegant method to obtain symme
distributions is described by Feller.43 Let X1 andX2 be two
identical and independent random variables from a distri
tion with MGF GX(t). The new variableX12X2 has a sym-
metric distribution around zero with MGFGX

sym(t)
[GX12X2

(t)5GX(t)GX(2t), which is called the ‘‘symme-
trized’’ distribution ofX. This procedure can be used for an
suitable continuous or discrete distribution. Note that for
already symmetric distribution, the procedure basica
yields the same statistical state. Also note that ifXi is a
discrete variable defined on@0,n#, obviouslyX12X2 is de-
fined on@2n,n#. When we apply this to the distribution o
the indexl, since in that caseml85 lDm8, we should there-
fore slightly adapt Eq.~22! to

g̃m8
0

~bF0!5g̃l
sym,0~bDm8F0!

5g̃l
0~bDm8F0!g̃l

0~2bDm8F0!. ~23!

The appropriate continuous or discrete model distrib
tionsr0(m8) or pl

0 may be taken from any suitable system
family of distributions. For continuous distributions, we ca
use the Pearson45–48 or generalized Pearson11,49 system; for
discrete distributions we can invoke the Katz,50 Ord,47

Kemp’s generalized hypergeometric probability distributio
~GHPD! or generalized hypergeometric factorial mome
distributions~GHFD!9,42,51,52families. The use of a system o
family of distributions allows one to increase the complex
of the model distribution in a rather systematic way.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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E. Parameter estimation

Via Eqs.~13! and ~19! the free energyDA is expressed
in terms of the parametersa0 of the ‘‘basic’’ model distribu-
tion of the instantaneous momentm8 at zero field,N, and for
discrete distributions alsom08 andDm8. To obtain the values
of these parameters, we can use the ‘‘method
moments,’’7,42,53 i.e., equating the first few theoretical mo
ments~or cumulants! of the model distribution~expressed in
terms of the parametersa0!, and the corresponding ‘‘experi
mental’’ or sample moments~cumulants! of the total magne-
tization or polarizationM8 ~which via statistical mechanic
can be expressed in terms of derivatives of the magnetiza
or polarization with respect to the external field!. This is
equivalent to equating the first few derivatives of the the
retical free energy expression in the external field~as a func-
tion of the parametersa0, N, m08 , andDm8! at zero field to
the corresponding experimental values. Note that the exp
mental cumulants depend on the shape of the sample~see
Sec. II A!.

However, we find it more useful to express the para
eters of the model distributions~and the corresponding the
modynamic models! in terms of the saturation
magnetization/polarization,21,25

Ms85 lim
F0→1`

M ~F0!1AF05 lim
F0→1`

M 8~F0! ~24!

and the domain quantitiesm08 andDm8.

F. Statistical states

In this section we will derive several statistical state
based both on continuous and discrete magnetization or
larization distributions, which fulfill the general requiremen
discussed in Sec. II D. Throughout, we will model the ‘‘b
sic’’ distribution of the momentm8. After evaluating the mo-
ment generating function of the model distribution,7–9,54,55

Eq. ~20! or ~22!, we obtain the free energy via Eqs.~13! @or
for the double-state model Eq.~17!# and ~19!. To relate pa-
rameters via the method of moments to thermodynamic
rivatives, we will also provide the limit limF0 →0]M /]F0

5]M0/]F0 . For all statistical statesM (0)50, and, except
for the Gaussian state, the limit of the reduced momen
infinite field is Ms8 , i.e., the magnetization and polarizatio
saturate because of the finite domain ofm8.

1. Gaussian state

The Gaussian or normal distribution,7,8,54

r~m8!5
1

A2ps2
expH 2

m82

2s2J ~25!

with zero average ands2 the variance, is closed under co
volution and is defined from2` to `; hence it is not strictly
a physically acceptable distribution. However, as it is
prototypical example of a fluctuation distribution and is oft
used to model fluctuations within a mean-field descripti
we include it here. The thermodynamics is given by

DA~F0!5 1
2AF0

22 1
2bK0F0

2, ~26!

