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In this article, the quasi-Gaussian entropy theory is derived for pure quantum systems, along the
same lines as previously done for semiclassical systems. The crucial element for the evaluation of
the Helmholtz free energy and its temperature dependence is the moment generating function of the
discrete probability distribution of the quantum mechanical energy. This complicated moment
generating function is modeled via two distributions: the discrete distribution of the energy-level
order index and the continuous distribution of the energy gap. For both distributions the
corresponding physical-mathematical restrictions and possible systematic generation are discussed.
The classical limit of the present derivation is mentioned in connection with the previous
semiclassical derivation of the quasi-Gaussian entropy theory. Several simple statistical states are
derived, and it is shown that among them are the familiar Einstein model and the one-, two-, and
three-dimensional Debye models. The various statistical states are applied to ecglenjna, and
graphite. One of these states, the beta-diverging negative binomial state, is able to provide an
accurate description of the heat capacity of both isotropic crystals, like copper, and anisotropic ones,
like graphite, comparable to the general Tarasov equation19@9 American Institute of Physics.
[S0021-96069)51633-4

I. INTRODUCTION on a quantum harmonic oscillator Hamiltonian.
In this paper we will set up a “macroscopic” statistical
At the end of the last and the beginning of this century,mechanical theory to describe the thermodynamics of quan-
the fundamentals of classical physics were severely attackegl;m mechanical systems, solids in particular, based on a few
when more and more experimental evidence pointed to th?imple physical principles. Without relying on a specific
fact that the energy of a system apparently could not jusfyamiltonian, we simply use the fact that the energy can as-
assume any value in a continuous way. Instead, the energy, s only discrete values. Combining this with the general
seemed to be discretized, showing specific energy gaps. - yefinition of the canonical partition function and the Helm-

This was most a_p_paren_t fr_om gpect_roscopm data, Wh'C oltz free energy, we develop a theory which employs the
clearly showed specific emission lines instead of a Cont'nubroperties of the underlying energy distribution function to
ous spectrum. Also, the heat capacity of solids at low tem-

. L - model the thermodynamics. Along the same lines we
perature clearly deviated from the “classical” Dulong and reviously1° set up such a theory, the quasi-Gaussian en-
Petit value! which follows from the equipartition principle P P Y, q

of a set of classical harmonic oscillators. tropy theory, for semiclassical systems. In that case we
Einstei? was actually the first one to recognize that showed that for fluid systems already a simple continuous

Planck’s revolutionary idea of quantized energy could veryTode! distribution(e.g., a Gamma distributioris able to
well explain the strange thermodynamic behavior of solids afl€scribe accurately the thermodynamics of polar and apolar
relatively low temperature. A few years later, Debgagnifi- ~ molecules like watér'!and the Lennard-Jones fldfd® over
cantly refined Einstein's ideas, and up to now the Debye large temperature range.
theory is still a successful theory to describe the thermody- The paper is organized as follows. In Sec. Il we derive
namics of(simple isotropic solids. Extensions of the Debye how the Helmholtz free energy can be expressed in terms of
approach to anisotropic and more complicated molecular othe distribution functions of the order indé»f the energy
polymer crystals are, e.g., the Tarasov equatidiote that  levels and the energy gape. In Sec. Ill we describe pos-
the Einstein and Debye models and extensions are all baseible models for these distributions and their physical—
mathematical restrictions. In Sec. IV we present some statis-
dauthor to whom correspondence should be addressed; electronic mair.jcal states, i.e., the thermOdynamiCS of various combinations
amadei@seurat.chem.uniromal.it of distribution functions of andAe. These statistical states
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will be applied to copperg-alumina, and graphite in Sec. V. systems.® Clearly, the energy, is the sum of the energies

Conclusions are given in Sec. VI. g, of the elementary systems. The distributipg(e,) is
therefore theN.-fold convolution of the “elementary distri-

Il. GENERAL FRAMEWORK bution” po(e1), and henctf

0,_ 10/ _ Ne
The Helmholtz free energy in the canonical ensemble is GEL( AB) [g€|( AR @)
A=—KkTInQ, (1) whereggl(t) is the MGF ofpg(g,). From the central limit

. , . . theorem’® po(e,) must be a unimodal distribution.
where the quantum mechanical canonical partition function ) . 3 .
is given by+15 In contrast to the semiclassical casehere the instan-
taneous energy/ is a continuous variable, for quantum sys-
temse, ande, are in principle discrete variables. However
- ~Ben— —Be ; L : : o S
Q ; e ; e O (ey). 2) since the energy levels are in general not equidistant, it is not

_ i ) ) _ appropriate to modgdy(e,) merely by a simple “lattice dis-
In this expressiong,, are the energies of the different physi- tribution,” which is defined on equally spaced interviis.

cal states of the system, asd is theLth energy level, or-  \ye assume that the overall distributig(e,) is “quasi-
dering the possible energies of the system in increasing magsssian,” implying that the elementary distribution can be
nitude from the ground state, wherés the order index, and  qqeled by analytical, relatively simplenimoda) curves.
Q(e,) is the corresponding degeneracy factor. As usfial, pence, we will make the following two very reasonable as-
=1/KT with k the Boltzmann constant. sumptions.

