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Molecular dynamics simulations with constrained roto-translational
motions: Theoretical basis and statistical mechanical consistency

A. Amadei,a) G. Chillemi,b) M. A. Ceruso, A. Grottesi, and A. Di Nola
Department of Chemistry, University of Rome ‘‘La Sapienza,’’ P.le A. Moro 5, 00185, Rome, Italy
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From a specific definition of the roto-translational~external! and intramolecular~internal!
coordinates, a constrained dynamics algorithm is derived for removing the roto-translational
motions during molecular dynamics simulations, within the leap-frog integration scheme. In the
paper the theoretical basis of this new method and its statistical mechanical consistency are reported,
together with two applications. ©2000 American Institute of Physics.@S0021-9606~00!50201-3#
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I. INTRODUCTION

Often in molecular simulations the interest is focused
the structural properties of a molecule with internal degr
of freedom. For simulations of a single molecule in vacuu
~ideal gas condition! as well as for simulations of a solut
molecule in its solvent~infinite dilution condition!, the roto-
translational motions are in general uninteresting, while
behavior of the internal coordinates can be very import
for many different studies. In particular with large organ
molecules, and especially biomacromolecules, simulati
are usually performed to obtain a detailed investigation
the conformational fluctuations, which can be studied o
after removing the overall translation and rotation of t
molecule. In these cases the ensemble of molecular con
rations obtained from the simulation is normally manipula
to remove these roto-translational motions. In general
roto-translation is eliminated by over-imposing the center
mass of the actual configuration with that of a reference o
and then least square fitting the atomic displacements
tween the two structures rotating the actual structure aro
its center of mass.1 This procedure, although usually efficie
and widely used, has one disadvantage. Its implicit definit
of external and internal coordinates is rather complicat
especially for the definition of conjugated momenta, a
hence it is difficult to use this approach for theoretical m
chanics or rigorous statistical mechanical studies, as we
to derive ideal constraint forces to stop the molecular ro
translational motions directly during the simulation. It shou
be considered that a rigorous method to constrain the r
translational motions during a simulation can be advan
geous in the following cases:

~1! For large and flexible molecules the removal of the d
namical coupling between the internal motions and m
lecular roto-translations can shorten the system’s re
ation time and hence provide a better configuratio
sampling for the internal coordinates in simulations
usual time lengths.
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~2! Simulations of a molecule in vacuum, with either a usu
force field or using a mean field, are usually perform
at zero angular momentum and this constraint can a
the statistical mechanical consistency of the simulati
On the contrary when ideal holonomic constraints a
used to stop the roto-translational motions, and the
gular momentum is not fixed anymore, the simulati
can provide the exact statistical mechanics of the syst

~3! For simulations of large nonspherical molecules~e.g.,
proteins! in water, with the presence of the roto
translational constraints we could use a simulation b
shaped on molecular geometry, reducing significan
the number of necessary water molecules. The effec
large solute rotations is negligible for short length sim
lations ~hundreds of picoseconds! but becomes relevan
for longer time simulations. In fact, from the nanose
onds range the solute has enough time to rotate sig
cantly and hence, without using a cubic simulation bo
to interact directly with its periodic images.

~4! For the calculation of free energy differences due
changes of the roto-translational configuration for int
acting molecules or for a molecule interacting with
external field~e.g., molecular docking! the simulations
with the roto-translational constraints could be extrem
efficient.

In this paper we show that it is possible to use a defi
tion of internal and external coordinates which is very sui
for theoretical derivations and that allows direct simulati
of only the molecular internal degrees of freedom. In fa
this definition of the molecular coordinates~standard in ana-
lytical mechanics! allows the use of ideal constraint forces
stop instantaneously the roto-translational motions during
simulation. It is well known from theoretical mechanics2,3

that the use of ideal holonomic constraints in a Hamilton
system still provides Hamiltonian dynamics in the co
strained phase space~constraint subspace!, and so a con-
strained Hamiltonian system can still be described by
microcanonical ensemble. We will show that more often
general the holonomic constraints do not alter the basic t
of dynamics in the case of the usual molecular dynam
~MD! equations of motion involving a frictional term, an

il:
© 2000 American Institute of Physics
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hence the statistical mechanical ensemble which descr
such MD systems in full phase space also exactly descr
these systems in the constrained phase space. This m
that a rigorous constrained dynamics algorithm can be u
for theoretical studies in molecular simulations, and in g
eral for molecular computational methods. It must be no
that a constrained dynamics algorithm, although statist
mechanically consistent, always alters the dynamics in
simulation as the equations of motion are not the same
those for the unconstrained system. Such a dynamical di
ence, which is usually assumed not very relevant, should
considered when the main interest in a simulation conce
the dynamics of a system.

The paper is organized as follows: in the first two theo
sections we describe the definition used for the internal
external molecular coordinates and the derivation of the c
strained dynamics. In the third theory section we show t
for the typical MD equations of motion, which can provid
exact statistical mechanical properties~the Hamiltonian or
Lagrangian,2,3 the isothermal Gaussian4,5 and the Nose´-
Hoover dynamics6,7!, the application of ideal holonomic con
straints does not prevent the system’s behavior to conv
in time to that of the correct statistical mechanical ensem
although in a restricted phase space. In the fourth the
section we show that the statistical mechanics of a mole
in ideal gas or infinite dilution conditions can be obtain
exactly from a simulation with roto-translational constrain
Finally we present as numerical examples two simulation
a large organic molecule in the microcanonical and canon
ensembles using the roto-translational constraints and s
conclusions are given.

II. THEORY

A. Definition of the translational, rotational and
internal coordinates

Let’s consider a flexible molecule made ofN particles
~atoms!, where we define the coordinates of thei th particler i

and the coordinates of the center of mass position of
moleculerG , both expressed in the fixed orthonormal fram
(O,i,j ,k) ~laboratory frame!. We can define a local orthonor
mal molecular frame (G,i1 ,i2 ,i3), with origin in the center
of mass, where we have2

(
i 51

N

miqi50, ~1!

(
i 51

N

qi
03miqi50, ~2!

with

qi
05(

l 51

3

qil
0 i l , ~3!

qi5(
l 51

3

qil i l , ~4!

the position of thei th particle with respect to the cente
of mass, at an arbitrary reference structure with fix
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coordinatesqil
0 in (G,i1 ,i2 ,i3), and the actual position of the

i th particle with respect to the center of mass. Equation~1!
simply states that the center of mass always coincides w
the origin of (G,i1 ,i2 ,i3), and Eq.~2! is the usual way in
analytical mechanics to define the rotation of an object w
respect to a reference one. In fact Eq.~2! defines at every
time the actual orientation of (G,i1 ,i2 ,i3) with respect to the
fixed frame moved in the center of mass of the molec
(G,i,j ,k), where the unit vectorsi1 , i2 , i3 are expressed in
(G,i,j ,k) via the Eulerian angles2 ~see Fig. 1!. Hence for
each configuration in (O,i,j ,k) we can obtain the local mo
lecular frame (G,i1 ,i2 ,i3) using the center of mass as orig
and rotating an orthonormal frame around the center of m
until Eq. ~2! is fulfilled. Note that Eq.~2! differs from the
expression used by Eckart8 to define the molecular frame, a
in the latter the masses are not involved. Equations~1!–~2!
provide a set of six linear algebraic equations which can
used to express six coordinatesqil in (G,i1 ,i2 ,i3) as linear
combinations of the other 3N26, and we chose to expres
q11, q12, q21, q22, q23, q31 in terms of the others. Note tha
it is not possible to use Eqs.~1!–~2! to express six coordi-
nates which define two particles as in this case the system
linear equations cannot be solved for all the sixqil ~the
six3six matrix of coefficients is singular!. Hence we can
replace the original set of 3N particle coordinates with a new
one defined by the center of mass positionrG , the Eulerian
angles,u, f, c and the left 3N26 qil coordinates. We do no