M ~F0!52AF01bK0F0 , ~27!
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]M0

]F0
52A1bK0, ~28!

with K05Ns2. Note that forF0→6` no saturation occurs
The Gaussian state actually corresponds to a second-o
Taylor expansion of the free energy inF0 around zero, yield-
ing a linear relation between magnetization or polarizat
and external field. The Gaussian state is the weak-field li
of all statistical states. IfK0 is a temperature-independe
constant, we obtain Curie’s law for the usual paramagn
susceptibility,21,26,38 xm5C/T with C5m0K0/kV the Curie
constant; see also Ref. 19.

From Eq.~6! it follows that if for a certain shape (0f d)
the system is described by a Gaussian state, this is actu
true for all shapes~i.e., values off d!, since

DA~F0 , f d!5 1
2A~ f d!F0

22 1
2bK0~ f d!F0

2, ~29!

with

A~ f d!5
0A

11~ f d20f d!~20A1b 0K0!z0 /V
, ~30!

K0~ f d!5
0K0

11~ f d20f d!~20A1b 0K0!z0 /V
. ~31!

It can be easily derived@cf. Eq. ~A1! of Ref. 19# that K0

5k2
0@M8# is the variance of the instantaneous ‘‘reduce

momentM8 at zero field. Hence for the systems under co
sideration whereub 0K0u@u0Au, the variance and so th
magnitude of fluctuations are largest forf d50 ~a thin
needle! and least forf d51 ~a flat disk!. Since for small fields
all statistical states converge to the Gaussian one, this
general feature of all states: fluctuations are suppresse
the demagnetizing/depolarizing field.

2. Beta state

The simplest symmetric continuous Pearson distribut
on a finite domain is the beta distribution,7,55

r~m8!5
~2m08!122a

B~a,a!
~m81m08!a21~m082m8!a21

~a>0! ~32!

with B(a,a) the beta function.56 The thermodynamics is
given by

DA~F0!5 1
2AF0

21Ms8F02
Ms8

bm08

3 lnH G~a1 1
2!

3S bm08F0

2 D 2a11/2

ebm08F0I a21/2~bm08F0!J , ~33!

M ~F0!52AF01Ms8F I a11/2~bm08F0!

I a21/2~bm08F0!G , ~34!

]M0

]F0
52A1Ms8

bm08

2a11
, ~35!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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with Ms85Nm08 ; I n(x) and G(x) are the modified Besse
function of the first kind of ordern and the gamma function
respectively.56 Note that for some specific values ofa, the
beta state reduces to the following well-known models:

For a51 the beta distribution degenerates to a conti
ous uniform distribution,r(m8)51/2m08 , yielding thecon-
tinuous uniform state:

DA~F0!5 1
2AF0

22
Ms8

bm08
lnH sinh~bm08F0!

bm08F0
J , ~36!

M ~F0!52AF01Ms8L~bm08F0!, ~37!

]M0

]F0
52A1Ms8

bm08

3
, ~38!

with Ms85Nm08 andL(x)5coth(x)21/x the Langevin func-
tion. Interestingly, the continuous uniform state correspo
to the Langevin model23,26,35,57of an independent ‘‘classical’
magnetic or electric dipole momentm that can assume an
orientation in space and interacts with an external fieldF0 .
For N independent moments, we havem085m and Ms8
5Nm. Feller58 shows that the projection of a three
dimensional random vector on a line is uniformly distribut
~see also Amadei, Ceruso, and Di Nola59!, so this is an ex-
ample where, based on a very simple Hamiltonian, one
determine the distributionr(M8) and hence the free energ
from first principles.

For a→0 the beta distribution tends to a two-state d
crete uniform distribution@Eq. ~39!, n51# or a ~symme-
trized! binomial distribution@Eq. ~44!, p5 1

2, n51#. The cor-
responding thermodynamics is given by Eqs.~45!–~47!.