The excess free energy with respect to a system at “tem- (1) We assume that the MG (— A B) in Eq. (7) can
8| *

” 7.
perature” By can be expressed ds in turn be factorized intd\g “subelementary” MGFs. This
A(BA)=BA—BoAg means that the energy per elementary system can be written
S e FQ(s,) as a sum of energies; of the subelementary distributions.
% Each of these subelementary MGFs is characterized by some
z.e Qe specific fixed energy gape; (i=1---Ng). Hence we can
S e Mg BorL()(g)) write the energy, as

=—In

=—In — =—In(e"APeL
2Le Fo I'S)(gL) < >B0 8|i:80,i+A8i'|i |i:0,1,..., (8)
©) with g, the temperature-independent ground-state enérgy,
S e PeQ(e)) Age the level order index, ande; the energy gap of théh
—In =In(e**)s, (4 subelementary distribution. Therefore we have

s etPerePeLO) (g )

whereAB=B— B, and(---) and(:--) 5 are canonical en-
semble averages in th@ and 8, ensemble. Note that

o5, (—ap)=11 G, (-2p)

- el — - el — _ NS
<e AB >ﬂo_§L: € AB pO(SL)_GgL( AB): (5) :efA,Bsoi];[l @ﬂ(‘AﬁASi)a (9)

<eABEL>B:2 ebPeip(e )=G, (AB) (6) whereso=2iwjlsoj . Note that sincé\ ¢, is constant for each
L - i, it now appears inside the argument of the subelementary
are the moment generating functiéfig® (MGF) of the dis- MGF GP(t), as for any constants; and ¢, we have’
crete probability distribution functiongy(e.) andp(e,) of Gcﬁczx(t)=(et(cl*czx))zetchX(tcz). Using Egs.(3), (5),
the energye . Here, the zero subscript gmy(e.) and su-  (7), and(9), the free energy difference is therefore
perscript onGg (—ApB) denote that the distribution and 0
L ' A(BA)=—NgIng, (—AB)
MGF are evaluated at fixed temperatgg. I
In general, the moment generating function of a discrete N

probability distribution p(x) is defined as G,(t) =NegoAB—No>, Ing2(—ABAs;). (10
=3,e™ip(x;)=(e™), and for a continuous probability dis- =1 '
tribution p(x) asGy(t) = e*p(x)dx=(e™). It corresponds Note that Eq.(9) corresponds to a special “clustering”

to the Laplace transform of the distribution. For reasons thapf the physical states of the elementary system, such that the
will become clear later on, instead of H¢) we prefer to use  partition function can be factorized in an inhomogeneous
Eq. (3). From this equation it follows that the free energy way. Such a factorization cannot be exact, as in the “infi-
difference is defined once the distribution of the energy ahite” temperature limit any partition function can, if pos-
one temperaturg, is known. The key point is therefore the sjple, only be homogeneously factorizébote that a homo-

evaluation of the corresponding MGESL(—AB)- geneous factorization of the elementary system should lead
As the system is a macroscopic thermodynamic systentp a new definition of the elementary systemt.is therefore
it may be decomposed into a very large numblg)(of  likely that this first assumption is reasonable for solid sys-

identical and statistically independent “elementarytems.
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(2) We furthermore assume that the distribution of the
order indexl; is the same for eachand hence independent U(T):EO_NJ =
; 0dp

of the value ofAe;. For an elementary system which con-

oo

tains still an “infinite” number of molecules, we can safely *
say that the value of the energy gap varies in an almost XIn Z e 2% Ipy(l) ( p(Ae)dAe, 13
continuous way. We can therefore rewrite the sum in Eq. =0
(10) also in terms of thécontinuou$ probability density of (Ug—Eo)
the energy gap(Ae), S(T)=S,— %
0
A(BA) +Nkj0 |n[|§o e‘ABAs"pO(I)]p(As)dAs
=Nge oA B— NN f In{gP(—ABAe)}p(As)dAe N (= 9 *
TR R T ——f —In{ X e 2= py() f p(Ae)dAe,
B TJodB |0
=E0AB—Nf |n[2 eAﬁAE"pc)(I)’p(As)dAs, (14
0 =) . 2
(11 Cy(T)=Nkp? f Y
0
where we definedy=N.eq andN=NgNj. xln{ > eAﬁAa-lpO“)]p(Ag)dAS, (15)
=)

We see that the free energy difference for quantum me-
chanical systems can be described by two distribution fU“C\'/vhereUO and$S, are the values of the energy and entropy at
tions: one being the discrete probability distributiog(1) of  he reference temperatuiig = 1/k 3.
the order index of the subelementary energy levels, and the T4 gptain the numerical values of the paramefers,),
other being the continuous probability density functigie) {bi o}, {c}, Eo, and N, we can use the “method of
of the energy gap\e within each elementary system. moments ,*%i.e., equating the first few theoretical moments
~ The free energy difference is therefore completely der cumulants op,(e, ) [expressed in terms of the parameters
fined by thetypeof distributionspo(l) andp(As), and by the o b (1) and p(Ae)] and the corresponding sample moments
valuesof Eo, N, and the paramete{s; o}, {b o} that specify o cumulants of the energy (which, via statistical mechan-