FIG. 1. The local orthonormal frame (G,i1 ,i2 ,i3) is defined by the fixed
orthonormal frame, moved in the center of mass (G,i,j ,k), and the three

Eulerian angles~u,f,c!. The Eulerian angles are defined asu5 i3k̂, f

5 in̂, c5 i1n̂ wheren is given by the intersection of thei, j plane with the
i1 , i2 plane. It is worth noting that the unit vectorsn, k, andi3 expressed in
the (G,i1 ,i2 ,i3) frame are:

kT5~sinu sinc sinu cosc cosu!,

nT5~cosc 2sinc 0!, i3
T5~0 0 1!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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treat explicitly the case of linear molecules where two Eu
rian angles must be used and there areN21 internal coor-
dinates, or the case of two-dimensional molecules wh
there are 2N23 internal coordinates,9 as they are specia
cases of our general derivations. It is clear that in the new
of coordinates the center of mass coordinates describe
overall translation of the molecule, the Eulerian angles
scribe the rotation and the 3N26 coordinates in (G,i1 ,i2 ,i3)
are the internal~intramolecular! degrees of freedomxin . The
i th particle position can then be expressed as

r i5rG1(
l 51

3

qil i l ,

i l5 i l~u,f,c!,

where in the case of the first three atomsq11, q12, q21, q22,
q23, q31 are clearly linear combinations of the internal coo
dinatesxin with time independent coefficients. It should b
noted that it is not possible to use a linear reference confi
ration because in this case one of the Eulerian angles ca
be defined~the six3six matrix of the coefficients to solve th
six qil would be singular!. It is also very interesting to ex
press the kinetic energy in the new coordinates. In fact, fr
the last equation we can express the velocity of thei th par-
ticle in (O,i,j ,k) as2

ṙ i5 ṙG1(
l 51

3

q̇i l i l1(
l 51

3

qil

di l
dt

5 ṙG1(
l 51

3

q̇i l i l1v3(
l 51

3

qil i l ,

~5!

where we used

di l
dt

5v3 i l ~6!

with the angular velocityv expressed in terms of the Eule
rian angles time derivatives2

v5 u̇n1ḟk1ċ i3 ~7!

~for the definition of the unit vectorn see Fig. 1!.
Hence from Eq.~5!, using Eqs.~1!–~2! we obtain after

some algebra, the kinetic energy2

K5
1

2 (
i 51

N

mi~ ṙ i• ṙ i !5KG1K rot1K in1Kc , ~8!

where

KG5 1
2 M ~ ṙG• ṙG!, ~9!

K rot5
1
2 ~v• Ĩ v!, ~10!

Ĩ v5(
i 51

N

mi$qi3~v3qi !%, ~11!

K in5
1

2 (
i 51

N

mi~ q̇i8•q̇i8!, ~12!

Kc5v•H (
i 51

N

mi~qi2qi
0!3q̇i8J ~13!

with
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M5(
i 51

N

mi , ~14!

q̇i85(
l 51

3

q̇i l i l ~15!

and Ĩ the instantaneous inertia tensor in (G,i1 ,i2 ,i3), if the
vectorv is also expressed in the (i1 ,i2 ,i3) basis set.

Hence using Eq.~7! and remembering that from Eqs
~1!–~2! we can express six coordinates as linear combina
of the other 3N26 in (G,i1 ,i2 ,i3), it is clear from Eqs.
~8!–~13! that the kinetic energy is a quadratic form of th
velocities of the new set of coordinates and whenqi>qi

0 the
kinetic energy reduces to the sum of independent quadr
terms with no cross products between the translatio
( ṙ Gx , ṙ Gy , ṙ Gz), the rotational (u̇,ḟ,ċ) and the 3N26 inter-
nal velocities ẋin

T 5(q̇13q̇32q̇33¯ q̇N1q̇N2q̇N3). This kinetic
energy form in the new coordinates is very useful in sta
tical mechanics in order to evaluate the partition function a
in general allows analytical derivations in statistical and th
oretical mechanics.

B. Derivation of the constrained dynamics

We can use Eqs.~1!–~2! to define a set of six linea
holonomic constraints in order to fix the (G,i1 ,i2 ,i3) frame
of the molecule. In fact, if we start our dynamics from
configuration which belongs to the constraint surface defi
by Eqs.~1!–~2!, we can derive ideal constraint forces, via t
gradients of the constraints, to correct the motions of
system in order to keep the molecule on this constraint s
face, stopping the translation and rotation of (G,i1 ,i2 ,i3).
Note that the left hand side expression of Eq.~2! is a func-
tion only of the Eulerian angles and hence the fulfillment
the three holonomic constraints defined by Eq.~2! in a simu-
lation means to keep the Eulerian angles fixed at zero. N
also that the gradients of these three holonomic constra
are linear combinations of the gradients of the Euler
angles.

If at the initial time (G,i1 ,i2 ,i3) coincides with the fixed
reference of frame moved in the center of mass of the m
ecule (G,i,j ,k), the two frames will coincide at every othe
time because of the application of the constraint forc
Hence defining with

qi5 ixi1 jyi1kzi , ~16!

the i th particle position in (G,i,j ,k)[(G,i1 ,i2 ,i3) and with

qi
05 iXi1 jYi1kZi , ~17!

the i th particle position of the reference configuration in t
same frame, we can rewrite Eqs.~1! and ~2!

(
i 51

N

miqi50, ~18!

(
i 51

N

mi~qi
03qi !50 ~19!

using the explicit components expressions in (G,i1 ,i2 ,i3)
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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g15(
i 51

N

mixi50, ~20!

g25(
i 51

N

miyi50, ~21!

g35(
i 51

N

mizi50, ~22!

g45(
i 51

N

mi~Yizi2Ziyi !50, ~23!

g55(
i 51

N

mi~Zixi2Xizi !50, ~24!

g65(
i 51

N

mi~Xiyi2Yixi !50. ~25!

Equations~20!–~25! define the six holonomic constraints an
can be used to obtain the ideal constraint forces as usua
the gradients of theg functions. In fact, from their time
derivatives we have

ġk5(
i 51

N S ]gk

]xi
ẋi1

]gk

]yi
ẏi1

]gk

]zi
żi D50, ~26!

implying that in configurational space these gradients
always orthogonal to the velocities vect
( ẋ1ẏ1ż1¯ ẋNẏNżN), and then to the constraint surfac
Therefore constraint forces defined as linear combination
the g gradients will be also orthogonal to the velocities ve
tor and so will not produce any work on the system, as
quired for ideal constraint forces. Hence using a leap-f
algorithm, we can express the change of the coordinates
ing one time step in the presence of a set ofng holonomic
constraints as

Dxi5 ẋi S t2
t

2D t1
f ix~ t !

mi
t21t2(

k51

ng lk~ t !

mi

]gk

]xi
~ t !, ~27!

Dyi5 ẏi S t2
t

2D t1
f iy~ t !

mi
t21t2(

k51

ng lk~ t !

mi

]gk

]yi
~ t !,

~28!

Dzi5 żi S t2
t

2D t1
f iz~ t !

mi
t21t2(

k51

ng lk~ t !

mi

]gk

]zi
~ t !, ~29!

where f ix , f iy , f iz are thex, y and z components of the
systematic force on particlei ~the sum of the forces due t
the potential energy and, if present, the frictional force,
excluding the constraint force! and t is the time step used
We can obtain the set oflk at one time step from the fac
that dgk50 at any time. In fact, using the leap-frog schem
we have

Dgk5ġkS t1
t

2D t5ġkS t2
t

2D t1g̈k~ t !t2, ~30!

and hence
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Dgk5(
j 51

3N
]gk

]xj
S t2

t

2D ẋ j S t2
t

2D t1(
j 51

3N
]gk

]xj
~ t !ẍ j~ t !t2

1hk~ t !t2, ~31!

wherexj is now the generic coordinate, and

hk5(
j 51

3N

(
j 851

3N
]2gk

]xj ]xj 8
ẋ j ẋ j 8 ,

ẍ j5
f j

mj
1 (

k51

ng lk

mj

]gk

]xj
.