3. Discrete uniform state

The simplest symmetric discrete distribution on a fin
domain is the~discrete! uniform distribution,7,9

pl5
1

n11
~ l 50,1,... ,n! ~39!

and is the discrete counterpart of the continuous unifo
distribution ~Sec. II F 2!. The thermodynamics is given by

DA~F0!5 1
2AF0

22
Ms8

~n/2!bDm8

3 lnH sinh$@ 1
2~n11!#bDm8F0%

~n11!sinh$ 1
2bDm8F0%

J , ~40!

M ~F0!52AF01Ms8Bn/2S n

2
bDm8F0D , ~41!

]M0

]F0
52A1Ms8

~n12!bDm8

6
, ~42!

whereMs85Nm085NnDm8/2 and

BJ~x!5S 2J11

2J D cothS 2J11

2J
xD2

1

2J
cothS x

2JD ~43!

is the Brillouin function.26,33 This is the exact description20

of a system ofN ideal ~i.e., noninteracting! paramagnetic
Downloaded 25 Mar 2008 to 151.100.4.22. Redistribution subject to AIP
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atoms with spin J5n/2 where Ms85NgmBJ and Dm8
5gmB with g the Lande´ g factor. Since in the absence of a
external field all quantum states with quantum numb
2J,...,J are equally probable, the distribution ofJ and
hence ofl is discrete uniform. This is the second examp
where, for a very simple system, the distribution can
known from first principles. Note that forn→` and Dm8
→0 with nDm8/25m08 , Eqs.~40!–~42! transform into Eqs.
~36!–~38!, i.e., the continuous uniform state. This is the we
known classical limit of the Brillouin function:35

limJ→` BJ(x)5L(x), corresponding to the discrete uniform
distribution tending to a continuous uniform distribution. F
n51 we haveB1/2(x)5tanh(x), and the distribution con-
verges to a binomial; see the next subsection.

4. Binomial state

The simplest discrete unimodal distribution on a fin
domain is the binomial distribution,7–9

pl5S n
l D pl~12p!n2 l ~ l 50,1,... ,n, 0<p<1!. ~44!

It is the simplest acceptable member of the Katz family a
generalized hypergeometric probability family of discre
distributions9,42 and is closed under convolution. To obtain
symmetric distribution, we must usep5 1

2. The thermody-
namics is then given by

DA~F0!5 1
2AF0

222
Ms8

bDm8
ln cosh~ 1

2bDm8F0!, ~45!

M ~F0!52AF01Ms8 tanh~ 1
2bDm8F0!, ~46!

]M0

]F0
52A1Ms8

bDm8

2
, ~47!

whereMs85Nm085NnDm8/2.

5. Symmetrized binomial state

As described in Sec. II D, the MGF of a ‘‘symmetrized
binomial distribution is given by Eq.~23! with gl

0(t) the
MGF of the binomial distribution, Eq.~44!. The distribution
is defined from2n to 1n, and is closed under convolution
The thermodynamics is given by

DA~F0!5 1
2AF0

22
Ms8

bDm8
ln$p21~12p!2

12p~12p!cosh~bDm8F0!%, ~48!

M ~F0!52AF01Ms8

3F 2p~12p!sinh~bDm8F0!

p21~12p!212p~12p!cosh~bDm8F0!G ,
~49!

]M0

]F0
52A12Ms8p~12p!bDm8, ~50!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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with Ms85Nm085NnDm8. Note that forp5 1
2 we retrieve the

binomial state, Eqs.~45!–~47!. Also observe that Eqs.~48!–
~50! are symmetric inp and (12p), so we can restrict the
range ofp to @0, 1

2#.

6. Double binomial state

Using for each subspace a binomial distribution, E
~44!, we can obtain a double-state model, where for subsp
1 (F0,0) we havem08 , Dm8.0 andm08 , Dm8,0 for sub-
space 2. The resulting thermodynamics is given by

DA~F0!5 1
2AF0

22Ms8uF0u2
Ms8

pbDm8
ln$12p

1pe2bDm8uF0u%, ~51!

M ~F0!52AF01sgn~F0!Ms8F ~12p!~12e2bDm8uF0u!

12p1pe2bDm8uF0u G ,

~52!