Po(l) and{c;} that specifyp(Ae). _ _ ics, are given by thermodynamic quantities like average en-
Using the same notation as for the semiclassical %aseergy, heat capacity eic.
the parameterga; o} and{b; o} of the distributionpy(l) are For a distribution with MGFG,(t), the cumulantsc,[x]

evaluated a3, (indicated by the zero subscripand hence ¢ grder n are defined 4€-18 Kko[X]= (0" In G (O)/A"),—o.

are temperature independent. Equatié@sand (11) there-  grom Eq.(3) we see that=—Ag, sot=0 actually corre-
fore directly yield the full temperature dependence of thesponds tg8= S,. To obtainr independent equations to solve
excess free energy and derived thermodynamic functiongpne unknown parameters, we have to take derivatives up to

We could, on the other hand, make a similar derivation startihe rth order on both the left- and right-hand side of Exf),
ing from Eq.(4). In that case we would need the distribution which slightly rewritten reads

p(l), the parameters of which are temperature dependent.
The corresponding free energy expression is thus both ex- —A(BA)=In GSL(t)
plicitly and implicitly temperature dependent. To get the full

explicit temperature dependence, we should first formulate [ ” Al _
and solve an ordinary differential equation@y andT, the =E0t—I\fo In ,2«0 e po(l3{a o {bi o)
thermodynamic master equati6RME),>®* providing in the
end the same solution as E¢3) and(11), where the TME is Xp(Ae;{c;})dAeg, (16)
implicitly solved. For convenience we therefore used j. . . .
instead of Eq/(4). yielding the following set of equations:
From Eg.(11) it follows that the free energy, energy, o
entropy, and heat capacity are given by Kiexd €L)= EOH\’JO k[11(Ae,{a of {bi o})

. XAep(Ag;{c;})dAe, (17
A(T)=Eo— TS+ (Ug—E )(—) .
° T kaod o] =N [ dl1(8e. {2, g 1)

—NKTL '”LEO eABAS"Po(l)]P(As)dAS, X As2p(As:{c;h)dAs, (18)

12
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noe1=N | ka1 1(8e. (210, (b1 )

X Ae"p(Ae;{c;})dAs,
(19

where the samplé“experimental”) cumulants are given
by5'7’14'15

n=2,.r,

Kl,ex[{SL]: Uo, (20)
kzexe1]= (KTo)[ ToCvol, (21)
aC
KaexfeL]= (kTo)Z[Tg 7 +2TCuo. (22
I"BA
Kn,ex[[8 ]:(_1)n+1<_n) , h=1,.r. (23
L 0B 5o

In these equationd)y, Cyyq, etc., are the values of the en-

ergy, heat capacity, etc., at the reference temperafygre
=1kpBo, andk,[1]1(Ae,{a; o}, {bj of) are the theoretical cu-
mulants ofpg(l), expressed in terms of the parameters.

Apol et al.

1 1
. — a—1
p(Ag;a,b,Aep,) B(a.b) _b_AsfnJr —Ae

X (Ag,—Ae)P 1,

Ae >0, a>0, b>0, (25

where OsAe<Ag, and B(a,b)=I'(a)l'(b)/T'(a+b) is
the Euler beta function andf(a) the Gamma functiof®
Note that fora integer,I'(a)=(a—1)!. Equation(25) rep-
resents a distribution with a very flexible shape; for example,
with b=1 we obtain the power functioff,

a Ag? 1t

a>0.
Aed

p(Ag;a,Aey)= Ag >0, (26)

Note that fora=3 we obtain a parabola and fa=1 the
uniform distribution.

Finally, a simple and often used distribution with no
finite upper limit for Ae is the gamma distributiotf;?

a

a—1,—7Ae
(@) Ae? e ,

p(Ag;a,7)= a>0, >0, (27

Note that in the classical limit all energy gaps will tend whereAe=0.

to zero; hencep(Ae) will tend to a Dirac delta function
&Ae), and the distributiorpy(l) transforms into a continu-

Note that for each distribution we can define a corre-
sponding characteristic temperatysz=e also Sec. IV For

ous probability density(u) for the semiclassical continuous the Dirac delta function we defin@®g=Aeg/k, for the

energyu of an elementary system.

I1l. MODEL DISTRIBUTIONS
A. Model distributions for  p(Ae)

power function with parameteat we define®@p,=Ag, /K,

for the beta distribution with parameteasandb we define
Og,p=Aen/k, and, finally, for the gamma distribution with
parametera we define®,=1/(k7). By equating the aver-
age energy gapAe) for the various distribution§*?° we
obtain approximate relationships between the different char-

We can make the following assumptions for the model@Cteristic temperatures,

distribution of the energy gap(Ae).