Note that the systematic acceleration in the presence
frictional force is

f j

mj
52

1

mj

]F

]xj
1g ẋ j , ~32!

whereF is the potential energy of the system and the fr
tional constantg is the same for all the coordinates. Hen
from Eq. ~26! we can rewrite Eq.~31! as

Dgk5(
j 51

3N
]gk

]xj
~ t !aj~ t !t2

1 (
k851

ng

lk8(
j 51

3N
]gk

]xj
~ t !

]gk8
]xj

~ t !
t2

mj
1hk~ t !t2 ~33!

with aj the acceleration of thej coordinate due only to the
conservative force (2]F/]xj ), and keeping only the term
up to t2

hk~ t !5(
j 51

3N

(
j 851

3N
]2gk

]xj ]xj 8
~ t !ẋ j S t2

t

2D ẋ j 8S t2
t

2D .

So using the fact thatDgk50 we can solve thel set via

l52Q̃21c, ~34!

where the column vectorc and the matrixQ̃ are given by

ck5(
j 51

3N
]gk

]xj
~ t !aj~ t !t21hk~ t !t2, ~35!

Qk,k85(
j 51

3N
]gk

]xj
~ t !

]gk8
]xj

~ t !
t2

mj
. ~36!

Equations~34!–~36! provide a completely general solutio
for l associated with any possible set of holonomic co
straints. For the constraints defined by Eqs.~20!–~25! the

symmetric matrixQ̃ is a block diagonal matrix

Q̃5S Q1,1 0 0 0 0 0

0 Q2,2 0 0 0 0

0 0 Q3,3 0 0 0

0 0 0 Q4,4 Q4,5 Q4,6

0 0 0 Q5,4 Q5,5 Q5,6

0 0 0 Q6,4 Q6,5 Q6,6

D , ~37!

with
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Q1,15Q2,25Q3,35(
i 51

N

mi , ~38!

Q4,45(
i 51

N

mi~Zi
21Yi

2!, ~39!

Q4,55(
i 51

N

mi~2YiXi !, ~40!

Q4,65(
i 51

N

mi~2XiZi !, ~41!

Q5,45(
i 51

N

mi~2XiYi !, ~42!

Q5,55(
i 51

N

mi~Xi
21Zi

2!, ~43!

Q5,65(
i 51

N

mi~2YiZi !, ~44!

Q6,45(
i 51

N

mi~2XiZi !, ~45!

Q6,55(
i 51

N

mi~2YiZi !, ~46!

Q6,65(
i 51

N

mi~Xi
21Yi

2!. ~47!

Note that the matrixQ̃ given by Eqs.~38!–~47! is singular
only in the case that the reference configuration is linear

Realizing that in our case theg functions are linear in
the coordinates, we have

]gk

]xj
S t2

t

2D5
]gk

]xj
~ t !5constant, ~48!

hk50, ~49!

and so using again Eq.~26! we obtain

ck5(
j 51

3N
]gk

]xj
Dxj8 , ~50!

where

Dxj85 ẋ j S t2
t

2D t1aj~ t !t2 ~51!

is the displacement of the coordinatexj in one time step due
only to the conservative force. Hence we can solve the tra
lational (l1 ,l2 ,l3) and rotational (l4 ,l5 ,l6) coefficients
independently. It must be noted that in the presence of e
holonomic constraints involving particle distances like t
bond length constraints, the translational constraints~given
by g1 ,g2 ,g3) are still independent, with matrix elements a
ways zero apart from the diagonal ones (Q11,Q22,Q33). On
the contrary, the rotational constraints~given by g4 ,g5 ,g6)
can in general interact with these new constraints hav
nonzero elements between the rotational and the bond
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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straints blocks of theQ̃ matrix. In this case we should inver

each step a largeQ̃ matrix ~involving all the constraints in
the system! to solve instantaneously thel set @Eq. ~34!#.
However, this might be computationally very expensive a
an iterative procedure could be used instead. In test sim
tions where we used fixed bond lengths, we solved conse
tively the bond constraints with theSHAKE algorithm10 and

the roto-translational ones withQ̃ given by Eqs.~38!–~47!.
This procedure can be iteratively applied until the prop
accuracy is reached. For the systems we studied a si
application of the roto-translational constraints at every ti
step, after applyingSHAKE, was always enough to obtain
proper constraints fulfilment. However, for accurate stati
cal mechanical calculations it is preferable not to use such

approximate procedure, but either the exactQ̃ matrix solu-
tion, involving the bond constraints, or simply not to use a
bond constraints~this latter choice is in general better as t
simulation physical consistency is higher11!. Note that when
we want to stop the roto-translational motions of a sol
molecule surrounded by solvent molecules, the descri
procedure will apply the ideal constraint forces only to t
atoms of the solute.

A schematic description of the implementation of t
algorithm in a usual MD code is:

~1! evaluate~unconstrained! conservative accelerations du
to the conservative forcesF(t) on all atoms

r̈ i8~ t !5Fi~ t !/mi ; ~52!

~2! compute velocities

ṙ i8S t1
t

2D5 ṙ i8S t2
t

2D1 r̈ i8~ t !t; ~53!

~3! compute new~unconstrained! positions

r i8~ t1t!5r i~ t !1 ṙ i8S t1
t

2D t; ~54!

~4! if required, applySHAKE constraints to coordinates;
~5! apply roto-translational constraints to coordinates;
~6! compute constrained velocities

ṙ i S t1
t

2D5
r i~ t1t!2r i~ t !

t
; ~55!

~7! if required, apply temperature and/or pressure coupli

Note that in the case the bond constraints are used ste
and 5 could be reduced to a single step implementing
roto-translational constraints directly in theSHAKE routine,
using either the exact solution or the iterative procedure
must be considered that to initialize the MD trajectory w
have to start from a configuration which is already on t
constraint surface, and use initial constrained velocit
Consider also that the reference configuration should be
energy minimized structure as this provides a more sta
algorithm. Note that Eqs.~1!–~2! can be used also to remov
the roto-translational motions from a trajectory obtained b
usual simulation. In that case, after the trivial removal of t
center of mass motion, we should solve Eq.~2! for every
configuration obtained by MD in the form
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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(
i 51

N

Ri3miT̃~r i2rG!50,

Ri
T5~qi1

0 qi2
0 qi3

0 !, ~56!

where T̃ is the orthogonal rotational matrix which ove
imposes (G,i,j ,k) to (G,i1 ,i2 ,i3). Hence for a given refer-
ence configuration, Eq.~56! provides for every MD time
frame a set of three equations. These equations can be s
obtaining directly the three rotational angles which define
matrix T̃, and in this way also the rotation can be remov

C. Constrained dynamics simulations and statistical
mechanics

In the previous sections we described the molecular
ordinates used to define the molecular internal and exte
degrees of freedom, and how to obtain molecular dynam
simulations with the roto-translational motions constrain
In this section we show that the usual MD equations of m
tion, that for unconstrained systems can provide an ex
statistical mechanical behavior~the Hamiltonian or
Lagrangian,2,3 the isothermal Gaussian,4,5 and the Nose´–
Hoover dynamics6,7!, provide in the presence of holonom
constraints a dynamics which is still consistent with the c
rect statistical mechanical ensemble, although in a restri
phase space.