]M0

]F0
52A1Ms8~12p!bDm8, ~53!

with Ms85Nm085NnDm8p and sgn(x)521, 0, or 11 for x
negative, zero, or positive, respectively. Note that in th
expressions,m08 and Dm8 are defined to be positive. In th
limit p→0 andn→` with pn5u a constant, the binomia
distribution tends to the Poisson distribution,8 pl

5(e2uu l / l !), so for any nonzeroMs8 Eqs.~51!–~53! tend for
p→0 to the double Poisson state, with Ms85Nm08
5NuDm8, and where

DA~F0!5 1
2AF0

22Ms8uF0u2
Ms8

bDm8
~e2bDm8uF0u21!

~54!

is the corresponding nontrivial limit of Eq.~51!.

III. RESULTS AND DISCUSSION

In this section we will present results of three differe
systems: experimental measurements on antiferromag
MnCl2 , Monte Carlo results of the paramagnetic tw
dimensional~2D! Ising model above the Curie temperatur
and molecular dynamics results of the extended simple p
charge~SPC/E! water model in the presence of an elect
field.

Since for all systems the remanent magnetization or
larization Mr8 is zero, and the value ofA is known before-
hand, the knowledge ofMs8 and]M0/]F0 is for many statis-
tical states ~Gaussian, continuous uniform, binomia!
sufficient to obtain all parameters. In other cases~beta, sym-
metrized binomial, double binomial, and discrete unifor!
we used a nonlinear fit to obtain the third parameter. In do
that the parameters were restricted to physically meanin
values, in order to retain physically consistent models.

A. MnCl 2

Giauqueet al.60,61 have measured the magnetic mome
of a spherical sample of MnCl2 at low temperature~1.3–4.2
K! in an external homogeneous magnetic field, up to val
Downloaded 25 Mar 2008 to 151.100.4.22. Redistribution subject to AIP
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of 10 T, aligned along theb magnetic axis~or a crystallo-
graphic axis!. MnCl2 is a classical example of an antiferro
magnetic substance, showing no hysteresis effects within
temperature range. We analyzed data atT51.33 K in the
experimental setup (f d5 1

3).
For this sample, the value ofA was smaller than the

experimental noise61 and hence could be set to zero. Th
maximum moment Ms8 was measured ~being 2.227
A m2/mol!, as well as the initial slope]Mm

0 /]B0 . The zero-
field susceptibility xm51.8831022 differs only ;0.6%
from the estimate using Eq.~3!. Hence the effect of shap
~i.e., f d! on the magnetization curve is in this case negligib

In Fig. 1 we present the experimental data, along w
the results of some statistical states. Clearly visible is
sigmoidal behavior of the experimental curve, which is ch
acteristic of an antiferromagnetic system.62 In Table I we
give the root mean square deviation~RMSD! values of the
various models, normalized byMs8 , i.e.,

RMSD/Ms85
1

Ms8
A 1

Ndata
(

i

Ndata

$Mi~B0!2Mexpt,i%
2.

The Gaussian state~one parameter! is only applicable
over a limited range (B0&0.5 T!, where linear magnetization
is present. From the graph and the table it is clear that
best models are the double binomial and, especially, the s
metrized binomial states~each with three parameters!. For an
antiferromagnetic system this latter fact might be physica
explained by supposing that the magnetization of each of
two magnetic sublattices is approximately described b
binomial state, and hence the total magnetization, being
difference between the two sublattice magnetizations, b
symmetrized binomial state. The symmetrized binomial st
also gives the correct sigmoidal behavior. Interestingly,
optimal beta state hasa50 and is therefore identical to th
binomial state. This indicates that the magnetization distri
tion is discretelike instead of continuous.

FIG. 1. MagnetizationMm of MnCl2 vs external magnetic fieldB0 at T
51.33 K; experimental data~l! and some QGE statistical states: Gauss
~G, -•-•!, discrete uniform~dU, ---!, double binomial~DB, —!, and symme-
trized binomial~SB, —!. Also included is the mean-field model, Eq.~55!
~MFM, -•-•!.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Root mean square deviations~RMSD! normalized byMs8 for different statistical states and variou
systems.

