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Molecular dynamics simulations with constrained roto-translational
motions: Theoretical basis and statistical mechanical consistency
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From a specific definition of the roto-translationéxternal and intramolecular(interna)
coordinates, a constrained dynamics algorithm is derived for removing the roto-translational
motions during molecular dynamics simulations, within the leap-frog integration scheme. In the
paper the theoretical basis of this new method and its statistical mechanical consistency are reported,
together with two applications. @000 American Institute of Physid$0021-9606800)50201-3

I. INTRODUCTION (2) Simulations of a molecule in vacuum, with either a usual

Often in molecular simulations the interest is focused on
the structural properties of a molecule with internal degrees
of freedom. For simulations of a single molecule in vacuum
(ideal gas conditionas well as for simulations of a solute
molecule in its solven(infinite dilution conditior), the roto-
translational motions are in general uninteresting, while the
behavior of the internal coordinates can be very important
for many different studies. In particular with large organic 3
molecules, and especially biomacromolecules, simulations
are usually performed to obtain a detailed investigation of
the conformational fluctuations, which can be studied only
after removing the overall translation and rotation of the
molecule. In these cases the ensemble of molecular configu-
rations obtained from the simulation is normally manipulated
to remove these roto-translational motions. In general the
roto-translation is eliminated by over-imposing the center of
mass of the actual configuration with that of a reference one,
and then least square fitting the atomic displacements be-
tween the two structures rotating the actual structure aroun@#)
its center of masSThis procedure, although usually efficient
and widely used, has one disadvantage. Its implicit definition
of external and internal coordinates is rather complicated,
especially for the definition of conjugated momenta, and
hence it is difficult to use this approach for theoretical me-
chanics or rigorous statistical mechanical studies, as well as
to derive ideal constraint forces to stop the molecular roto-

force field or using a mean field, are usually performed
at zero angular momentum and this constraint can alter
the statistical mechanical consistency of the simulation.
On the contrary when ideal holonomic constraints are
used to stop the roto-translational motions, and the an-
gular momentum is not fixed anymore, the simulation
can provide the exact statistical mechanics of the system.
For simulations of large nonspherical moleculesg.,
proteing in water, with the presence of the roto-
translational constraints we could use a simulation box
shaped on molecular geometry, reducing significantly
the number of necessary water molecules. The effect of
large solute rotations is negligible for short length simu-
lations (hundreds of picosecondbut becomes relevant
for longer time simulations. In fact, from the nanosec-
onds range the solute has enough time to rotate signifi-
cantly and hence, without using a cubic simulation box,
to interact directly with its periodic images.

For the calculation of free energy differences due to
changes of the roto-translational configuration for inter-
acting molecules or for a molecule interacting with an
external field(e.g., molecular dockingthe simulations
with the roto-translational constraints could be extremely
efficient.

In this paper we show that it is possible to use a defini-

translational motions directly during the simulation. It shouldtion of internal and external coordinates which is very suited

be considered that a rigorous method to constrain the rotdor theoretical derivations and that allows direct simulation

translational motions during a simulation can be advantaef only the molecular internal degrees of freedom. In fact,

geous in the following cases: this definition of the molecular coordinatéstandard in ana-

(1) For large and flexible molecules the removal of the dy_lytica} mechanicsallows the use of idgal constrgint forcg sto
stop instantaneously the roto-translational motions during the

namical coupling between the internal motions and mo-

lecular roto-translations can shorten the system’s relaxSMulation. It is well known from theoretical mecharfics

ation time and hence provide a better configurationafh""tt the u?ﬁ of 'd‘?g' ho||_(|)noq;|c f:ons;ralnts n a-Ha;rr?lltonlan
sampling for the internal coordinates in simulations of S¥S .emdS|h provides am|'on|anb ynam|c§ In the con-
usual time lengths. stra!ne phase spac(eonstralnt su s_pah;ean so a con-
strained Hamiltonian system can still be described by the
microcanonical ensemble. We will show that more often in
dAuthor to whom correspondence should be addressed; electronic maibenerm the holonomic constraints do not alter the basic type
amadei@seurat.chem.uniromal.it . . .
of dynamics in the case of the usual molecular dynamics
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hence the statistical mechanical ensemble which describes 4

such MD systems in full phase space also exactly describes i k

these systems in the constrained phase space. This means 3

that a rigorous constrained dynamics algorithm can be used 0

for theoretical studies in molecular simulations, and in gen-

eral for molecular computational methods. It must be noted

that a constrained dynamics algorithm, although statistical

mechanically consistent, always alters the dynamics in the

simulation as the equations of motion are not the same as i

those for the unconstrained system. Such a dynamical differ- 2

ence, which is usually assumed not very relevant, should be

considered when the main interest in a simulation concerns /| J)

the dynamics of a system. /
The paper is organized as follows: in the first two theory /

sections we describe the definition used for the internal and N1

external molecular coordinates and the derivation of the con- A

strained dynamics. In the third theory section we show that ¢ ]

for the typical MD equations of motion, which can provide i ,Iw

exact statistical mechanical propertiéhe Hamiltonian or

Lagrangiart® the isothermal Gaussi&h and the Nose ny i

Hoover dynamic’), the application of ideal holonomic con- !

straints does not prevent the system’s behavior to convergdG. 1. The local orthonormal frameG(iy ,iz.i3) is defined by the fixed

in time to that of the correct statistical mechanical ensemble®rthonormal frame, moved in the center of masi(j,k), and the three

although in a restricted phase space. In the fourth theor§UIerIan angles(6,,). The Eulerian angles are defined as-izK, ¢

section we show that the statistical mechanics of a moleculg™ y=iin wheren is given by the intersection of thij plane with the

in ideal gas or infinite dilution conditions can be obtained 11, i plane. It is worth noting that the unit vectansk, andi; expressed in

the (G,iy,i,,i3) frame are:

exactly from a simulation with roto-translational constraints.

Finally we present as numerical examples two simulations of ~ k'=(sin@siny sin6cosy cosf),

a large organic molecule in the microcanonical and canonical

ensembles using the roto-translational constraints and some

conclusions are given.

b

R 4

n'=(cosyy —siny 0), i}=(0 0 1.

coordinates'qio| in (G,iq,i,,i3), and the actual position of the
ith particle with respect to the center of mass. Equatibn
A. Definition of the translational, rotational and simply states that the center of mass always coincides with
internal coordinates the origin of G,i1,i,,is), and Eq.(2) is the usual way in
Let's consider a flexible molecule made Nf particles ~ analytical mechanics to define the rotation of an object with
(atoms, where we define the coordinates of thie particler; respect to a reference one. In fact EB) defines at every
and the coordinates of the center of mass position of th&me the actual orientation of3,i,i,,i3) with respect to the
moleculer g, both expressed in the fixed orthonormal framefixed frame moved in the center of mass of the molecule
(0,i,j,k) (laboratory framg We can define a local orthonor- (G,i,j,K), where the unit vectorg, i,, i3 are expressed in
mal molecular frame @i ,i,,is), with origin in the center (G.i,j,k) via the Eulerian anglés(see Fig. 1 Hence for

IIl. THEORY

of mass, where we hate each configuration in@,i,j,k) we can obtain the local mo-
N lecular frame G,iq,i,,i3) using the center of mass as origin
> mag=0, 1) and rotating an orthonormal frame around the center of mass
i=1 until Eq. (2) is fulfilled. Note that Eq.(2) differs from the