Consider a system with HamiltonianH(x,p) and a set of
~ideal! holonomic constraints. Its equations of motion are

ṗi52S ]H

]xi
D1gpi1 f i

c ,

ẋi5S ]H

]pi
D , ~57!

or

ṗi5S ]L

]xi
D1gpi1 f i

c , ~58!

pi5S ]L

] ẋi
D , ~59!

where

L~x,ẋ!52K2H5K2F ~60!

is the Lagrangian of the system, withK and F the kinetic
and potential energies, respectively,x are the coordinates
andp their conjugated momenta,f c are the ideal constrain
forces andg is the frictional coefficient necessary for th
temperature coupling of the system~which is clearly zero for
the pure Lagrangian or Hamiltonian dynamics!. Note thatx,
ẋ, p and f c are multidimensional vectors, and the part
derivatives in the coordinates are always at fixed moment
the Hamiltonian representation and at fixed velocities in
Lagrangian one. If we define withj, b a set of generalized
coordinates whereb50 defines the positions on the con
straint surface,p the conjugated momenta of thej coordi-
nates
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p i5S ]L

]j̇ i
D , ~61!

andn the conjugated momenta of theb coordinates

n i5S ]L

]ḃ i
D , ~62!

we can express the Lagrangian or Hamiltonian of the sys
as a function only of thej coordinates and, respectively
their velocitiesj̇ or conjugated momentap. In fact in the
presence of the holonomic constraints, expressed by the i
constraint forces, the potential energy of the system
F(j,b50) and hence a function only of thej coordinates.
Moreover in such a constrained system from the conjuga
momenta definition we have

S p

n D5S G̃j,j G̃j,b

G̃b,j G̃b,b
D S j̇

ḃ
D 5S G̃j,j G̃j,b

G̃b,j G̃b,b
D S j̇

0D , ~63!

and so

p5G̃j,jj̇, ~64!

n5G̃b,jj̇5G̃b,jG̃j,j
21p, ~65!

where

M̃5S G̃j,j G̃j,b

G̃b,j G̃b,b
D ~66!

with G̃b,j5G̃j,b
T is the mass tensor expressed for the velo

ties and conjugated momenta of thej, b coordinates. From
these last equations we can express the kinetic energy a

2K5~ j̇ { ḃ{!S G̃j,j G̃j,b

G̃b,j G̃b,b
D S j̇

ḃ
D

5~ j̇ { 0{!S G̃j,j G̃j,b

G̃b,j G̃b,b
D S j̇

0D
5 j̇TG̃j,jj̇5pTG̃j,j

21p. ~67!

Hence, considering that the mass tensorM̃ as the potential
energy is also a function only of thej coordinates, we have
that in the presence of holonomic constraints the Ham
tonian or Lagrangian can be expressed as functions onl
the j coordinates and, respectively, their conjugated m
mentap or velocitiesj̇ as theb coordinates are fixed and s
ḃ50. This clearly means that the equations of motion for t
full system reduce to the equations of motion only in thej, p
phase space which can be obtained directly by the Lagra
ian and Hamiltonian functions that can be expressed now
L(j,j̇) and H(j,p). Note that the time dependence of th
momentan is fully determined by the equations of motion
thej, p phase space as they are linear combinations of thp
momenta; see Eq.~65!.

The equations of motion in thej, p phase space are the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ṗ i5
d

dt S ]L

]j̇ i
D 5

d

dt F(j
S ]L

] ẋ j
D S ] ẋ j

]j̇ i
D G

5(
j

ṗ jS ] ẋ j

]j̇ i
D 1(

j
S ]L

] ẋ j
D(

k

]

]jk
S ]xj

]j i
D j̇k ,

~68!

where we used

S ] ẋ j

]j̇ i
D 5S ]xj

]j i
D . ~69!

Substituting in Eq.~68! the expression forṗ, and using again
Eq. ~69! we obtain

ṗ i5(
j

S ]L

]xj
D S ]xj

]j i
D 1g(

j
S ]L

] ẋ j
D S ] ẋ j

]j̇ i
D

1(
j

f j
cS ]xj

]j i
D 1(

j
S ]L

] ẋ j
D ]

]j i
(

k
S ]xj

]jk
D j̇k

5S ]L

]j i
D1gp i ~70!

or from

S ]L

]j i
D52S ]H

]j i
D ~71!

in the Hamiltonian representation

ṗ i52S ]H

]j i
D1gp i , ~72!

j̇ i5S ]H

]p i
D . ~73!

Note that in Eq.~70! we used the fact that the multidimen
sional vector of the ideal constraint forces is by definition
linear combination of the gradients of the constraints, a
hence

(
j

f j
cS ]xj

]j i
D50 ~74!

for all the j i coordinates. Equations~70! and~72! show that
the constrained dynamics expressed in terms ofj, p is
equivalent to the dynamics of an unconstrained system
reduced dimensional phase space. This fact implies that i
the unconstrained system this type of equations of mo
provides a density distribution of the trajectory which co
verges in time to a given statistical mechanical ensem
distribution, the same is true for the constrained system in
constrained phase space~constraint surface!. We will explic-
itly show this in the case of the isothermal Gaussian dyna
ics since it is a prototypical example: similar derivations p
vide the same result for the Lagrangian or Hamilton
dynamics~as is well known from theoretical mechanics2,3!
and for Nose´–Hoover dynamics.

In the case we use the isothermal Gaussian dynamic
have4,5
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2K0

5
“jF• j̇

p• j̇
, ~75!

which provides a constant kinetic energyK0 during the
simulation. From the conservation of the probability dens
r in phase space, applying the divergence theorem, we h

2S ]r

]t D5(
i

]

]j i
~rj̇ i !1(

i

]

]p i
~rṗ i !

5(
i

S ]r

]j i
D j̇ i1(

i
S ]r

]p i
D ṗ i1r(

i
S ]j̇ i

]j i
D

1r(
i

S ]ṗ i

]p i
D

5(
i

S ]r

]j i
D j̇ i1(

i
S ]r

]p i
D ṗ i1r(

i
S ]2H

]j i ]p i

2
]2H

]p i ]j i
1

]

]p i
~gp i ! D , ~76!

and hence

ṙ52r(
i

]

]p i
~gp i !52Dgr2r(

i
p i S ]g

]p i
D , ~77!

where

ṙ5S ]r

]t D1(
i

S ]r

]j i
D j̇ i1(

i
S ]r

]p i
D ṗ i ~78!

andD is the total number of coordinatesj i . From Eq.~75!
we have

S ]g

]p i
D 5

1

p• j̇
(

j
S ]F

]j j
D S ]j̇ j

]p i
D

2
Ḟ

~p• j̇!2
F(

j
p jS ]j̇ j

]p i
D 1 j̇ iG

5
1

p• j̇
(

j
S ]F

]j j
D S ]j̇ j

]p i
D 22Ḟ

j̇ i

~p• j̇!2
, ~79!

where we used

(
j

p j S ]j̇ i

]p j
D 5(

j
p j S ]j̇ j

]p i
D 5 j̇ i . ~80!
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Finally, inserting Eq.~79! into Eq. ~77! and using again Eq
~80!, we obtain

ṙ52Dgr2
r

p• j̇
(

i
p i(

j
S ]F

]j j
D S ]j̇ j

]p i
D

1
2Ḟr

~p• j̇!2
(

i
p i j̇ i

52Dgr2
r

2K0
(

j
S ]F

]j j
D(

i
p i S ]j̇ j

]p i
D 12

Ḟr

2K0

52
Ḟ~D21!

2K0
r. ~81!

The last equation means that if 2K05(D21)kT, when the
stationary condition]r/]t50 is reached, the probability
density for an ensemble of isothermal Gaussian dynam
trajectories~with no constants of motion other than the k
netic energy in thej, p phase space12! is

r~j,p!5
e2bFd~K2K0!