Statistical state No. par. MnCl2 2D Ising

Gaussian@Eq. ~27!# 1 0.512 1.60
Cont. uniform@Eq. ~37!# 2 0.168 0.043
Beta @Eq. ~34!# 3 0.109 (a50.0) 0.019 (a50.28)
Binomial @Eq. ~46!# 2 0.109 0.048
Symm. binomial@Eq. ~49!# 3 0.008 (p50.130) 0.048 (p50.5)
Double binomial@Eq. ~52!# 3 0.021 (p50.719) 0.014 (p50.282)
Discrete uniform@Eq. ~41!# 3 0.109 (n51) 0.008 (n58)
Ndata 62 15
f d
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For comparison, in Fig. 1 also an antiferromagne
Weiss-like mean-field model22,24,63is presented,

MA85 1
2Ms8BJ~bgmB@B02lMB8 # !,

~55!
MB85 1

2Ms8BJ~bgmB@B02lMA8 # !,

where MA8 and MB8 are the sublattice magnetizations,M 8
5MA81MB8 , and60 g52.004,J55/2. The least-square fitte
value of the exchange coupling parameterl50.44 yields
RMSD/Ms850.056; the mean-field model is clearly wors
than the symmetrized binomial state.

B. Two-dimensional Ising magnet

The next system is an idealized model, the tw
dimensional Ising spin system64 with only nearest-neighbo
interactions. Since there is no analytical solution for the p
tition function in the presence of an external field, we us
standard Metropolis Monte Carlo~MC! simulations39,65 to
obtain values of the magnetization as a function of exter
field. Since as usual in these simulations periodic bound
conditions were employed, no demagnetizing field can bu
up, sof d50 andH05H is the field used in the Hamiltonia
description. In reduced units, the Hamiltonian is

E* ~B0* !52(
^ i , j &

s is j2B0* (
i

s i , ~56!

with E* 5E/J and B0* 5gmBB0 /J, whereJ is the exchange
coupling constant between neighboring spinss i and s j

561. The reduced temperature, free energy, and magn
moment areT* 5kT/J, A* 5A/NJ, and Mm* 5Mm /NgmB

with N the number of spins in the system. From this follow
that xm5@rNm0(gmB)2/J#xm* with rN the spin density and
xm* 5Mm* /B0* . Clearly, to analyze the system at a geome
different from f d50, the values ofg, J, andrN are required.
Therefore, the simulation geometryf d50 was used.

For each state point we used a square lattice of 32332
spins with periodic boundary conditions, and production ru
of 106 MC cycles. The temperature was set toT* 56.0,
which is well above the critical~Curie! temperature16 Tc*
52.269, and hence the system is in the paramagnetic reg

Obviously, Ms8* 51.0 and A50, and the numerica
slope]Mm

0* /]B0* 50.381 matched within the accuracy of th
simulations the value obtained from the second momen
the magnetization fluctuations at zero external fie
k2

0@NM8* #/(NT* ).
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Results are given in Fig. 2 and Table I. Again, the Gau
ian state is only applicable for small fields (B0* &0.7). The
best model is the discrete uniform state withn58. Note that
if there would be no interactions between the spins (J50)
and hence no correlation, the magnetization would be gi
by an ‘‘ideal gas’’ model based on elementary systems c
taining only one spin, described by a two-state (n51) dis-
crete uniform distribution, giving

M* ~B08!5B1/2S B0*

2T* D . ~57!

However, from Fig. 2 it is clear that such a model is n
appropriate, even at such a relatively high temperature. F
thermore, of the other QGE models the double binomial a
beta states also provide a good description of the magne
tion.

For the beta state the parametera50.28 is rather close to
zero, suggesting that there is some discretelike clusterin
the magnetization distribution. From the Hamiltonian it
clear that the distribution must be discrete. Note also that
numberN of ‘‘basic’’ distributions connected to the discret
uniform and beta state may be~very! different; in fact, we

FIG. 2. MagnetizationMm* of the 2D Ising system vs external magnetic fie
B0* at T* 56.0; MC data~l! and some QGE statistical states: Gaussian~G,
-•-•!, beta~Be, ---!, discrete uniform~dU, ---!, double binomial~DB, —! and
symmetrized binomial~SB,—!. Also included is the ‘‘ideal-gas’’ model, Eq
~57! ~IG, -"-"!.
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find that a discrete uniform ‘‘basic’’ distribution correspon
to approximately 5.5 spins, whereas a beta distribution
about 3.6 spins.