N expression used by Eck&ib define the molecular frame, as
2 P©xmg=0 @) in the latter the masses are not involved. Equatidns(2)
= e provide a set of six linear algebraic equations which can be
used to express six coordinatgs in (G,iq,i,,i3) as linear

with combinations of the otherl8—6, and we chose to express
3 0. 011, 912, 921, U22, O3, (31 in terms of the others. Note that
221 ail s (3) it is not possible to use Eq$l)—(2) to express six coordi-

nates which define two particles as in this case the system of
linear equations cannot be solved for all the sjx (the
a=2, Qi (4)  sixxsix matrix of coefficients is singular Hence we can
=t replace the original set off\8 particle coordinates with a new
the position of theith particle with respect to the center one defined by the center of mass positign the Eulerian
of mass, at an arbitrary reference structure with fixedangles,, ¢, ¢ and the left —6 g; coordinates. We do not
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treat explicitly the case of linear molecules where two Eule- N

rian angles must be used and there idrel internal coor- M =2 m;, (14
dinates, or the case of two-dimensional molecules where =1

there are X—3 internal coordinate®,as they are special 3

cases of our general derivations. It is clear that in the new set ¢/ = > quiy (15

of coordinates the center of mass coordinates describe the =1

overall translation of the molecule, the Eulerian angles dexnd7 the instantaneous inertia tensor i8,(1,i,is), if the
scribe the rotation and theé\3-6 coordinates inG, i ,i,,i3) vector  is also expressed in thé, (i, ,is) basis set.

are the internalintramoleculay degrees of freedom,,. The Hence using Eq(7) and remembering that from Egs.

ith particle position can then be expressed as (1)—(2) we can express six coordinates as linear combination
3 of the other ]N—6 in (G,iy,i»,i3), it is clear from Egs.
r=rg+> qui, (8)—(13) that the kinetic energy is a quadratic form of the
=1 velocities of the new set of coordinates and wises qi0 the
i\ =i,(0,,1), kinetic energy reduces to the sum of independent quadratic

. . terms with no cross products between the translational
where in the (l:asei O|f' the first trf)r-eetatom% 3112,_ qtzl, qlzzy (FexFey.fc2), the rotational §,¢,4) and the 3—6 inter-
3,23’;131 are ,‘ihe‘:,ry ",‘e;‘r CO”(; '”ta 'O”fsf_o_ te ITterITa Izogr' nal velocitiesx! = (G1al300s3"** Anibinzbng). This kinetic

Inatesx;, with ime independent coetiicients. 1t should be gnergy form in the new coordinates is very useful in statis-

noted that it is not possible to use a linear reference configyjca| mechanics in order to evaluate the partition function and

ration because in this case one of the Eulerian angles canngf yenera) allows analytical derivations in statistical and the-
be definedthe sixxsix matrix of the coefficients to solve the oretical mechanics.

six g; would be singular It is also very interesting to ex-
press the kinetic energy in the new coordinates. In fact, from
the last equation we can express the velocity ofithepar-
ticle in (O,i,j,k) as
3 3 g 3 3 We can use Egs1)—(2) to define a set of six linear
o L h_ . L . holonomic constraints in order to fix th&(i,,i»,i3) frame
ri_rGjL;l q”|'+|:21 q”a_rGJr;l qi|||+w><|21 it of the molecule. In fact, if we start our(dlynzanfni)cs from a
(5) configuration which belongs to the constraint surface defined
by Egs.(1)—(2), we can derive ideal constraint forces, via the
gradients of the constraints, to correct the motions of the
di . system in order to keep the molecule on this constraint sur-
a:wx" 6) face, stopping the translation and rotation @&,{,i,,i3).
, . . Note that the left hand side expression of E2).is a func-
with the angular velocitys expressed in terms of the Eule- tion only of the Eulerian angles and hence the fulfillment of

rian angles time derivativés the three holonomic constraints defined by Bj.in a simu-

B. Derivation of the constrained dynamics

where we used

w=0n+ K+ i (7)  lation means to keep the Eulerian angles fixed at zero. Note
o ) ) also that the gradients of these three holonomic constraints
(for the definition of the unit vecton see Fig. 1. are linear combinations of the gradients of the Eulerian
Hence from Eq(5), using Egs(1)—(2) we obtain after gpgles.
some algebra, the kinetic enefgy If at the initial time G, i, ,i,,i3) coincides with the fixed
1 N reference of frame moved in the center of mass of the mol-
K== mfi-)=Kg+ Kt KintKe, (8  ecule G,i,j,k), the two frames will coincide at every other
2{=1 time because of the application of the constraint forces.
where Hence defining with
Ke=3M(fa-to), (9) 0i=ix+jy;+kz;, (16)
~ theith particle position in G,i,j,k)=(G,iq,i,,i3) and with
Koo= (0 Tw), (10) ) p' | p G.i.j,K)=(G,iy,iz,i3)
N qr =iX;+jY;+kZ;, (17)
Tw:E mi{gi X (@Xxq;)}, (1D theith particle position of the reference configuration in the
i=1 same frame, we can rewrite Eq4) and(2)
1 N
Kin=7 2, mi(6-a)), (12 2, mg=0, (18
= =
N
K=o [ 2 mi<qi—q?>xq{] (13 2, mi(a’xq)=0 (19
with using the explicit components expressions @yig ,i,,is)
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N 3N {?g r r 3N (99
= oy = = K Dl t— = 2K % (1) 2
gl—z,l mix;=0, (20) Agy 2‘,1 7 (t 2>XJ(I 5 T+J_Zl 7 (OX;(t) 7
N +h(t) 72, (32
= Vo= 21 . . ]
92 2‘1 myi=0, @D wherex; is now the generic coordinate, and
N 3N 3N [92
Ok . .
gs= >, Mz =0, (22 hkzz 2 ax; axg, T
= I=1jr=q 97 9%
N LI IR
9a= >, m(Yizi—Zy;) =0, (23 my T E M ax

=1
Note that the systematic acceleration in the presence of a

N
9522 mi(Zx— X;z,)=0, (24) frictional force is
= 100 o
N m moox YXj ) (32)
ge= >, Mi(Xiyi—Yix)=0. (25 , , _
i=1 where® is the potential energy of the system and the fric-

. . . . . tional constanty is the same for all the coordinates. Hence
Equationg20)—(25) define the six holonomic constraints and féom Eq. (26) we can rewrite Eq(31) as

can be used to obtain the ideal constraint forces as usual vi

the gradients of they functions. In fact, from their time SN R
derivatives we have Agy= _21 I (Hay(t) 7
=1 X
N
) d9k. 9Ok, IOk, ng 3N 2
= e By | = J Jd9yr T
9= 2 | 5 X% 3y, V% 37, 4) 70 (26 + 3 S X T (3
K =1 =1 £7X] aXJ m]

implying that in configurational space these gradients aryith a; the acceleration of th¢ coordinate due only to the

a.Iw.ays prt'ho'gonal o the velocme§ vector conservative force { d®/9x;), and keeping only the terms
(X1Y121 -+ XnYNZN), and then to the constraint surface. D to 72

Therefore constraint forces defined as linear combinations oLf
the g gradients will be also orthogonal to the velocities vec- 3N SN pe T

tor and so will not produce any work on the system, as re-  h(t)=2>, > X Ox, (t)Xj(t— 5) Xj’(t_ 5)-
quired for ideal constraint forces. Hence using a leap-frog == O

algorithm, we can express the change of the coordinates dugo using the fact thakg,=0 we can solve tha set via
ing one time step in the presence of a sehgfholonomic