*e2bFd~K2K0!dj dp
~82!

with b215kT, wherek is the Boltzmann constant andT the
reference temperature. Note thatF is evaluated at eachj
configuration on the constraint surfaceb50.

In order to obtain the configurational probability dens
we have to integrate the probability density in phase sp
over the momentap at each configuration

r~j!5E r~j,p!dp5
e2bF

*e2bFd~K2K0!dj dp

3E d~K2K0!dp. ~83!

Note that in Eq.~83! we can obtain the integral over th
momenta via subsequent transformations. First we can
press the kinetic energy in terms of thep momenta

K5 1
2p• j̇5 1

2pTG̃j,j
21p. ~84!

Second using the orthogonal transformation of the mome
which diagonalizesG̃j,j

21 , the kinetic energy in these ‘‘eigen
vectors’’ momentap1 transforms into

K5
1

2 (
i 51

D

l i
21p1i

2 , ~85!

where clearlyl i are the eigenvalues ofG̃j,j . Third, applying
to thep1 momenta a rescaling transformation

p1i5~2l i !
1/2p2i ~86!

the kinetic energy in the new momentap2 is

K5(
i 51

D

p2i
2 ~87!
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with the Jacobean for this last transformation equal
2D/2(detG̃j,j)

1/2. Finally, expressing the integral in multidi
mensional polar coordinates, where the square root of
kinetic energy is the radius length, we have

E d~K2K0!dp

52D/2~detG̃j,j!
1/2

3E A0K (D21)/2d~K2K0!d~K1/2!

52D/2~detG̃j,j!
1/2A0E K (D21)/2

2K1/2 d~K2K0!dK

52D/2~detG̃j,j!
1/2A0

K0
D/221

2
, ~88!

with A0 a pure constant depending only on the dimensionD
of the system. Hence the probability density in the config
rational space is

r~j!5
e2bF~detG̃j,j!

1/2

*e2bF~detG̃j,j!
1/2dj

. ~89!

Note that detG̃j,j is in general a function of the coordinate
This last equation provides exactly the same expression
the probability density in configurational space which is o
tained from statistical mechanics. In fact, for a system in
canonical ensemble with the same holonomic constraints
have

r~j!5
*e2b(K1F)d~b!d~n2n~p!!db dn dp

*e2b(K1F)d~b!d~n2n~p!!dj db dp dn

5
*e2b(K1F) dp

*e2b(K1F)dj dp
, ~90!

where

n~p!5G̃b,jG̃j,j
21p

and in the last integral of Eq.~90!

K5 1
2pTG̃j,j

21p ~91!

and F is obtained for eachj configuration atb50. Using
again the orthogonal transformation for the momenta t
diagonalizesG̃j,j

21 we obtain

r~j!5
e2bF~detG̃j,j!

1/2

*e2bF~detG̃j,j!
1/2dj

. ~92!

From this last equation follows that assuming ergodicity
probability density in configurational space obtained fro
the MD trajectory in time is statistically mechanically com
pletely correct even in the presence of a set of~ideal! holo-
nomic constraints.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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D. Statistical mechanics in the infinite dilution
conditions

In the last section we showed that the use of ideal ho
nomic constraints in a simulation does not perturb the sta
tical mechanical consistency of the dynamics, and he
from such a constrained MD trajectory we can obtain
exact statistical mechanics of a constrained system. In
section we show that the exact statistical mechanics o
molecule in the infinite dilution conditions~including the
special case corresponding to the ideal gas! can be obtained
from that of a system with ideal holonomic constraints
the roto-translational degrees of freedom of the molecule,
a simple correction.

The partition function of a solute-solvent system with
classical Hamiltonian, where for the solute molecules we
the molecular coordinates described in the first theory s
tion, is

Q5E e2bKse2bKe2bU

~11gs!
ns~11g!nns!n!hD dps dxs)

i 51

n

dxi dpi

5E e2bKse2bKe2bU

~11gs!
ns~11g!nns!n!hD dps dxs

3)
i 51

n

usinu i udxi dpi8 , ~93!

pi85Ãi
TS ]L

] ẋi
D5Ãi

Tpi5M̃ i8ẋi8 , ~94!

ẋi85Ãi
21ẋi , ~95!

xi5S r i ,G

u i

f i

c i

xi , in

D , ẋi5S ṙ i ,G

u̇ i

ḟ i

ċ i

ẋi , in

D , ẋi85S ṙ i ,G

v i1

v i2

v i3

ẋi , in

D ,

whereKs is the kinetic energy of thens solvent molecules,xs

and ps are the coordinates and conjugated momenta of
solvent, and the kinetic energy of then solute molecules is

K5
1

2 (
i 51

n

pi8
T~M̃ i8!21pi8 . ~96!

Furthermore,xi and pi are the coordinates and the conj
gated momenta of thei th solute molecule,U is the potential
energy and 11g and 11gs are the symmetry coefficient
per molecule for the solute and solvent molecules neces
to correct the partition function from the rotations and int
molecular atomic displacements which correspond to per
tations of identical particles which do not change the phy
cal state of the system.13,14 For eachi th solute molecule we
used the corresponding transformation for the solute m
menta given bypi5(Ãi

T)21pi8 ~with Jacobean det(Ãi
T)21

5usinuiu), associated with the transformation of the vectorvi

from the (n,k,i3) to the (i1 ,i2 ,i3) basis set defined by

v i15 u̇ i cosc i1ḟ i sinu i sinc i , ~97!
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v i252 u̇ i sinc i1ḟ i sinu i cosc i , ~98!

v i35ḟ i cosu i1ċ i . ~99!

Note that the mass tensorM̃ i8 is expressed in the form which
is appropiate for using thepi8 momenta orẋi8 velocities, and
it can be obtained from the mass tensorM̃ i expressed for the
pi momenta andẋi velocities viaM̃ i85Ãi

TM̃ i Ãi . Note also
thatM̃ i8 differs fromM̃ i only for the elements affected by th
transformation of the angular velocity given by Eqs.~97!–
~99!, and hence the mass tensor blocks corresponding to
velocities of the center of mass and internal coordinates
identical inM̃ i8 andM̃ i . Finally, h is the Planck constant,D
the total number of degrees of freedom andb51/kT. For a
given configuration we can solve the integral over the solu
momenta using the orthogonal transformations of these
menta which diagonalize each (M̃ i8)

21 obtaining

E e2b
1
2pi8

T(M̃ i8)21pi8dpi5~~2pkT!3N detM̃ i8!1/2, ~100!

where N, from the first theory section, is the number
atoms in a solute molecule. Using this last equation in
~93! we have

Q5E e2bKse2bU~2pkT!3Nn/2

~11gs!
ns~11g!nns!n!hD dps

3dxs)
i 51

n

~detM̃ i8!1/2usinu i udxi . ~101!

If the n solute molecules are in the infinite dilution cond
tion, we can simplify the integral in the previous equati
considering that there is no interaction between the so
molecules. Hence for the great majority of the rot
translational configurations of the solute molecules the in
gral on the other coordinates and solvent momenta is a c
stant. Therefore

E e2b(U1Ks) dps dxs)
i 51

n

~detM̃ i8!1/2usinu i udxi

>~V8p2!nE e2b(U01Ks) dps dxs)
i 51

n

~detM̃ i8!1/2dxi , in ,

~102!

where in this last equation we used the fact th
usinuudu df dc corresponds to the product of the instan
neous rotation differential angles for the axesi1 , i2 and i3 ,
which is equivalent to the product of a solid angle differe
tial with the differential of a third usual angle, and hence

E usinuudu df dc58p2. ~103!