First, as already mentioned, the variallle is approxi-
mately continuous; henge(Ae) is a continuous distribution
function. Second, the domain Ak with nonzero probability
is in general finite. However, the upper lindite ,, may be so

large that we can approximate the distribution by one which
is analytically defined up to infinity. In that case we should

of course have lig,_,..p(Ag)=0.
The restrictions on the possible distributiop@e) are

therefore(1) the distribution should be defined for values of

Ae=0, (2) the upper limit may be finite X¢,,) or infinite,
and(3) for the free energy to converge @0, the integral

a

Oe~ a+1l

Opa Ogap~a0r,. (28)

%a+b

B. Model distributions for  py(/)

For the model distributionpg(l) we can formulate sev-
eral physical-mathematical restrictions.

First, for physical reasons, the domainlois 0,1,2,....
Second, we see from E¢B) that the MGFGSL(—A,B) di-

verges forB—0. Hence, to guarantee for any finite upper
limit of Ae the correct behavior oGSL(—A,B), from Eq.

5 In{g%(— ABAe) p(Ae)dAe should converge for a specific (11) it follows that also the MGRP(t) =87(— A BAe) must
choice of the distributionpy(l) and corresponding MGF diverge for B—0, i.e., for some specific finite value af
Ej,o(t). In principle, we can use any system or family of dis- —tq=BoAe. Hence the MGF of any appropriate model dis-

tributions, for example, the Pearson systent! to obtain
model curves with a sufficiently flexible shape.

The simplest possible distribution is the Dirac delta

function,

p(Ae;Aeg)=6(Ae—Aeg), Agg=0, (24

tribution must be finite fot<ty and diverge at some finite
value oft, i.e., atty.

One of the possible and very convenient families or sys-
tems of discrete distributions, the generalized hypergeomet-
ric probability (GHP) family, is a generalization of a discrete
version of the Pearson systéftset up by Katz?®and Ord*®

where it is assumed that there is only one unique energy gaphe Katz system, the simplest discrete analog of the Pearson

ASE.

system, was generalized by Kemp to the family of GHP

One of the possible more complex curves with a fixeddistributions!’?"?8 The corresponding difference equation

upper limit is the beta distributiotf,?2

for po(l) is
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Po(l+1)—po(l) IV. STATISTICAL STATES

Po(l) Since for solid systems the most interesting thermody-
(agot D) -+(ap ot A= (bygt ) +(bgot)(1+1) nqmic proper.ty is the heat capacity, we will on!y give ex-
= (Dot 1) (Dot N1+ , pI|C|t expressions fOIC_V(T). OFher thermodynamic proper-
10 a.0 ties can be easily derived, using E¢52)—(14).
(29 For the assessment and parametrization of the various
model distributions and corresponding statistical states, we
will use the following experimental facts.

with MGF

(1) Atlow temperature, for isotropic crystals the heat capac-
ity increases dS?° Cy(T)~Cg eyl 3. However, for an-
isotropic crystals the heat capacity may increase over a

_ pFola0--8p0;D10,--. DgoiNE']

=0
( qu[alyo,...,ap’o;blyo,...,bqyo;)\] ’

(30

whereA>0; jFqlas0,-.-,8p0:010.:---0q,0:X] is the gener-
alized hypergeometric functior;**with {a; o} and{b; o} the
parameters of the distributioi=1,...p, j=1,...q). For a
given orderp andq the distribution follows from solving Eq.

considerable temperature range in a different way. In the
case of layer lattices like graphit€gallium, and black
phosphorug? it is found thatCy/(T) ~ C, e,T>. For solids
which are supposed to consist of polymeric chains, like

(29 or inverting the MGF, Eq.(30). From the second
physical-mathematical restrictiofthe divergence of the
MGF), combined with general properties of the generalized
hypergeometric functions, we obtain that for any acceptable
distribution within the GHP family, the ordens and g in
Egs.(29) and (30) must be given by

selenium and telluriur®® the heat capacity increases as
Cu(T)~cyexpl- In general, we can say that the heat ca-
pacity at low temperature for different crystal classes
behaves a€\(T)~Cg el ° i.€., aT>law, withs=1, 2,
or 3. Note, however, that very close to zero Kelvin, the
heat capacity even of very anisotropic crystals will be-
p=q+1, (31) have Iike_T?’, although over a very small temperature
range(typically a few Kelvin.
with &, (i=1,...p) not a negative integer. In those conditions (2) At high (“infinite” ) temperature, the heat capacity con-
the MGF converges when verges to the classical Dulong and Petit vallig, (i.e.,
3Nk for monatomic solids consisting dfl atoms, for

Nel<1, (32 examplg.

and diverges elsewhere. From this follows that For the discrete distributiopy(l) we start with the sim-
= e li— g~ Fohe 33 ples_t p.hysilcally acceptablg member of Kemp"s GHP family
' of distributions, the diverging negative binomi@NB). Ac-
eliminating thus one of the parameters. Note that forcording to Eqs(33)—(35), this distribution is given by
limy._.A—0 and the MGI—‘QF(t) is still converging for any n+l—1
B>0. It is therefore possible to combine members of this po(l;n,As):( n
family with distributionsp(Ae) that are defined up to infinity.
The simplest case of Eq&9) and(30) is {p=1, q=0},
which corresponds to the Katz family of distributioftsno-
mial, Poisson, and negative binomialrhe Poisson distribu-
tion is actually a limiting case and correspondsipe=0, q  whence from Eq(11), the heat capacity is given by
=0} and, since its MGF is therefore always converdih, - (Bhe)2eFAe
is physically not acceptable. In this respect the Poisson dis- C,(T)=Nnk —8,[;Aﬁp(As)dAs. (39
tribution plays the same role as the Gaussian distribution in o (1-e )
the continuous Pearson systérfor the binomial distribu- First, we can eliminate the parametérandn, irrespec-