3

constraints as A=—01c (34)
T f(t "o \.(1) where the column vectar and the matrix® are given by
Ax;=X t——) T+ﬁ72+722 k—()ﬂ(t), (27)
2 m; =1omp 9x N g,
} 6= 2, 5y (DO hy(D)7 (35)
T\ fy(t 9 () @ =17
Ayi=yi|t—5 T+MT2+722 d )&(t), an
2 m; k=1 M dy; S 9 I T
(28) ®k,k’_]_:1 ﬁ_xj(t) (9_xj(t) m’ (36)
n
Azi='zi<t— Z) + fiz(t) 72+7229 M(D) @(t), (29) Equations(34)—(36) .provide a co_mpletely general sqlution
2 m; k=1 m; Jz for N associated with any possible set of holonomic con-

straints. For the constraints defined by E(&0)—(25) the
symmetric matrix® is a block diagonal matrix
; O 0 0 0 0

0,, O 0 0 0

where f;,, fi,, fi, are thex, y and z components of the
systematic force on particlie (the sum of the forces due to
the potential energy and, if present, the frictional force, but 6)
excluding the constraint forgeand 7 is the time step used.
We can obtain the set of, at one time step from the fact

P

0
thatdg,=0 at any time. In fact, using the leap-frog scheme 5o 0 0 ©33 0 0 0 -
we have |1 o 0 0 044 Ou5 Oue|’
T T 0 0 0 ®54 @55 5 6
Agy=0| t+ 5| 7=y t— 5| 7+ Gu(t) 7%, 30 ’ ‘ '
9k= 0k 2) T gk( 5| 7O T (30) 0 0 0 O5s Ogs Oge
and hence with
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N

011=0,,=035= 21 m;, (39
N

O44= 2 M(ZP+Y), (39)
N

0O45= 21 mi(—Y;X), (40)
N

046= igl mi(—=XZ;), (41
N

O54= 2, M(=XY), (42)
N

Os5= 2 mi(X[+Z0), (43)
N

Os56= ;1 mi(—YZ), (44)
N

B¢ 4= 21 mi(—XZ;), (45)
N

Ogs5= ;1 mi(—=YZ;), (46)
N
=

Note that the matriX® given by Eqs.(38)—(47) is singular
only in the case that the reference configuration is linear.

Realizing that in our case thg functions are linear in
the coordinates, we have

3—?(';( t— %) = Z—?(:((t)zconstant, (48)
h,=0, (49
and so using again E§26) we obtain
3N
ck=;l ZTQJKAX]-' , (50)
where
Ax] =X t—% T+a;(t) (51)

is the displacement of the coordinatgin one time step due

only to the conservative force. Hence we can solve the tran

lational (\1,\5,A3) and rotational X,,\5,\g) coefficients

Molecular dynamics simulations 13

straints blocks of th€@ matrix. In this case we should invert

each step a Iargé matrix (involving all the constraints in
the system to solve instantaneously the set[Eq. (34)].
However, this might be computationally very expensive and
an iterative procedure could be used instead. In test simula-
tions where we used fixed bond lengths, we solved consecu-
tively the bond constraints with theHake algorithm™® and

the roto-translational ones wit® given by Eqgs.(38)—(47).

This procedure can be iteratively applied until the proper
accuracy is reached. For the systems we studied a single
application of the roto-translational constraints at every time
step, after applyingHAKE, was always enough to obtain a
proper constraints fulfilment. However, for accurate statisti-
cal mechanical calculations it is preferable not to use such an

approximate procedure, but either the ex@cmatrix solu-
tion, involving the bond constraints, or simply not to use any
bond constraintsthis latter choice is in general better as the
simulation physical consistency is high®r Note that when
we want to stop the roto-translational motions of a solute
molecule surrounded by solvent molecules, the described
procedure will apply the ideal constraint forces only to the
atoms of the solute.

A schematic description of the implementation of the
algorithm in a usual MD code is:

(1) evaluate(unconstrainedconservative accelerations due
to the conservative forcds(t) on all atoms

i ()=F(t)/m;; (52
(2) compute velocities

i T = T !

fi| t+ 5] =H|t=5 |+ O (53
(3) compute new(unconstrainedpositions

T

ri(t+n)=r(t)+i| t+ E) T, (54)
(4) if required, applysHAKE constraints to coordinates;
(5) apply roto-translational constraints to coordinates;

(6) compute constrained velocities

rl(t T):rl(t‘l‘T)_rl(t), (55)
T

2
(7) if required, apply temperature and/or pressure coupling.

Note that in the case the bond constraints are used steps 4
and 5 could be reduced to a single step implementing the
roto-translational constraints directly in tis&iAKE routine,
using either the exact solution or the iterative procedure. It

dnust be considered that to initialize the MD trajectory we

have to start from a configuration which is already on the

independently. It must be noted that in the presence of extrgonstraint surface, and use initial constrained velocities.
holonomic constraints involving particle distances like theConsider also that the reference configuration should be an

bond length constraints, the translational constrajgitgen

energy minimized structure as this provides a more stable

by g;,9.,93) are still independent, with matrix elements al- algorithm. Note that Eq¢1)—(2) can be used also to remove

ways zero apart from the diagonal oné®,(,0,,,033). On
the contrary, the rotational constrair(tiven byg,,9s,9¢)

the roto-translational motions from a trajectory obtained by a
usual simulation. In that case, after the trivial removal of the

can in general interact with these new constraints havingenter of mass motion, we should solve EB) for every
nonzero elements between the rotational and the bond coweonfiguration obtained by MD in the form
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N - JL

2, RxmT(ri—rg)=0, m=|—, (61)

=1 &

RI=(q7a50%), (56)  andw the conjugated momenta of ti@coordinates
where T is the orthogonal rotational matrix which over- aL
imposes G,i,j,k) to (G,iy,i»,i3). Hence for a given refer- V|_<—_) , (62
ence configuration, Eq56) provides for every MD time B;

frame a set of three equations. These equations can be solved

obtaining directly the three rotational angles which define the/€ can express the Lagrangian or Hamiltonian of the.system
= L . as a function only of the coordinates and, respectively,
matrix T, and in this way also the rotation can be removed.

their velocities£ or conjugated momentar. In fact in the
presence of the holonomic constraints, expressed by the ideal
constraint forces, the potential energy of the system is
C. Constrained dynamics simulations and statistical ® (& B=0) and hence a function only of th& coordinates.
mechanics Moreover in such a constrained system from the conjugated

In the previous sections we described the molecular cofomenta definition we have
ordinates used to define the molecular internal and external

degrees of freedom, and how to obtain molecular dynamics | 7| _ Gee Gep (f _ Gee Gep (§) 63)
simulations with the roto-translational motions constrained. v éﬁyg GB‘B B GM (”;B’ﬁ 0/’
In this section we show that the usual MD equations of mo-
tion, that for unconstrained systems can provide an exad@nd so
statistical mechanical behavior(the Hamiltonian or _E. 5
Lagrangiarf® the isothermal Gaussidn, and the Nose =Gy b, (64)
Hoover dynamic$’), provide in the presence of holonomic ! 6
constraints a dynamics which is still consistent with the cor-  ?~ .66~ Cp.éCeem (65
rect statistical mechanical ensemble, although in a restrictegnere
phase space.
Consider a system with Hamiltonia(x,p) and a set of _ 65’5 éw
(ideal) holonomic constraints. Its equations of motion are M=| _ ~ (66)
Gpe Gpp
. dH c - ~
Pi=—l o] T YRt i, with GM:G;B is the mass tensor expressed for the veloci-
' ties and conjugated momenta of t§eB coordinates. From
. (aH) 57 these last equations we can express the kinetic energy as
Xi=\|—1,
P ~ ~ .
G G
e o[ BGee Gep)[ €
or 2K=(&" B)| - - ()
Gpe Gppl \B
o [aL o o .
((;L) Gpe Gppl 'O
Pi=|=zv s (59 e -
i =£'G, &= 7' Gy . (67)
where