Note that in the special case we deal with a linear molec
with two Eulerian angles corresponding to the usual po
coordinates angles, the previous integral reduces to 2p2.
Note also thatU 0 is the potential energy function evaluate
at fixed roto-translational coordinates for the solute m
ecules where these are homogeneously distributed in the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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umeV of the full system, andM̃ 8 is now evaluated for each
solute molecule at the fixed roto-translational configurati
Finally, considering again thatn/ns is almost zero we have

E e2b(U01Ks) dps dxs)
i 51

n

~detM̃ i8!1/2dxi , in

>
ns!

~n0! !n S E e2b(u01k0)~detM̃ 8!1/2dp0 dx0 dxinD n

,

~104!

whereu0 is the potential energy of a subsystem defined b
single solute molecule with fixed roto-translational coor
nates, in the center of the subsystem,n0 is the number of
solvent molecules in the subsystem given by the closes
teger number tons /n, and k0 is the corresponding solven
molecules kinetic energy. The right-hand integral in the l
equation is taken over the volumeV/n of the subsystem, and
x0 andp0 are the coordinates and momenta of then0 solvent
molecules of the subsystem. Clearlyxin andM̃ 8 represent the
3N26 internal coordinates and the mass tensor of the sin
solute molecule. Note that the factorns!/(n0!) n is a simple
degeneration factor due to the number of ways we can
tribute n0 out of ns solvent molecules inn subsystems.
Hence we can rewrite the whole partition function asQ
>(Q0V)n/n! with Q0 the partition function of a single sub
system given by

Q05B0E e2bu0
~detM̃ 8!1/2)

i 51

n0

~detM̃ i
0!1/2dx0 dxin ,

~105!

with

B05
~2pkT!3N/2~8p2!~2pkT!D0/2

~11g!~11gs!
n0

n0!h(D013N)
.

M̃ i
0 andD0 are the mass tensor of thei th solvent molecule

and the total number of solvent molecules degrees of f
dom in the subsystem. Note that Eq.~101! reduces to the
usual expression, valid for typical small molecules, in t

case (detM̃8)1/2 as well asP i 51
n0

(detM̃i
0)1/2 are constants ove

the configurations, and hence the integral over the mom
in Eq. ~93! can be considered independent of the coordina
although the integrand generally is not. In that case the
tition function can be factorized into two independent in
grals: one over the coordinates involving the potential ene
and another over the momenta involving the kine
energy.13,15 However, in the presence of large and flexib
molecules, especially in ideal gas or infinite dilution con
tions where large structural fluctuations can occur becaus
the absence of the intermolecular potential or of the solu
solute interactions, such a factorization might be not ac
rate. Hence, in such cases one should use the compl
general and always exact expression of the partition funct
given by Eq.~101! or ~105!. Considering that for usual rigid

or semi-rigid solvent molecules like water,P i 51
n0

(detMi
0)1/2

is independent of the coordinates, the probability density
x0 andxin readily follows from Eq.~105!
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r~x0,xin!5
~detM̃ 8/detG̃xin ,xin

!1/2

^~detM̃ 8/detG̃xin ,xin
!1/2&c

rc~x0,xin!, ~106!

rc~x0,xin!5
e2bu0

~detG̃xin ,xin
!1/2

*e2bu0
~detG̃xin ,xin

!1/2dx0 dxin

, ~107!

^~detM̃ 8/detG̃xin ,xin
!1/2&c

5E ~detM̃ 8/detG̃xin ,xin
!1/2rc dx0 dxin

5
*e2bu0

~detM̃ 8!1/2dx0 dxin

*e2bu0
~detG̃xin ,xin

!1/2dx0 dxin

, ~108!

where, using the same notation as in the previous sec
G̃xin ,xin

is the block of the mass tensor of the solute molecu
corresponding to the velocities of the 3N26 internal coor-
dinatesxin . Note that Eqs.~106!–~108! are in agreemen
with recent papers on related subjects,11,16 and that
detG̃xin ,xin

/detM̃8 is known as the Fixman determinant.17

From the first theory section we also have that the eleme
of G̃xin ,xin

are independent of the coordinates, as it follo
from Eq. ~12! considering that the sixqil which are ex-
pressed in terms of the others are linear combinations of
other 3N26 with coordinates independent coefficients; s
also the Appendix. Hence the previous equations can be
plified to

r~x0,xin!5
~detM̃ 8!1/2

^~detM̃ 8!1/2&c

rc~x0,xin!, ~109!

rc~x0,xin!5
e2bu0

*e2bu0
dx0 dxin

, ~110!

^~detM̃ 8!1/2&c5E ~detM̃ 8!1/2rc dx0 dxin

5
*e2bu0

~detM̃ 8!1/2dx0 dxin

*e2bu0
dx0 dxin

, ~111!

where detM̃8 is a function only of the internal coordinate
xin .18 The ideal gas statistical mechanics is simply a spe
case of the infinite dilution one. In fact from the previou
equations we have for the ideal gas case

r~xin!5
~detM̃ 8!1/2

^~detM̃ 8!1/2&c

rc~xin!, ~112!

rc~xin!5
e2bu0

*e2bu0
dxin

, ~113!
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^~detM̃ 8!1/2&c5E ~detM̃ 8!1/2rc dxin

5
*e2bu0

~detM̃ 8!1/2dxin

*e2bu0
dxin

, ~114!

where, obviously,u0 now reduces to the intramolecular p
tential.

It is easy to show thatrc is exactly the configurationa
probability density for a system with a single solute m
ecule,n0 solvent molecules and volumeV/n in the presence
of holonomic constraints for the solute roto-translational
grees of freedom expressed by the center of mass coordin
and Eulerian angles or equivalently, choosingG, i1 , i2 , i3
coinciding withG, i, j , k, by the center of mass coordinate
and the three generalized coordinatesg4 , g5 , g6 given by
Eqs.~23!–~25!. In fact, setting

j5S x0

xin
D

andb as the solute roto-translational coordinates, from E
~90!–~92! we have that in such a constrained system
configurational probability density is

r~x0,xin!5
e2bu0

~detG̃xin ,xin
!1/2P i 51

n0
~detMi

0!1/2

*e2bu0
~detG̃xin ,xin

!1/2P i 51
n0

~detMi
0!1/2dx0 dxin

5
e2bu0

*e2bu0
dx0 dxin

, ~115!

or in the ideal gas case, wherej5xin

r~xin!5
e2bu0

~detG̃xin ,xin
!1/2

*e2bu0
~detG̃xin ,xin

!1/2dxin

5
e2bu0

*e2bu0
dxin

. ~116!

In Eq. ~115! the potential energyu0 is evaluated at a fixed
solute roto-translational configuration, and in Eq.~116! u0 is
clearly independent of the roto-translational coordinat
Note thatG̃xin ,xin

is identical using either the Eulerian angl
or g4 , g5 , g6 to express the rotational degrees of freedo
but the full mass tensors and the Fixman determinants
different.19 This means that the statistical mechanical equi
lence between the Eulerian angles andg4 , g5 , g6 is valid
only in the case the system is fully constrained and hence
partition function is evaluated constraining the rot
translational coordinates as well as their conjugated m
menta; see Eqs.~90!–~92!.20 From Eqs.~106!–~116! it fol-
lows that a simulation with a canonical ensemble dynam
~e.g., the isothermal Gaussian dynamics!, in the presence o
~ideal! holonomic constraints for the center of mass coor
nates and the Eulerian angles, can be used not only to ob
the exact statistical mechanics of the constrained system~as
shown in the previous section! but also, if required, the exac
statistical mechanics of the unconstrained system usin
correction involving the mass tensor determinant~mass ten-
sor correction! that can be evaluated from the constrain
simulation. Such a mass tensor correction can be physic
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interpreted as the effect due to the centrifugal forces res
ing in the coupling of the rotational and internal motions.