tion a; o= —n is a negative integer, so the MGF also nevery e of the particular distributiomp(Ae), by evaluating the

diverges. _ o . high temperature limit of Eq(38), and equating this to the
Hence the only physically acceptable distribution within Dulong and Petit valu€, ..,

the Katz family is the diverging negative binomial distribu-

tion, = (BAe)X(1—BAe+--+)

lim cV(T>EcvW=;@ONHk o (1—1+BAe—---)2

efﬁer-I(l_efﬁer)n, (36)

n

, (37

~0 1—e Poke
g|(—ABA8)=(WA?

(n+ - ) | p=0
lin\)= A(1-M" 1=01,.., 34
Po(linN)=| "4 N(1=N) (34 Cp(8e)dAs
wherea; ;=n>0 is not necessarily an integer. The corre- o
sponding MGF is given by =Nnkf0 p(Ae)dAe
. t _
50(t) = 1Foln;net] _ 1-x\D 35 =Nnk. (39)
l lFo[n,)\] 1_)\et ’

For p(Ae) we can use either one of the distributions of

with A given by Eq.(33). Sec. IIlA[Egs.(24)—(27)]. A combination of the diverging
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negative binomialpy(l;n,\(Ag)), Eq. (36), with, e.g., a
beta distributiorp(Ae;a,b,Aey,), Eq.(25), will be referred
to as “beta-dNB state.”

A. Delta-dNB state

The “delta-dNB state,” withp(Ae) the delta function
given by Eq.(24), yields the following expression for the
heat capacity, E(38):

@g\2 e 9T
Cv(T)ICVoo<7> (1—e Pe/m?z’ (40

where we defined the characteristic temperatude
:ASE/k.
Obviously, this is the well-known Einstein model®3!

Apol et al.
T
Cy(T)=Cy.. atb—1
D =Cy B(a,b>(®sa,b)
Opab/T ®Bab b-1 e X
a+1 i
Xfo X ( T X (1_e_x)2dx
(45)
=C —1 Oan zfl a+1
“B@b | T ) Jo)
e_(@)Ba,b/T)y
X(1—y)°7t (46)

(1—e ©@san/My)2 dy,

which has the right qualitative behavior. The low tempera-
ture behavior of the heat capacity, however, does not match

any of the experimental-laws, since

T—0

Cy(T) = Cya| —=

( 0
T (4D

which goes to zero too rapidly.

2
) e O/

B. Power-dNB state

The “power-dNB state,” uses fop(Ae) the power dis-
tribution, Eq.(26). The heat capacity is given by

afDa/T Xa+le*X
0

CV(T) = vaa m dx, (42)

®_Da)

where we define®p,=Ae,/k.

Obviously, fora=1, 2, and 3 this corresponds to the
one-, two-, and three-dimensional Debye modéi&>3in
the low temperature limit, the upper limit of the integral goes
to infinity, and hence integrating E42) by parts and using
e */(1-e ¥)=3,_,e"™, we see thalCy(T) behaves at

low temperature &8
T \@ (= Xa+1e—x
®Da> Joime

=Cy.al'(a+2){(a+1)

T—0
C\/(T) g Cvma

6 Da
(43

with ¢(x)=37_,n"* the Riemann zeta functiéh which
rapidly goes to one for increasing>1. Special values are
£(2)=7?6 and {(4)=7*/90; {(3)~1.20206. If we want
our model to reproduce &%-law at low temperature, it fol-
lows from Eq.(43) thata=s. Moreover, if we measure the
proportionality constants ., at low temperature, we can
hence estimat® in the “elastic” limit as

sI'(s+2){(s+1)Cys \ 1

(44)

Ds,el—
Cs,exp

Otherwise, we can use experimental heat capacity data to

obtain ® ;.
C. Beta-dNB state

The “beta-dNB state,” employs fop(Ae) the beta dis-
tribution, given by Eq(25). The heat capacity is given by

where®g, ,=Age/k. Forb=1, using the fact thaB(a,1)
=1/a, these expressions become welimensional Debye
model, Eq.(42). For the low temperature behavior we define
a=0pg,,/T, and integrating Eq(46) by parts and using the
same kind of substitution as in Ed43), i.e., e “/(1
—e Y)=3,_,e " we have

2 ! a+1 b—1 eiay
o foy (1-y) (]__e——ay)Zdy
oy

l1-e

Cye

Cu(T)= B(a.b)

CVOC
B(a,b)