Hence, considering that the mass tensbras the potential
L(x,X)=2K—H=K—-® (60)  energy is also a function only of th&coordinates, we have
that in the presence of holonomic constraints the Hamil-
tonian or Lagrangian can be expressed as functions only of

andp their conjugated moment&? are the ideal constraint the ¢ coordmatg; and, respectlvely, their corluugated mo-
forces andy is the frictional coefficient necessary for the Mentasm or velocities¢ as the coordinates are fixed and so

temperature coupling of the systdmhich is clearly zero for  B=0. This clearly means that the equations of motion for the
the pure Lagrangian or Hamiltonian dynamidsote thatx,  full system reduce to the equations of motion only in éher

X, p and f¢ are multidimensional vectors, and the partial phase space which can be obtained directly by the Lagrang-
derivatives in the coordinates are always at fixed momenta ifn and Hamiltonian functions that can be expressed now as
the Hamiltonian representation and at fixed velocities in theL (&, &) andH(& w). Note that the time dependence of the
Lagrangian one. If we define with, B a set of generalized momentaw is fully determined by the equations of motion in
coordinates wherg8d=0 defines the positions on the con- the &, = phase space as they are linear combinations ofithe
straint surfacegr the conjugated momenta of tecoordi-  momenta; see Ed65).

nates The equations of motion in th& # phase space are then

is the Lagrangian of the system, with and ® the kinetic
and potential energies, respectively,are the coordinates
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PRI S EATE
Wi_d (agi) dt 2': (&Xj)<‘9:§i)

aL g [ ax;).
_2 p, ag j (9_)(] Ek 98\ 9g & which provides a constant kinetic enerdy, during the
simulation. From the conservation of the probability density
(68) p in phase space, applying the divergence theorem, we have

e

O V-
=——=—0, (79

where we used

X . J J . J
s =(%)- (69) —(&—f)=2 a—g(pfi)ﬂLE r(p#i)
(9.§i agl ! ! ! i
Substituting in Eq(68) the expression fop, and using again _ |, ap ) (agl)
Eq. (69) we obtain T4 (ﬁ§i>§'+2 (aw, 7T|+PE JE,

= (::J)(&f)”Z (j:,)(ag) reg (g_:)

axj> ;(i)iz(axj)g S LA J KLAPHIS Y kel

+Zf

i Ix;) & Kk \ I&
i #*H d ) -
( + vy (70) 0777| [?gl (7 I) ( )
d&;
or from and hence
oL _ JH
5_§i =— 8_5, (71
dy
in the Hamiltonian representation p= —PE —(777 )=—Dyp— PE Tr.(am) (77)
: (aH + (72
™= Y,
& where
- oH 73
&= o) (73

. _[9p ap . ap | .
. . P:<—>+2 (f)fﬁZ (_')Wi (79)
Note that in Eq.(70) we used the fact that the multidimen- i |
sional vector of the ideal constraint forces is by definition a

linear combination of the gradients of the constraints, and
hence andD is the total number of coordinatés. From Eq.(75)

we have
> fc( ﬁé.)

for all the &; coordinates. Equation§0) and(72) show that ( 7Y ) Z ( )
the constrained dynamics expressed in terms&ofr is am;i m & 1\ 0§
equivalent to the dynamics of an unconstrained system in a .
reduced dimensional phase space. This fact implies that if for D
the unconstrained system this type of equations of motion N o
provides a density distribution of the trajectory which con- (79)
verges in time to a given statistical mechanical ensemble 1

J (0751)

(74

3 )
Ji
{2+
a;

%

(9’7Ti

&

20 ——,
(782

distribution, the same is true for the constrained system in its -
constrained phase spa@onstraint surfage We will explic- &)
itly show this in the case of the isothermal Gaussian dynam-

ics since it is a prototypical example: similar derivations pro-

vide the same result for the Lagrangian or Hamiltonianvhere we used

dynamics(as is well known from theoretical mecharfics

(79

and for Nose-Hoover dynamics. o 5
In the case we use the isothermal Gaussian dynamics we i _ i _x
havé® 2 (MJ) > m( am) £ (80
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Finally, inserting Eq(79) into Eq.(77) and using again Eq. with the Jacobean for this last transformation equal to

(80), we obtain 2P2(detG, )2 Finally, expressing the integral in multidi-
mensional polar coordinates, where the square root of the
) ag, kinetic energy is the radius length, we have
p=—Dyp— 2 ™ ( ) )
& 9 23
) f S(K—=Kp)dar
2®p .
Py 2. mi&j — 202(det, )12
5 p ( )2 (ag,) Dp ><fAOK(D’l)’Zﬁ(K—KO)d(Kl’Z)
=—Dyo— 5 i
2Ko 5 \og )5 ! 2Ko ~ K(D-1)12
, =2P"2(detG; o) YAy | —mr— (K—Ko)dK
d(D-1) 2K
=_ Z—KOP' (81 ~ D/2—-1
=2P"2(detG; ) %A, (89)

The last equation means that iKg=(D —1)kT, when the

stationary conditiondp/dt=0 is reached, the probability with A, a pure constant depending only on the dimengon

8f the system. Hence the probability density in the configu-

trajectories(with no constants of motion other than the ki- rational space is

netic energy in the, « phase spad® is

e PPS(K—Ko) e AP(detG, o) M2

_ - S 89
p(g,ﬁ) feiﬁq)é(K_Ko)dfdﬂ' (82) p(f) fe—ﬁq)(deté§’§)1/2d§ ( )

with 8~ 1=kT, wherek is the Boltzmann constant affdthe
reference temperature. Note thhtis evaluated at each
configuration on the constraint surfage=0.

In order to obtain the configurational probability density
we have to integrate the probability density in phase spac
over the momentar at each configuration

Note that deéég is in general a function of the coordinates.
This last equation provides exactly the same expression for
the probability density in configurational space which is ob-
E ained from statistical mechanics. In fact, for a system in the
canonical ensemble with the same holonomic constraints we

have
® f (&m)d e " [e K= 5 ) 5w w(m))dBdwd
pl&)= | p(&mUT= =55 — _ v—uv(w vdw
fer Tk =Ko)dgdam p(g)_fe_ﬁ(K“D)E(B)(S(v—v(n-))dgdﬂdwdv
xf S(K—Kg)dr. (83 e AR+ D) gg
" Je Mg dn 0

Note that in Eg.(83) we can obtain the integral over the
momenta via subsequent transformations. First we can exwhere
press the kinetic energy in terms of tkemomenta
. N wm) =Gy Gy i
K= im é= %NTG‘;;#. (84)
and in the last integral of Eq90)

Second using the orthogonal transformation of the momenta
which diagonalize; ; , the kinetic energy in these “eigen- K=37'G;;m (92)
vectors” momentasr; transforms into
o and @ is obtained for eacl§ configuration atB=0. Using
E 1,2 again the orthogonal transformation for the momenta that

i 1i»