In the Appendix a direct way to obtain the mass ten
M̃ 8, and a simple example for a biatomic molecule wher
fully analytical derivation is possible are shown.

III. MOLECULAR DYNAMICS RESULTS

In this section we show the results obtained applying
roto-translational constraints in MD simulations perform
with microcanonical and canonical ensemle dynamics. T
algorithm has been implemented by us in theGROMACS

simulation package,21 and an aromatic 4-aminopyridine de
rivative molecule in vacuum was used as a test system.
lecular geometry was optimized at SCF level with the Du
ning Huzinaga ~D95! double zeta basis set, using th
GAUSSIAN94package.22 The arbitrary reference configuratio
used to define the rotational degrees of freedom, and he
to constrain the molecule during the simulations, was an
ergy minimized structure, as this provides a more stable c
strained dynamics. All the simulations started from such
energy minimized structure, and an initial run was used
thermally equilibrate the system. The simulations used
collect the data~productive simulations! were started from
the final structures of the equilibration runs, using initial v
locities obtained from Maxwellian distributions at the d
sired temperatures. Note that for the simulations with
roto-translational constraints the final structures of the equ
bration runs needed to be stored at high precision~eight
floating digits were enough! to start the productive runs. Thi
is due to the fact that the constrained runs must always s
from a constrained structure, and an initial constrained str
ture stored with low precision is equivalent to a slightly u
constrained configuration. Note also that especially at l
temperature, it is important to start the productive simulat

FIG. 2. Structures of the 4-aminopyridine derivative molecule obtain
from molecular dynamics simulation with the roto-translational constra
applied. The fixed frame (O,i,j ,k) and the local frame (G,i1 ,i2 ,i3) are
shown. The light gray structure is the reference conformation, and the
structure is taken after several thousand simulation steps.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Average energies and corresponding instantaneous energy standard deviations, obtained f
microcanonical simulations.

Constraints Potential energy Kinetic energy Total energy

rototr. bonds
aver.

~kJ/mol! st. dev.
aver.

~kJ/mol! st. dev.
aver.

~kJ/mol! st. dev.

Yes Yes 2401.5 4.34 22.3 4.34 2379.18 5.274231024

No Yes 2401.4 4.83 22.3 4.83 2379.13 4.154831024

Yes No 2401.4 4.28 24.4 4.28 2377.67 5.121631024

No No 2402.0 4.04 24.4 4.04 2377.62 6.882031024
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after equilibration, providing a new set of initial velocitie
from a Maxwellian distribution. In this way we ensure fo
the productive run a correct velocities distribution whi
could have been altered during the equilibration run. Fina
to obtain very accurate and ‘‘exact’’ simulation data we
ways used a short time step in the range 0.15–0.20 fs. H
ever, the algorithm described is numerically stable also w
more usual time steps in the range 0.5–2.0 fs~data not
shown!.

A. Microcanonical simulations

Four simulations were carried out with the microcano
cal ensemble~NVE! dynamics: two simulations with the
roto-translational constraints, with and without theSHAKE

algorithm,10 and for comparison two usual simulations, wi
no roto-translational constraints also with and without
SHAKE algorithm. TheSHAKE algorithm tolerance was cho
sen equal to 1026, the time step was 0.15 fs for all th
simulations, and an ‘‘infinite’’ cutoff radius was used in o
der to guarantee that each atom could interact with any o
in the molecule.

For each simulation, after equilibration, 20 000 ste
were used to collect the data. In Fig. 2 we show the lo
molecular frame (G,i1 ,i2 ,i3) and the fixed frame (O,i,j ,k),
together with the reference structure and one structure ta
after several thousand steps of simulation with the ro
translational constraints applied. In Table I we report
average total, potential and kinetic energy, with the stand
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deviations for the corresponding instantaneous energies,
tained from the four simulations. The table clearly sho
that the application of the translational and rotational co
straints during the simulation does not perturb the numer
accuracy of the trajectories. As expected the dynamics in
presence of the roto-translational constraints is conserva
on the constraint surface, showing that the algorithm is
merically stable, even in the case in which theSHAKE con-
straints are also applied. Note that for an isolated molec
the translational constraints should not alter the traject
with respect to a usual one where the velocity of the cente
mass has been initially set to zero. Hence in this case the
of the translational constraints can be useful only to rem
possible numerical errors. On the contrary the rotational c
straints really change the dynamics of the system confin
the molecular motions in a configurational subspace, the
tational constraint surface. Note also that with our definiti
of the rotational degrees of freedom, via Eq.~2!, the angular
momentum is not conserved during the constrained sim
tion but fluctuates around zero~see Fig. 3!.

B. Canonical simulations

Three simulations were carried out with the canoni
ensemble~NVT! dynamics using the isothermal Gaussi
temperature coupling,4,5 at 5300 and 700 K. In the thre
simulations noSHAKE algorithm was applied, the time ste
was 0.2 fs and an ‘‘infinite’’ cutoff radius was used in ord
-
of
ion
-
:

FIG. 3. Total angular momentum of the 4-amino
pyridine derivative molecule versus the number
steps, as obtained from the microcanonical simulat
with no SHAKE algorithm and roto-translational con
straints applied. Solid line:i1 component; dashed line
i2 component; dotted line:i3 component.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ir root
ow the

d values.

21J. Chem. Phys., Vol. 112, No. 1, 1 January 2000 Molecular dynamics simulations

Downloaded 13 J
TABLE II. Average potential energies and corresponding isochoric heat capacities, together with the
mean square deviations, obtained from the canonical constrained dynamics. In the table we also sh
differences between these average potential energies or heat capacities and the mass tensor correcte

Temp.
K

^U 8& s^u8&
D^U 8&
kJ/mol

CV8 sC
V8 DCV8

J/~mol K!kJ/mol J/~mol K!

5 2424.870 0.002 3.031025 181.8 3.2 2.031023

300 2374.5 0.10 3.331022 167.6 2.4 22.6631021

700 2309.1 0.25 2.031021 169.7 2.7 9.731021
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to guarantee that each atom could interact with any othe
the molecule. At each temperature after equilibration
used 5.0 million steps to collect the data, as we wanted
obtain well equilibrated properties. In Table II we show t
values of the average potential energy with the correspo
ing isochoric heat capacity, obtained directly from the co
strained simulations, together with the estimates of the c
responding root mean square deviationss^U8& and sC

V8
. In

the table we also show the differences between these ave
potential energies or heat capacities and the values obta
using the mass tensor correction described in Sec. II D. F
Table II it is evident that the mass tensor correction alters
values of the average energies within their errors~shifts al-
ways within a couple ofs^U8&) and hence such a correction
not relevant. The same is true for the heat capacity calcul
at each temperature via the second potential energy ce
moment

CV85
M28

kT2 ,

M285^~U82^U8&!2&,

where U8 is the potential energy of the system. From t
table it is also clear that the effect of the mass tensor cor
tion is extremely small except at high temperature~700 K!
where it becomes larger, although still not relevant. It sho
be noted that at 5 K, where the harmonic behavior is
pected, the heat capacity for the potential energy matc
almost the pure harmonic value for a molecule of 16 ato
given by

CV85
~163326!

2
R5174.6 J/~mol K)

with R the ideal gas constant. This clearly shows that
simulation procedure is extremely accurate, as it can pr
erly reproduce the second momemt of the energy.