C. SPCÕE water

The last example consists of a system of SPC/E w
molecules66 in the presence of an external electric fieldE0 .
Yeh and Berkowitz31 performed molecular dynamics simula
tions of this system at 300 K using Ewald summation in t
different setups: a water layer between explicit charged s
Pt walls, and 3D periodic bulk water in the presence o
field. Both methods gave identical results for the dielec
constante r as a function of the field. Since for waterxe

5e r21;O(101– 102) is very large, there is a significan
effect of the shape of the sample on the polarization cu
Hence the system has been analyzed for three different
ometries:f d50.015 ~a thin cigar with length to width ratio
;12!, f d5 1

3 ~a sphere!, and f d51 ~a flat disk, perpendicula
to the field!.

Yeh and Berkowitz used water with a density of 1
g/cm3, which together with the permanent molecular dipo
m52.39 D gives a maximum possible polarizatio
Ms8/(Ve0)5Ps8/e053.01 V/Å. Note, however, that for very
large external fields a phase transition to an icelike struc
has been observed; this phase transition likely depend
the geometry, so in fact we can only say thatPs8/e0

<3.01 V/Å. Moreover, since the SPC/E molecules have
molecular polarizability, it follows that for this classical sy
tem by definitionA50. For a given geometryf d , the slope
]@P0/e0#/]E0 with P05P(F050) can be obtained from th
zero-field estimate ofe r>69.661.5 by Svishchev and
Kusalik67 and Eq.~1!.

Results are given in Figs. 3 and 4 and Table II. F
different geometries we observed that the optimal value

FIG. 3. PolarizationP/e0 of SPC/E water vs external electric fieldE0 at
T5300 K and geometryf d50.015; simulation data~l! and some QGE
statistical states: Gaussian~G, -•-•!, discrete uniform~dU, ---!, double bino-
mial ~DB, —!, and symmetrized binomial~SB, —!.
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Ps8/e0 changed slightly from 2.91 (f d'0) to 3.01 V/Å (f d

51), which may be connected to the phase transition.
For smallf d ( f d50.015), where the depolarizing field i

relatively small, the best description is given by the beta a
continuous and discrete uniform states. Since for the la
n5356, it is basically a continuous uniform state; for th
beta statea50.89 is very close to 1 and hence also appro
mately a continuous uniform state. The Gaussian descrip
is only applicable up toE0;0.05 V/Å.

For largerf d values~f d5 1
3 and 1! with large depolariz-

ing fields, the Gaussian state is applicable up to much la
external fields, e.g.,E0&2 V/Å; see Fig. 4. Also the type o
optimal statistical state changes rather dramatically to
double binomial and especially symmetrized binomial sta
indicating that the polarization becomes more discreteli
This is also supported by the fact thata50 for the beta state
~i.e., equal to the binomial state!. The discretelike characte
of the polarization distribution can be interpreted as
‘‘grouping’’ of the possible polarizations, which physicall
may be caused, for example, by collective reorientations
the hydrogen-bonding network relative to the external fie

In Fig. 5 we presente r as a function of internal fieldE,
independent of shape. As can be seen, the continuous
form state (f d50.015) perfectly describes the simulatio
data. The Gaussian state provides a constant value ofe r . For
comparison, also an ‘‘ideal gas’’ model57,68

e r~E!511
rNm

e0E
L~bmE! ~58!

and the nonpolarizable Onsager model68,69

e r~E!511
rNm

e0E
LS bm

3e r

2e r11
ED ~59!

are shown, which clearly fail to describe the data.