1
"2 (85) diagonalizess; ; we obtain
where clearly; are the eigenvalues @&g. Third, applying e"g‘l’(det'ég g)1/2
to the r; momenta a rescaling transformation p(é)= — . (92)
Je PP(detG, »)V2dé
=(20)Yomry (86)
o ) ) From this last equation follows that assuming ergodicity the
the kinetic energy in the new momenis is probability density in configurational space obtained from
D the MD trajectory in time is statistically mechanically com-
_ 2 ng (87) pletely correct even in the presence of a setidéal) holo-

nomic constraints.
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D. Statistical mechanics in the infinite dilution D. Qi i
o= — 0 -+ b . .
conditions wjo 6; siny; + ¢; sin g, cosy,; , (98
In the last section we showed that the use of ideal holo-  ®i3= ¢’. i COSO), ll/fi : (99

nomi nstraints in a simulation not perturb the statis: ~, . . .
10mic constrain's in & simutatio does no per b the sta *Note that the mass tensbt; is expressed in the form which
tical mechanical consistency of the dynamics, and hencleS appropiate for usina the' momenta o’ velocities. and
from such a constrained MD trajectory we can obtain the bprop g the, i '

exact statistical mechanics of a constrained system. In thi§ ¢an be obtained from the mass tenbby expressed for the
section we show that the exact statistical mechanics of & momenta andk; velocities viaM{ =AM;A; . Note also
molecule in the infinite dilution conditiongincluding the  thatM/ differs fromM, only for the elements affected by the
special case corresponding to the ideal)ga@ be obtained transformation of the angular velocity given by E¢87)—
from that of a system with ideal holonomic constraints for(99), and hence the mass tensor blocks corresponding to the
the roto-translational degrees of freedom of the molecule, viaelocities of the center of mass and internal coordinates are
a simple correction. identical inM/ andM, . Finally, h is the Planck constanB

The partition function of a solute-solvent system with athe total number of degrees of freedom g#e 1/kT. For a
classical Hamiltonian, where for the solute molecules we usgjiven configuration we can solve the integral over the solutes
the molecular coordinates described in the first theory seGnomenta using the orthogona| transformations of these mo-

tion, is menta which diagonalize eacM() ! obtaining

e Alsg= PR AU " LT ! 5 »
= . . =B 2p; (M P; = N VEAY!
Q J’(1+ ¥s)"S(1+ 7)”ns!n!hdeSdXSi:Hl dx; dp, f ¢ dpi=((2rkT)™ detM{) ™, (100
e~ BKsg= BKg=BU where N, from the first theory section, is the number of
= dps dx atoms in a solute molecule. Using this last equation in Eq.
1+ ¥9)"s(1+7)"nglnthP 7 77
n
- BKga— 3Nn/2
X [ |siné;|dx; dp; , 93 Q:f e~ BRsg=BU(2 ik T)3NN 0
=1 (14 ¥5)"s(1+ ) "ng!nthP s
1 _ AT oL AT VA n ~
p =A, F =A'pi=M/x/, (94 ><dxs_]_[l (detM/)¥?sin ;] dx; . (102
=
x' =A%, (95 If the n solute molecules are in the infinite dilution condi-
_ tion, we can simplify the integral in the previous equation
M l.c considering that there is no interaction between the solute

0, 6, w1 molecules. Hence for the great majority of the roto-
translational configurations of the solute molecules the inte-

Xi= ¢ ’ Xj= : i ) ).(', = w 2 ) . H
' l/fl ' (.75' ! w' gral on the other coordinates and solvent momenta is a con-
! i '3 stant. Therefore
Xi.in Xi in Xi.in

n
whereK is the kinetic energy of the, solvent moleculesx, J e PUTKI dp dx ] (detM/)*3sin 6;|dx;
and ps are the coordinates and conjugated momenta of th =1
solvent, and the kinetic energy of timesolute molecules is n
o = (var?)" [ e A+ dp,a T (deti)¥2ax
_ AVIV A Y

K=352 p"(M)~*p]. (96) (102
Furthermore x; and p; are the coordinates and the conju- Where in this last equation we used the fact that
gated momenta of thigh solute moleculel/ is the potential |Sinéldgd¢ dys corresponds to the product of the instanta-
energy and * y and 1+ y, are the symmetry coefficients Neous rotation differential angles for the axesi, andis,
per molecule for the solute and solvent molecules necessahich is equivalent to the product of a solid angle differen-
to correct the partition function from the rotations and intra-tial with the differential of a third usual angle, and hence
molecular atomic displacements which correspond to permu-
tations of identical particles which do not change the physi- f |sing|do d¢ diy=8m2. (103
cal state of the systeft:}* For eachith solute molecule we
used the corresponding transformation for the solute moNote that in the special case we deal with a linear molecule
menta given bypi:(AiT)*lpi' (with Jacobean dei(T)*l with two Eulerian angles corresponding to the usual polar
—|sin &]), associated with the transformation of the veatpr ~ coordinates angles, the previous integral reduces 9. 2

from the (n,k,i3) to the (,,i,,i3) basis set defined by Note also that/° is the potential energy function evaluated
_ _ at fixed roto-translational coordinates for the solute mol-
wj1= 6; COSi;+ ¢; Sin6; siny; , (97) ecules where these are homogeneously distributed in the vol-
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umeV of the full system, and/l’ is now evaluated for each (detM'/detC )12
solute molecule at the fixed roto-translational configuration.,x0 x. )= Xin in (X Xir) (106)
. . . . . 18N ~ ~ c AN/
Finally, considering again that/ng is almost zero we have ((detM'/detG, )1/2>C
n
f e ALK dp dx [T (deti))2dx ;, e P(detG, )2
i=1 0 _ Xin Xin
Pe(X7, Xin) = 0 ~ , (107
iy o n Je P (detG, . )V2dx®dx,
= (noS!)n f e Ak (detM ") Y2dp® dx® dxi, |
(104 ((detM’/detG,_ )"
whereu?® is the potential energy of a subsystem defined by a
single solute molecule with fixed roto-translational coordi- :f (detM’/detG, , )¥%p. dxdx;,
nates, in the center of the subsystemfl,is the number of e
solvent molecules in the subsystem given by the closest in- 0 o
teger number tog/n, andk® is the corresponding solvent _ e P (detM ") V2 dx° dxip (108
molecules kinetic energy. The right-hand integral in the last fefﬁuo(deté )2 dx0 dx; '
Xin +Xin n

equation is taken over the volunwén of the subsystem, and
x? andp® are the coordinates and momenta of tResolvent . . . . .
~ where, using the same notation as in the previous section,
molecules of the subsystem. CleaxlyandM’ represent the ~ is the block of th ; fth lut lecul
3N- 6 internal coordinates and the mass tensor of the singl&xn i, 'S the block of the mass tensor of the solute molecule,
solute molecule. Note that the factog/(n°)" is a simple corresponding to the velocities of theN3-6 internal coor-
degeneration factor due to the number of ways we can disdinatesx;,. Note that Eqs(106—-(108 are in agreement
tribute n® out of ny solvent molecules im subsystems. With recent papers on related subjeCts} and that
Hence we can rewrite the whole partition function @s detG,  /detM’ is known as the Fixman determindrt.
=(QoV)"/n! with Q, the partition function of a single sub- From the first theory section we also have that the elements

system given by of éxm,xin are independent of the coordinates, as it follows
0 from Eq. (12) considering that the sixj; which are ex-
Qo= BoJ e—ﬁuo(detm ,)1/21‘[ (deti iO)l/ZdXO dx;,, pressed in terms of the others are linear combinations of the
i=1 other -6 with coordinates independent coefficients; see
(105  also the Appendix. Hence the previous equations can be sim-
with plified to
27k T)3N2(872) 277k T) P12 det’)1/2
0_( ) ( )( ) p(XO!Xin): # (XOIXin)! (109)