1
@ (a+1)f0 y3(1-y)°? dy

! a b-2 e
—(b—l)foy (1= —wdy

Cye

o1
R a+1 a1 — b—le—nayd
s @D E, [yasy Y

“r
—(b=1) 2 | y(1-y)> % "dy
n=1J0

o0

Cvow
= (a+1)B(a+1,b)> ;Fi(a+1,
n=1

B(a,b)
a+b+1;—na)—(b—1)B(a+2,b—1)

|

I'(a+b+1)
I'(b)

o

©

X >, 1Fi(a+2,a+b+1;—na)
n=1

a— 0

Cve
B(a,b)

— a| (a+1)B(a+1,b)

X 2_)1 (ne)~ @Y —(ph—1)B(a+2,b—1)

©

> (na)~@+2

n=1

I'(a+b+1)

T(b—1)

T'(a+2)
~“V="B(a,b)

T a+1l
®Ba,b)

T a
+1)(®Bab) 7

+(1-b){(a+2)

B I'a+2)
~“v B (

(47
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where in the fourth step we used a limit property of theWe see that whea=s we get approximately &®-behavior,
Kummer confluent hypergeometric functigh,(a,b;x), see  and so we can obtain the “elastic®¢ from
Ref. 23. To obtain &*-law, we see that also in this case

=s, and hence from very low temperature data we can esti- [s(s+1){(s+1)Cy.| ™
mate ® via Ors.e= ' (5D
Bs,b,el Cs,exp
1/s
Opep o= I'(s+2){(s+1)Cva (49 Note that also for this statistical state the heat capacity
T B(s,b)Cs exp converges to the Dulong and Petit value, even though the

or obtain®gs, Using other experimental heat capacity data distribution p(Ae) has no finite maximum energy gaye ,,.

D. Gamma-dNB state

Finally, the “gamma-dNB state” state, with the gamma E. Classical limit

distribution for p(Ae) given by Eq.(27), yields for the heat Obviously, in the classical limit all energy gaps will tend

capacity to zero, and hencp(Ae) will tend to a Dirac delta function
T \2 (e xat1lg=(1+T/Opa)X [Eq. (29)], i.e., with Aeg—0. Therefore the parameter
Cu(T)=Cye T(a) ) fo (1—e 92 dx, =e Pohee of the dNB distributionpy(l) tends to one. It is
a

(49) interesting to note that Pes3ihas proved that as—1 with

n constant, the negative binomial distribution tends to a
where we defined the characteristic temperatd¢,  gamma; in this case a diverging negative binomial tending to
=1/kr. For the low temperature behavior, we can integratey giverging gamma distribution. Hence all the described sta-

Eq. (49) by parts, substitute */(1—e ) =2 _,e "™ and tistical states will transform in the classical limit to a diverg-
z=(n+T/Or,)x, and use the Taylor series of the general-ing gamma stafewith

ized Riemann zeta functidh® 7(x,k)==7_,(n+k) %

=37 o(=1)(s), L(x+r)K/r!, with (s),=s(s+1) --(s+r lim C\(T)=Cy..=Cypg. (52
—1) Pochhammer’s symbdl. The low temperature behav- Ae—0
ior is therefore

As already observed, the delta-dNB and power-dNB

T & _)afwxa”e”’@"a)x 7i dx states correspon_d to thg E_ins'Fein and D_ebye models, since
I'a)\Ora) Jo (1—-e %2 the energy and index distribution of a single quantum har-
A . monic oscillator(QHO) is given by a(diverging geometric
_ Cve (a+ 1)fmxae‘<T’®Fa)X dx distribution!” and that of a set of independent QHOs by a
I'a)\ Or, 0 1-e* (diverging negative binomial distributiobeing the convo-
L lution of geometric distributions Hence we see that in the
_ T )fwxaﬂe—(wera)x € dx classical limit the dNB states, corresponding to a QHO
Ora/ Jo 1-e™™ Hamiltonian, convert into a diverging gamma stateéNaflas-
a " (@t sical harmonic oscillators, witle,(T)=C,,=3Nk accord-
_ & — | la+ 1)2 (n+ T ) ing to the equipartition principle, see also Ref. 5.
F(a) Fa n=1 ®Fa
» T\Z T \~(@+2)
X fo zaezdz—(GF )El n+ or ) V. APPLICATIONS TO Cu, a-Al,0;, AND GRAPHITE
a/ n= a
We applied the various statistical states to solid Cu,
> jmza+1e—zdz a-Al,0O3 (a-alumina or sapphije and graphite. Experimen-
0 tal Cy heat capacity data were taken from Castaztedl >
a and for graphite we use@, data from DeSorbo and Ty
_o T@+2) _) Ha+ LTI (10<T<300K) and Butland and Maddissh (300<T
Voo ’ T'a .
'@ \Or, <3000K). In the latter cas€, was calculated using the
T Nernst—Lindemann approximatidri®
—{(a+ 2-T/Fa)(®_) An analysis of the low temperature data €0
Ta <25K) on log-log scale showed that=3.11 for Cu,a
T'(a+2) T \2 o =3.07 for a-alumina, anda=2.00 for graphite; hence for
:CV“TBL) l(a+ 1)<®— 1+ (—1) the former two we sea=s=3, for graphitea=s=2. Note
Ta r=1 that C,, of graphite behaves likd@3 only below 1 K (see
r Refs. 36 and 37 Taking C,...= 3R for copper and graphite
(atl) (atr+l)f(arr+l) L) } and 1R for alumina, we used the Mathematitaoutine
r! (a+1l)é(a+l) \Orq “FindMinimum” to obtain the best least-square values of
120 the different characteristic temperatures, as web &sr the

— Cyra(a+1)l(a+1l)

a
T ) _ (50) beta-dNB state. For copper we used experimental heat capac-
0 ity data within the range T<1000K, for a-Al,O
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TABLE I. Characteristic temperatures and parameters of Cu for various 150 . T .

statistical states.