IV. CONCLUSIONS

In this paper we introduced a new constrained dynam
method to stop the roto-translational motions of a molecu
system during MD simulations. Using the standard analyt
mechanical definition of the roto-translational degrees
freedom, which is very suited for theoretical studies and
ternative to the usual least square fitting one, we derived
exact algorithm for fixing the molecular frame without alte
ing the statistical mechanical consistency of the simulati
We also showed that from such constrained simulations
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possible to obtain the exact statistical mechanics of the
constrained systems in the ideal gas or infinite dilution c
ditions, via a simple correction~mass tensor correction!
which provides the effect of the possible coupling betwe
the rotational and internal degrees of freedom. As mentio
in Sec. I the use of the roto-translational constraints,
though statistically mechanically consistent, alters the
namics in the simulation as the equations of motion
clearly not identical for the constrained and unconstrain
systems. This means that the described constrained dyna
method provides ‘‘exact’’ results as far as the statistical m
chanics is concerned, but not necessarily for the dynam
However, it is likely that such differences mostly concern t
dynamical details of the simulation and are not very relev
for the kinetics~average dynamics! of the system. The appli-
cation of this method to a molecular system, a large orga
molecule in vacuum, showed that it is possible to implem
in usual MD codes a numerically stable algorithm and th
at least for the molecule used, the mass tensor correctio
negligible even at high temperature. This procedure is
pected to be very useful for theoretical studies based on
simulations, for the development of mean field approach,
to reduce significantly the size of the simulation box in ca
of large nonspherical solutes, like proteins surrounded
water molecules.
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APPENDIX

In this Appendix we show how the mass tensor, a
hence its determinant, can be obtained for each configura
coming from a trajectory with the roto-translational co

straints applied. Defining withG̃ the diagonal mass tenso
corresponding to the momenta or velocities of the partic
coordinatesr in (O, i, j , k! ~see Sec. II A! we have that the
mass tensor expressed for thep8 momenta orẋ8 velocities,
used in Sec. II D, isM̃ 85B̃TG̃B̃ whereB̃ is the transforma-
tion matrix defined byṙ5B̃ẋ8. Using Eqs.~20!–~25! we can
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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express six coordinatesxd in (G, i1 , i2 , i3) as linear combi-
nations of the internal coordinatesxin , corresponding to the
left 3N26 coordinates, from

W̃xd5Z̃xin , ~A1!

where from Secs. II A and II B we have
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
xin
T 5~z1 y3 z3 x4 y4 z4 ¯ xN yN zN!,

xd
T5~x1 y1 x2 y2 z2 x3!,

and
ints
W̃5S m1 0 m2 0 0 m3

0 m1 0 m2 0 0

0 0 0 0 m2 0

0 2m1Z1 0 2m2Z2 m2Y2 0

m1Z1 0 m2Z2 0 2m2X2 m3Z3

2m1Y1 m1X1 2m2Y2 m2X2 0 2m3Y3

D ,

Z̃5S 0 0 0 2m4 0 0 ¯ 2mN 0 0

0 2m3 0 0 2m4 0 ¯ 0 2mN 0

2m1 0 2m3 0 0 2m4 ¯ 0 0 2mN

2m1Y1 m3Z3 2m3Y3 0 m4Z4 2m4Y4 ¯ 0 mNZN 2mNYN

m1X1 0 m3X3 2m4Z4 0 m4X4 ¯ 2mNZN 0 mNZN

0 2m3X3 0 m4Y4 2m4X4 0 ¯ mNYN 2mNYN 0

D .

Now expressing in Eq.~5! xd in terms ofxin via Eq. ~A1! and considering that for a system with roto-translational constra
we can always assume, as in Sec. II B without loss of generality,18 that (G, i1 , i2 , i3) coincide with (G, i, j , k!, we can obtain
the matrixB̃ as

B̃5

¨

1 0 0 0 z1 2y1 C1,1 C1,2 C1,3 C1,4 C1,5 C1,6 ¯ C1,3N28 C1,3N27 C1,3N26

0 1 0 2z1 0 x1 C2,1 C2,2 C2,3 C2,4 C2,5 C2,6 ¯ C2,3N28 C2,3N27 C2,3N26

0 0 1 y1 2x1 0 1 0 0 0 0 0 ¯ 0 0 0

1 0 0 0 z2 2y2 C3,1 C3,2 C3,3 C3,4 C3,5 C3,6 ¯ C3,3N28 C3,3N27 C3,3N26

0 1 0 2z2 0 x2 C4,1 C4,2 C4,3 C4,4 C4,5 C4,6 ¯ C4,3N28 C4,3N27 C4,3N26

0 0 1 y2 2x2 0 C5,1 C5,2 C5,3 C5,4 C5,5 C5,6 ¯ C5,3N28 C5,3N27 C5,3N26

1 0 0 0 z3 2y3 C6,1 C6,2 C6,3 C6,4 C6,5 C6,6 ¯ C6,3N28 C6,3N27 C6,3N26

0 1 0 2z3 0 x3 0 1 0 0 0 0 ¯ 0 0 0

0 0 1 y3 2x3 0 0 0 1 0 0 0 ¯ 0 0 0

1 0 0 0 z4 2y4 0 0 0 1 0 0 ¯ 0 0 0

0 1 0 2z4 0 x4 0 0 0 0 1 0 ¯ 0 0 0

0 0 1 y4 2x4 0 0 0 0 0 0 1 ¯ 0 0 0

] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

1 0 0 0 zN 2yN 0 0 0 0 0 0 ¯ 1 0 0

0 1 0 2zN 0 xN 0 0 0 0 0 0 ¯ 0 1 0

0 0 1 yN 2xN 0 0 0 0 0 0 0 ¯ 0 0 1

©
,
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where the matrixC̃ is defined byC̃5W̃21Z̃. Hence the mass
tensor elements are readily obtained from

Mi , j8 5hi
TG̃hj , ~A2!

wherehi andhj are, respectively, thei th andj th columns of
the B̃ matrix. Equation~A2! was used to construct the ma
tensorM̃ 8 from which we could calculate its determinant.

As a simple example we can use the definition of
matrix B̃ to obtain the mass tensor of a biatomic molec
with identical masses. If we choose to align the molecule
the reference structure along the zed direction (i3), with
hence zerox and y coordinates in (G, i1 , i2 , i3) for both
atoms, we havez252z1 . Moreover the sixth column of the
B̃ matrix, corresponding tov3 , involves only zero element
and hence can be removed. It is also clear thatx1 , y1 , x2 , y2

are independent ofz1 being fixed at zero. TheB̃ matrix then
reduces to

B̃5S 1 0 0 0 z1 0

0 1 0 2z1 0 0

0 0 1 0 0 1

1 0 0 0 2z1 0

0 1 0 z1 0 0

0 0 1 0 0 21

D
and from Eq.~A2! the mass tensorM̃ 8 is

M̃ 85S 2m 0 0 0 0 0

0 2m 0 0 0 0

0 0 2m 0 0 0

0 0 0 2mz1
2 0 0

0 0 0 0 2mz1
2 0

0 0 0 0 0 2m

D ,

wherem is the atomic mass. Note that for a biatomic mo
eculeG̃xin ,xin

reduces to the elementM6,68 52m, as in a bi-
atomic molecule there is only one internal coordinate (z1).
As previously mentionedG̃xin ,xin

involves only coordinate
independent elements and indeed this is what we obtain
the simple biatomic molecule whereG̃xin ,xin

5M6,68 52m.

From M̃ 8 follows the kinetic energy and the mass tens
correction

K5mrG•rG1mz1
2~v1

21v2
2!1mż1

2,

~detM̃ 8!1/2523m3z1
2.

The same results can be also obtained directly from E
~8!–~15!. Note that as expected the mass tensor correctio
not a constant but depends on the internal coordinatez1 .
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Only in the case in which the internal coordinate has v
limited fluctuations with respect to its average value~as it
happens in usual small molecules but not necessarily in la
and flexible ones! does the correction become irrelevant,
the mass tensor determinant can be considered a consta
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