= 0 0 . — p
(14 7)(1+ 79" nOt n(0®+3N) (et 12,

M? andD° are the mass tensor of thith solvent molecule

0
and the total number of solvent molecules degrees of free- (X0 X)) = eo - 7 (110
dom in the subsystem. Note that EJ.01) reduces to the fe AU dx% dx;,
usual expression, valid for0 typical small molecules, in the
case (deM’)Y? as well ad1!"_,(detM® 2 are constants over . .
the configurations, and helncle the ilntegral over the momenta ((detM )1/2>°:f (deth )M dx” dxy
in Eq. (93) can be considered independent of the coordinates, 0 ~
although the integrand generally is not. In that case the par- _ Je AU (detM’)V2dx® dx;, 111
tition function can be factorized into two independent inte- B fe—ﬁuo dx® dxi, ' (113

grals: one over the coordinates involving the potential energy
and another over the momenta involving the kinetic

3,15 H i
energy.>** However, in the presence of large and flexible, 18T igeal gas statistical mechanics is simply a special

molecules, especially in ideal gas or infinite dilution condi- 556 of the infinite dilution one. In fact from the previous
tions where large structural fluctuations can occur because (éfquations we have for the ideal gas case

the absence of the intermolecular potential or of the solute-
solute interactions, such a factorization might be not accu-

where detVl’ is a function only of the internal coordinates

rate. Hence, in such cases one should use the completely (deth ")

. ’ . . ; p(Xin) = ——————pc(Xin)» (112
general and always exact expression of the partition function, ( detM /)1/2>C
given by Eq.(101) or (105. Considering that for usual rigid
or semi-rigid solvent molecules like watdi™, (detM%)Y2 oAU
is independent of the coordinates, the probability density for — p (x;,) = 5 ; (113
x® andx;, readily follows from Eq.(105) Je P dxiy
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<(detm,)1/2>c:J (deﬂ,)llzpcdxin A k

_fe*BUO(detIT/I N2y
fe P dx,,

: (114

where, obviouslyu® now reduces to the intramolecular po-
tential.

It is easy to show thap. is exactly the configurational i3
probability density for a system with a single solute mol-
ecule,n® solvent molecules and volumé&n in the presence
of holonomic constraints for the solute roto-translational de-
grees of freedom expressed by the center of mass coordinate ,
and Eulerian angles or equivalently, choosi@g iy, is, i3 !
coinciding withG, i, j, k, by the center of mass coordinates
and the three generalized coordinatgs gs, ge given by
Egs.(23)—(25). In fact, setting

i

g:

0
X
Xin) FIG. 2. Structures of the 4-aminopyridine derivative molecule obtained
from molecular dynamics simulation with the roto-translational constraints
and B as the solute roto-translational coordinates, from Eqs@pplied. The fixed frameQ,i,j,k) and the local frame &,iy,i,is) are

. . shown. The light gray structure is the reference conformation, and the dark
(90)7(92) _We have thgt. In Suc_h a constrained system tht:structure is taken after several thousand simulation steps.
configurational probability density is

~ 0
e‘ﬁuo(detGXm,Xm)l’ZHi”:l(detM?)1’2 interpreted as the effect due to the centrifugal forces result-
p(X0,Xin) = a0, P 012 40 ing in the coupling of the rotational and internal motions.
Je P (detG, ) VAL (detM?)V2dx® dx;, In the Appendix a direct way to obtain the mass tensor

—pu° M’, and a simple example for a biatomic molecule where a
= eo— (115  fully analytical derivation is possible are shown.

fe A dx0 dxi,
or in the ideal gas case, whege-x;, Ill. MOLECULAR DYNAMICS RESULTS

In this section we show the results obtained applying the

e*B‘JO(detéXin ,xin)l’2 e~ Au° roto-translational constraints in MD simulations performed
p(Xin) = —— o~ e e Al (116  with microcanonical and canonical ensemle dynamics. The
fe P (detG, ) Y2dx, Je P dxi algorithm has been implemented by us in thROMACS

) 0 ] simulation packagé! and an aromatic 4-aminopyridine de-
In Eq. (115 the potential energy” is evaluated at aglxed rivative molecule in vacuum was used as a test system. Mo-
solute roto-translational configuration, and in EfL6) U™ i |ecylar geometry was optimized at SCF level with the Dun-
clearly independent of the roto-translational coordinatesning Huzinaga (D95) double zeta basis set, using the

Note thatG, is identical using either the Eulerian angles gaussiangs package?? The arbitrary reference configuration

or g4, gs, ge to express the rotational degrees of freedom,used to define the rotational degrees of freedom, and hence
but the full mass tensors and the Fixman determinants ar® constrain the molecule during the simulations, was an en-
different® This means that the statistical mechanical equivaergy minimized structure, as this provides a more stable con-
lence between the Eulerian angles and gs, gg is valid  strained dynamics. All the simulations started from such an
only in the case the system is fully constrained and hence thenergy minimized structure, and an initial run was used to
partition function is evaluated constraining the roto-thermally equilibrate the system. The simulations used to
translational coordinates as well as their conjugated moeollect the dataproductive simulationswere started from
menta; see Eqg90)—(92).2° From Eqgs.(106—(116) it fol-  the final structures of the equilibration runs, using initial ve-
lows that a simulation with a canonical ensemble dynamicdocities obtained from Maxwellian distributions at the de-
(e.g., the isothermal Gaussian dynamiids the presence of sired temperatures. Note that for the simulations with the
(idea) holonomic constraints for the center of mass coordi-roto-translational constraints the final structures of the equili-
nates and the Eulerian angles, can be used not only to obtabration runs needed to be stored at high precigieight

the exact statistical mechanics of the constrained sysasm floating digits were enougtio start the productive runs. This
shown in the previous sectipbut also, if required, the exact is due to the fact that the constrained runs must always start
statistical mechanics of the unconstrained system using fiom a constrained structure, and an initial constrained struc-
correction involving the mass tensor determin@nass ten-  ture stored with low precision is equivalent to a slightly un-
sor correction that can be evaluated from the constrainedconstrained configuration. Note also that especially at low
simulation. Such a mass tensor correction can be physicalemperature, it is important to start the productive simulation
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TABLE |. Average energies and corresponding instantaneous energy standard deviations, obtained from the
microcanonical simulations.