J. Chem. Phys., Vol. 111, No. 10, 8 September 1999

®E ®Da ®Ba,b ®Fa Cs,exp
Method Cy../R a=s (K) (K) (K) (K) (J/mol K+1)
Cy fit 3 3 228 313 316 1.035 86.7
Literature 3 3 22% 313
318°¢d
318
Elastic limit 3 3 345 352 1.035190 4.75%0 %

Literature 3 3

345

®Reference 43.
PReference 33.
‘Reference 24.
YReference 15.
®Reference 31.

TABLE II. Characteristic temperatures and parameters-#fl ,O; for vari-

ous statistical states.

Apol et al.
PR P Y e St S 3
P
< 100 | 7w ]
E Vaa
2 y /2
g /,/ 30 -
§ sof 20 :
I
J
[/ 10
/
I 0
) 5 0
0 d | 1 |
1} 500 1000 1500 2000
Temperature T (K)

FIG. 2. Heat capacity of-Al,O5: experimental data# ), delta-dNB state,
Eq. (40) (---), power-dNB state, Eq42) (—), beta-dNB state, Eq45) (—),

and gamma-dNB state, EG19) (

). Parameters are listed in Table II.

®E ®Da ®Ba,b ®I‘a Cs,exp
Method Cv./R a=s (K) (K) (K) b (K) (J/molK*l)
Cy fit 15 3 678 933 1059 1.482 263
Literature 15 3
Elastic limit 15 3 1034 568.9 8.810 %2
Literature 15 3 - 1038

%Reference 33.

within the range 16 T<2000 K, and for graphite within the
range 16<T<3000K. We also evaluated the “elastic”
characteristic temperatures from the low temperatlife
behavior’®*3using Eqs(44), (48), and(51). Parameters are
given in Tables I-Ill and the resulting heat capacity curves

TABLE lIl. Characteristic temperatures and parameters of graphite for variusing the parameters obtained by least-square fit are given in
ous statistical states.

®E ®Da ®Ba,b ®l‘a Cs,exp
Method C,../R a=s (K) (K) K) b (K) (JmolKstY
Cy fit 3 2 1094 1820 3575 3.32 761
Literature 3 2 ~1878&
Elastic limit 3 2 1322 935 2.0610 %
Literature 3 2 1370

@Reference 4, using a Tarasov equation.

bReference 30.
‘Reference 44.

8

-
(=]
T

Heat capacity C, (J/mol K)

Temperature T (K)

FIG. 1. Heat capacity of Cu: experimental dd#), delta-dNB state, Eq.
(40) (---), power-dNB state, Eq42) (—), beta-dNB state, Eq45) (—), and

gamma-dNB state, Eq49) (----- ). Parameters are listed in Table I.

Figs. 1-3. Root-mean-square deviations from the experimen-
tal Cy, data are presented in Table IV.

For copper(Table 1, Fig. 1, which is an example of a
simple isotropic monatomic crystal, we see that as expected
the power-dNB statéthree-dimensional Debye modgdro-
vides a good description, both at low and high temperature,
indicated by the fact that the least-square and “elastic” val-
ues of® are in fair agreement. For the beta-dNB state, which
may be regarded as a generalization of the Debye model, we
find thatb=1.035, very close to the Debye valbe=1. It
hence gives almost indistinguishable results from the power-

30 T T T
_______ e
o L ot
=20 - . i
5 Ao : :
3 W44
2 W74
g 4 8
E 1
/ 6
p
Bior J .
I 4 -
2 |
i
i
i
Il o e 1 1
/ 0 100 200 300
0 7 1 1 1
0 750 1500 2250 3000
Temperature T (K)

FIG. 3. Heat capacity of graphite: experimental dete), delta-dNB state,
Eq. (40) (---), power-dNB state, Eq42) (—), beta-dNB state, Eq45) (—),
and gamma-dNB state, EG19) (----- ). Parameters are listed in Table Ill.
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TABLE IV. Root-mean-square deviations of the heat capadityol K) for 0.015
different statistical states, using the parameters obtained by least-square fif ;
see Tables I-Ill. /

System T-range(K) Ny, Delta-dNB Power-dNB Beta-dNB Gamma-dNB

Cu 10-1000 32  0.44 0.15 0.15 0.86 0010 |
a-Al,O; 10-2000 38  2.69 0.96 0.78 3.73 ;
Graphite 10-3000 108  1.28 0.52 0.08 0.49 z !