FIG. 4. PolarizationP/e0 of SPC/E water vs external electric fieldE0 at
T5300 K and geometryf d51; simulation data~l! and some QGE statis-
tical states: Gaussian~G, -•-•!, discrete uniform~dU, ---!, double binomial
~DB, —!, and symmetrized binomial~SB, —!.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. Root mean square deviations~RMSD! normalized byMs8 for different statistical states applied t
SPC/E data at various geometries~f d values!.

Statistical state f d50.015 f d51/3 f d51

Gaussian 2.367 0.198 0.067
Cont. uniform 0.009 0.152 0.172
Beta 0.008 (a50.89) 0.075 (a50.0) 0.106 (a50.0)
Binomial 0.092 0.075 0.106
Symm. binomial 0.092 (p50.5) 0.007 (p50.187) 0.013 (p50.162)
Double binomial 0.049 (p50.0) 0.012 (p50.640) 0.024 (p50.672)
Discrete uniform 0.009 (n5356) 0.075 (n51) 0.106 (n51)
Ndata 8 8 8
Ms8 2.91 2.95 3.01
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IV. CONCLUSIONS

In this paper we used the quasi-Gaussian entropy~QGE!
theory to derive statistical-mechanical models of the effec
an external electric or magnetic fieldF0 on the thermody-
namics of macroscopic systems. General electromagn
~em! theory shows that the em moment, its higher-order c
tral moments, and the free energy are in general a functio
the ~ellipsoidal! shape of the sample in the form of the g
ometry factorf d .

Using second-order quantum perturbation theory,
Helmholtz free energy is related to the moment genera
function of the probability distributionr(M8) of the total
‘‘reduced’’ em momentM8 ~the total moment minus the
second-order field effect!. By modeling this distribution at
zero external field as the many fold convolution of ‘‘basi
distributionsr(m8) that are supposed to be rather ‘‘simple
one obtains exact expressions of the free energy and re
thermodynamics~‘‘statistical state’’! as a function of field.
The physical requirements of these ‘‘basic’’ distributions a
discussed, and various continuous and discrete models
corresponding statistical states have been derived. Also
additional two-state model is presented. Apart from

FIG. 5. Dielectric constant of SPC/E water vs electric fieldE at T
5300 K; simulation data~l! and some QGE statistical states: Gaussian~G,
-•-•!, continuous/discrete uniform atf d50.015~cU/dU, —!. Also included
are the ‘‘ideal-gas’’ model, Eq.~58! ~IG, ¯! and the Onsager model, Eq
~59! ~Onsager, ---!.
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Gaussian model, which just yields the usual linear respo
of the system to the external field, all models describe sa
ration effects. Some correspond to well-known models:
continuous uniform distribution yields a Langevin model, t
discrete uniform distribution yields a Brillouin model.

The models have been applied to three different test s
tems: antiferromagnetic MnCl2 , the two-dimensional Ising
spin model in the paramagnetic regime, and the SPC/E w
model with an external electric field. In general, discre
model distributionsr(m8) provide the best description o
these systems; in particular, the discrete uniform distribut
is a rather good and general model for systems in
‘‘needle’’ or ‘‘cigar’’ geometry, i.e., f d'0. Interestingly, the
~sigmoidal! field dependence of the magnetization of MnC2

is best described by the symmetrized binomial distributi
which may reflect the fact that the magnetization fluctuatio
of each of the two opposing magnetic sublattices are w
described by a binomial distribution. In the case of SPC
water, since the sample shape is important because of
large susceptibility, the system was analyzed using three
ometries~needle, sphere, and disk!. It was found that in the
first case the best model distributions are more conti
ouslike ~beta!, whereas in the other cases the distributi
becomes more discretelike~symmetrized binomial!. Hence,
apart from the magnitude, also the type of fluctuatio
changes as a function of sample shape. For all systems
indicated QGE statistical states give a significantly be
description of the data than other common mean-field
pressions, such as the antiferromagnetic Weiss model,
‘‘ideal gas’’ model, and the Onsager model.

In the following paper19 we will describe a method o
combining the field models, as derived in this paper, with
general QGE temperature model, to obtain a complete eq
tion of state in temperature and external field for fluid sy
tems.
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