Constraints Potential energy Kinetic energy Total energy
aver. aver. aver.
rototr. bonds (kJ/mo) st. dev. (kJ/mol) st. dev. (kJ/mo) st. dev.
Yes Yes —401.5 4.34 22.3 4.34 —379.18 5.274% 104
No Yes —401.4 4.83 22.3 4.83 —379.13 415481074
Yes No —401.4 4.28 24.4 4.28 —377.67 51216104
No No —402.0 4.04 24.4 4.04 —377.62 6.882810 4

after equilibration, providing a new set of initial velocities deviations for the corresponding instantaneous energies, ob-
from a Maxwellian distribution. In this way we ensure for tained from the four simulations. The table clearly shows
the productive run a correct velocities distribution whichthat the application of the translational and rotational con-
could have been altered during the equilibration run. Finallystraints during the simulation does not perturb the numerical
to obtain very accurate and “exact” simulation data we al-accuracy of the trajectories. As expected the dynamics in the
ways used a short time step in the range 0.15-0.20 fs. Howpresence of the roto-translational constraints is conservative
ever, the algorithm described is numerically stable also witton the constraint surface, showing that the algorithm is nu-
more usual time steps in the range 0.5-2.0(data not merically stable, even in the case in which teAKE con-
shown. straints are also applied. Note that for an isolated molecule
the translational constraints should not alter the trajectory
with respect to a usual one where the velocity of the center of

Four simulations were carried out with the microcanoni-mass has been initially set to zero. Hence in this case the use
cal ensemble(NVE) dynamics: two simulations with the of the translational constraints can be useful only to remove
roto-translational constraints, with and without tRBAKE  possible numerical errors. On the contrary the rotational con-
algorithm!® and for comparison two usual simulations, with straints really change the dynamics of the system confining
no roto-translational constraints also with and without thethe molecular motions in a configurational subspace, the ro-
SHAKE algorithm. ThesHAKE algorithm tolerance was cho- tational constraint surface. Note also that with our definition
sen equal to 10°, the time step was 0.15 fs for all the of the rotational degrees of freedom, via E2), the angular
simulations, and an “infinite” cutoff radius was used in or- momentum is not conserved during the constrained simula-
der to guarantee that each atom could interact with any otheafon but fluctuates around zefsee Fig. 3.
in the molecule.

For each simulation, after equilibration, 20000 steps . . .
were used to collect the data. In Fig. 2 we show the IocaP' Canonical simulations
molecular frame G,i,,i»,i3) and the fixed frame@,i,j,k), Three simulations were carried out with the canonical
together with the reference structure and one structure takeensemble(NVT) dynamics using the isothermal Gaussian
after several thousand steps of simulation with the rototemperature coupling® at 5300 and 700 K. In the three
translational constraints applied. In Table | we report thesimulations nosHAKE algorithm was applied, the time step
average total, potential and kinetic energy, with the standardvas 0.2 fs and an “infinite” cutoff radius was used in order

A. Microcanonical simulations

0.0010 T

0.0005

FIG. 3. Total angular momentum of the 4-amino-
pyridine derivative molecule versus the number of
steps, as obtained from the microcanonical simulation
with no sHAke algorithm and roto-translational con-
straints applied. Solid ling; component; dashed line:
i, component; dotted linds component.

0.0000

angular momentum (kJ ps/mol )

-0.0005

-0.0010
0 5000 10000 15000 20000

number of steps
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TABLE Il. Average potential energies and corresponding isochoric heat capacities, together with their root
mean square deviations, obtained from the canonical constrained dynamics. In the table we also show the
differences between these average potential energies or heat capacities and the mass tensor corrected values.

u’ , Cl oo
Temp. W' oy AU v I AC)
K kJ/mol kJ/mol J(mol K) Jl(mol K)
5 —424.870 0.002 3R10°° 181.8 3.2 2.x10°3
300 —3745 0.10 3.310°? 167.6 2.4 —2.66x10°*
700 —309.1 0.25 2.610°1 169.7 2.7 9.%10°?!

to guarantee that each atom could interact with any other ipossible to obtain the exact statistical mechanics of the un-
the molecule. At each temperature after equilibration weconstrained systems in the ideal gas or infinite dilution con-
used 5.0 million steps to collect the data, as we wanted tditions, via a simple correctiofmass tensor correctipn

obtain well equilibrated properties. In Table Il we show thewhich provides the effect of the possible coupling between
values of the average potential energy with the correspondhe rotational and internal degrees of freedom. As mentioned
ing isochoric heat capacity, obtained directly from the con-in Sec. | the use of the roto-translational constraints, al-
strained simulations, together with the estimates of the corthough statistically mechanically consistent, alters the dy-
responding root mean square deviatiang, and oc, In namics in the simulation as the equations of motion are

the table we also show the differences between these averagt€arly not identical for the constrained and unconstrained
potential energies or heat capacities and the values obtaindystems. This means that the described constrained dynamics
using the mass tensor correction described in Sec. Il D. Frofi*ethod provides “exact” results as far as the statistical me-
Table Il it is evident that the mass tensor correction alters th€hanics is concerned, but not necessarily for the dynamics.
values of the average energies within their err@tsfts al- However, it is likely that such differences mostly concern the
ways within a couple oé ) and hence such a correction is dynamical details of the simulation and are not very relevant
not relevant. The same is true for the heat capacity calculatel@r the kinetics(average dynami¢of the system. The appli-

at each temperature via the second potential energy centrg@tion of this method to a molecular system, a large organic

moment molecule in vacuum, showed that it is possible to implement
) in usual MD codes a numerically stable algorithm and that,
cr——2 at least for the molecule used, the mass tensor correction is
VokT? negligible even at high temperature. This procedure is ex-

P 12 pected to be very useful for theoretical studies based on MD
Mo=(U =), simulations, for the development of mean field approach, and

wherel/' is the potential energy of the system. From theto reduce significantly the size of the simulation box in case

table it is also clear that the effect of the mass tensor corre®f large nonspherical solutes, like proteins surrounded by

tion is extremely small except at high temperat(f60 K) ~ water molecules.

where it becomes larger, although still not relevant. It should

be noted that at 5 K, where the harmonic behavior is ex-

pected, the heat capacity for the potential energy matched@CKNOWLEDGMENTS
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erly reproduce the second momemt of the energy.

APPENDIX
IV. CONCLUSIONS

. . _ . In this Appendix we show how the mass tensor, and
In this paper we introduced a new constrained dynam|c§1en PP

method to stop the roto-translational motions of a molecular omﬁﬁg;tirgfrtle;ml?;}zztg?; \?v?tr? bttﬁén?gtg?{rziggggsgﬁléﬁ[on
system during MD simulations. Using the standard analyticaF ) ) o o~ )

mechanical definition of the roto-translational degrees oftraints applied. Defining with" the diagonal mass tensor
freedom, which is very suited for theoretical studies and al0rresponding to the momenta or velocities of the particles
ternative to the usual least square fitting one, we derived afPordinates in (O, i, j, k) (see Sec. Il Awe have that the
exact algorithm for fixing the molecular frame without alter- Mass tensor expressed for themomenta orx’ velocities,

ing the statistical mechanical consistency of the simulationused in Sec. 11D, is’ =B'I'B whereB is the transforma-
We also showed that from such constrained simulations it ision matrix defined by=§>'<’. Using Eqgs(20)—(25) we can
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express six coordinateg in (G, iq, iy, ig) as linear combi- x{1=(z1 Y3 Z3 X4 Y4 Za ' XN YN ZN):
nations of the internal coordinatesg,, corresponding to the

left 3BN—6 coordinates, from T
Xg=(X1 Y1 X2 Y2 Zp X3),

Wixg=ZXin, (A1)
where from Secs. Il A and 11 B we have and
|
m; 0 m, 0 0 ms
0 m; 0 m, 0 0
_ 0 0 0 0 m, 0
W= 0 miZ; 0 m,Z, myY, 0 ’
myZ, 0 m,Z, 0 —myX, M3Zj
-mYy mX;  —myY, myX, 0 —m3Y3
0 0 0 -m, 0 0 - —-my 0 0
0 —m;y 0 0 —my 0 e 0 —my 0
_ -m; 0 —my 0 0 -my - 0 0 —my
a —mYy m3Z;  —m3Ys 0 MyZy, —MyYy - 0 myZy — MYy
mq X, 0 MsX3  —MyZ, 0 myX, -+ —myZy 0 MnZy
0 —mzX3 0 myY, —myuX, 0 ooomyYy o —myYy 0

Now expressing in E(5) x4 in terms ofx;, via Eq.(Al) and considering that for a system with roto-translational constraints
we can always assume, as in Sec. Il B without loss of genefdlihat (G, i, i,, i3) coincide with G, i, j, k), we can obtain

the matrixB as

100 O zz; —y1 Ci1 Cip Cis Ciy Cis Cie -0 Ciam-s Cian-7 Cian-s

010 -z O X1 Ca1 Coo Coz Coy Cos Coe = Com-s Com-7 Coav-6

0 01 vy, —-x 0 1 0 0 0 0 0o - 0 0 0

100 O z; Yz Cgz1 Czp C33 C34 C35 C36 '+ Caan-s Camn-7 Cam-s

010 -z O X2 Ca1 Cuz Cusz Cus Cus Cup -+ Cum-s Cam-7 Camn-s

0 01 vy, —x2 0 GCs3 GCs2 Cs53 Cs4 Cs5 Cs6 * Csamn-8 Csn-7 Csan-s

100 O zz  —Y¥s Ce1 Ce2 Cos Coea Cos Ces *° Coeam-s Ceav-7 Coam-6
~ 0 1 0 -z O X3 0 1 0 0 0 0 0 0 0
5= 0 01 y; -—x3 O 0 0 1 0 0 0 0 0 0 ’

1 00 O zz —Yys O 0 0 1 0 0 0 0 0

010 -z O X4 0 0 0 0 1 0 0 0 0

0 01 vy, —x O 0 0 0 0 0 1 0 0 0

1 00 O zy -yn O 0 0 0 0 0 1 0 0

0 1 -zy O XN 0 1

0 1 yv —xy O 0 0 0 0 0 0 - 0 0 1
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where the matriXC is defined byC=W~1Z. Hence the mass ©Only in the case in which the internal coordinate has very

tensor elements are readily obtained from limited fluctuations with respect to its average valas it
) e happens in usual small molecules but not necessarily in large
Mi;j=m 1y, (A2)  and flexible onesdoes the correction become irrelevant, as

wherez, and#, are, respectively, thith andjth columns of the mass tensor determinant can be considered a constant.

the B matrix. Equation(A2) was used to construct the mass

-~ 12 . . .
tensorM from which we could calculate its de'.[e_rr.nmant. LA, D. Mc Lachlan, J. Mol. Biol.49, 128 (1979.
As a simple example we can use the definition of the 2G. Gallavotti, The Elements of Mechani¢Springer-Verlag, New York,

matrix B to obtain the mass tensor of a biatomic molecule ,1983.

S . . . _°L.D. Landau and E. M. LifshitzCourse of Theoretical Physics, Val3rd
with identical masses. If we choose to align the molecule in ed. (Pergamon, New York, 1980

the reference structure along the zed directidg), (with “D. J. Evans and G. P. Morris, Comput. Phys. RE[297 (1984.
hence zeroak andy coordinates in G, iy, iy, i3) for both °D. Brown and J. H. R. Clarke, Mol. Phy§1, 1243-12521984).

. 6 4
atoms, we have,= —z;. Moreover the sixth column of the _S: Nose Mol. Phys.52, 255(1984.
W. G. Hoover, Phys. Rev. 81, 1695(1985.

B matrix, corresponding tag, involves only zero elements  sc. Eckart, Phys. Re47, 552 (1935.
and hence can be removed. It is also clearxhaty,, X,, Yy, °Note that forN particles confined in a line, once the center of mass

are independent of, being fixed at zero. ThiB‘ matrix then defined in the line by one coordinate is set in the origin, there are only
P 1 9 N—1 independent coordinates left among thid-35 possible internal

reduces to coordinates. In the case bf particles confined in a plane, once the center

1 0 O 0 z 0 of mass defined in the plane by two coordinates is set in the origin and the
rotational angle in the plane is defined, there are oy-2—1 indepen-

01 0 -z O 0 dent coordinates left among theN3-6 possible internal coordinates. In

0 0 1 0 0 1 the paper, according to the standard analytical mechanical definition, for

E: internal coordinates we mean only the independent ones.

1 0 O 0 -z; O 103, P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. PBys.
327-341(1977).

01 0 z 0 0 1T Mulders and W. Swegat, Mol. Phy84, 395-399(1998.

00 1 0 0o -1 2Note that when the total linear momentum is fixed at zero during the

dynamics and no explicit constraints for this are used, such a condition
=~ implies the presence of three implicit holonomic constraints for the center

and from Eq.(A2) the mass tensdvl’ is of mass position. These implicit constraints can be used for the definition

of the £ coordinates and hence in tie & phase space no constants of

2m 0 0 0 0 0 motion due to the center of mass constraints are present. The case where
0 2m 0 0 0 0 the total linear momentum is a nonzero constant can be reduced to the
previous one using in the definition of the full phase-space Cartesian co-
Vi 0 0 2m 0 0 0 ordinates relative to the center of mass position and their conjugated
= ) momenta.
0 0 0 2mz§ 0 0 BL. D. Landau and E. M. LifshitzCourse of Theoretical Physics, Vol, 5
0 0 0 0 2mz§ 0 3rd ed.(Pergamon, New York, 1980
A, Amadei, M. E. F. Apol, and H. J. C. Berendsen, J. Chem. Phg8,
0 0 0 0 0 an 3004-3016(1998.

) ) . ) 15A. Amadei, M. E. F. Apol, and H. J. C. Berendsen, J. Chem. Phgs,
wherem is the atomic mass. Note that for a biatomic mol- 1893-19121997.

~ 16 )
eculeG reduces to the elemeM ’ .=2m, as in a bi- W. K. den Otter and W. J. Briels, J. Chem. Ph{89, 4139-41461998.

" Xin Xin s 66 ) M. Fixman, Proc. Natl. Acad. Sci. USB9, 1527(1974.
atomic molecule there is only one internal coordinatg) ( 8The mass tensdvl’ is independent of the center of mass coordinates and

As previously mentione(fgx_ «_ involves only coordinate for any rigid body rotation of the molecule given by the Eulerian angles
n’

. neon . . that define the rotation ofQ,i, ,i,,iz) with respect to G,i,j,k), the de-
Indep?ndent (_aleme_nts and indeed thLS is what we obtain for,, ..o o is invariant, This clearly means that dét is a function
the simple biatomic molecule Wher@Xin’Xin=Mé’6=2m. only of the internal coordinates, .
v . . 19 H f .
From M’ follows the kinetic energy and the mass tensor Using the c.oordlnateg‘;,g.s,g6 the full mass tensor determinant and
rrection hence the Fixman determinant are pure constants.
correclio 2Note that although the coordinates ,gs,gs constrain completely the

three Eulerian angles when fixed at zero, they cannot properly describe
rotational motions as for their nonzero values rigid body rotations and
~ 12 ~3..3.2 internal deformations are mixed.

(detM’)"*=2°m Z;. 2David van der Spoel, Herman J. C. Berendsen, Aldert R. van Buuren,

. . Emile Apol, Pieter J. Meulenhoff, Alfons L. T. M. Sijbers, and Rudi van
The same results can be also obtained dlreCtly from EqS'Drunen,Gromacs User ManualNijenborgh 4, 9747 AG Groningen, The

(8)—(15). Note that as expected the mass tensor correction iSNetherlands. Internet: http:/rugmd0.chem.rug-gx (1995.
not a constant but depends on the internal coordi@ate  ?2M. J. Frischet al, caussian 94 (Gaussian, Inc., Pittsburgh, PA, 1994

K=mrg-rg+mz(wi+ w3)+mz,
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