3 |

£ |

0.005 -
dNB state. Both the delta-dNEEinstein and gamma-dNB E
reproduce the qualitative behavior, but deviate especially at P
low temperature; the delta-dNB state tending to zero too fast, e S N
the gamma-dNB state too slow. /' | e
Alumina (Table II, Fig. 2 is somewhat less isotropic 00w >4 e

than copper, but still the power-dNB statBebye model Energy gap AEK (K)

agrees very well with the experimental data. For the beta-
dNB state we find a valub~ 1.5 which deviates more from F'C: 4. Energy gap distributionsAe) of Cu: delta function, Eq24) (),

. . . ower function, Eq(26) (—), beta distribution, Eq(25) (—), and gamma
unity and results in a somewhat better description than thgisyibution, Eq.(27) (-----).
Debye model. Again, the delta-dNB and gamma-dNB states
are comparable to each other and less accurate than the other
two states.

Finally, graphite(Table lll, Fig. 3 is an anisotropic Da
crystal consisting of weakly bound lay&fsvith a different
low-temperature behavior up to about 100 KTalaw.* In  is the a-dimensional Debye functiofcf. Eq. (42)], and®,
this case we see that the simple delta-dNB st&i@stein =hv,/K the corresponding characteristic temperature. At
mode) deviates more than for isotropic crystals. Also thevery low temperature Eq(54) converges to a three-
two-dimensional Debye modébower-dNB statis less ac- dimensional Debye modelEq. (42), a=3] with Op;
curate, and now comparable to the gamma-dNB state. The 3\/6)1@2@3. Pydaet al? analyzed graphite datafrom 0.5
beta-dNB state, however, with a largevalue(3.22, gives a  to 1500 K using this equation, obtainin®,=2571, 0,
very accurate description over the whole temperature ranges 932, and®;=6.0K. The corresponding heat capacity is,
also indicated by the fact that the least-square and “elastic’on the scale of Fig. 3, coinciding with the beta-dNB results,
0O values are very close. and corresponds very well with the experimental data: the

Around 1950, Tarasd¥*!derived a model to describe root-mean-square deviation is 0.12 J/mol K, which is similar
the heat capacity of anisotropic crystals. Using quantum harto that of the beta-dNB stai®.08, see Table 1)/ Note that
monic oscillators, he furthermore assumed that the frequendyoth the beta-dNB state and the Tarasov equation have three
spectrum at low frequencfup to v3) could be described by parameter¢®g,,,, a, b, and®,, 0,, 03).

a three-dimensional continuum model, fram to v, by a In Figs. 4—6 we show the corresponding energy gap dis-
two-dimensional, and fromy, to v, by a one-dimensional tributions. Note that the low temperature behavior of the heat
continuum model. Definingse,=hv,, the “Tarasov” dis-  capacity is especially sensitive to the left tailgf\e), which
tribution p(Aeg) is given by is enlarged in the insets. For copper the power and beta dis-
tributions are virtually identical, and behave very differently
( Ag? from the gamma distribution at smalle. For alumina, the
3 Ae;Ae,Aeg’ 0<Ae<Aes power and beta distribution are more distinct, even at the left
A tails. Finally, for graphite the beta distribution now more or
& . . . . .
2———, Aeg<Ae<Asg, . (53) less resembles the gamma distribution. It is interesting to
AejAe; note that when the value of the maximum energy gap,
increasesand hence also the characteristic temperattrgs
L Ae,’ Agp<Ae<Aey and®g), the accuracy of the gamma distribution and corre-
sponding gamma-dNB state improves; compare, e.g., Cu
This yields for the heat capacfty’ (®z~300K) and graphite ® g~ 3600K). It is also evident
that the behavior o€, is less sensitive to the right tail of

0, 06, 0, 0, p(Ag). For graphite, compare, e.g., the power and gamma
Dil =]~ g D1 T —Do| —
CH

O,
?

.
~al 5- 5 dx (55)

af@)a/-r Xa+1e7x
o (1-e™)

p(Ag)={

Cu(T)=Cys

T 0, T results, which are of comparable accuracy, but have a com-
pletely different right tail of the energy gap distribution; also
§ (N C the beta and Tarasov distribution, which have comparable
[ 2( )_ D3( )H (54) accuracy inCy,, are rather different on the right tail.
This clearly shows the known difficulty of “inverting”
where the heat capacity to the frequency distribufiofor p(Ae) in

0,0,

T
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0.004 i.e., by expressing the excess Helmholtz free energy in terms

7 of the moment generating functigMGF) of the (discrete
/ energy distribution of the system, and modeling the latter as
0008 // a quasi-Gaussian distribution. Using only a few very reason-

0.002

Probability

0.001

500.0

1000.0
Energy gap AE/ (K)

FIG. 5. Energy gap distributiongAe) of @-Al,O3: delta function, Eq(24)
(---), power function, Eq{(26) (—), beta distribution, Eq(25) (—), and
gamma distribution, Eq.27) (--

able assumptions, this complicated MGF can be decomposed
into “subelementary” MGFs, which are specified by the dis-
crete(lattice) distribution of the energy level inddxand the
continuous distribution of the energy gap. In the classical
limit the energy gap distribution tends to a Dirac delta func-
tion located at zero, and hence the complicated overall dis-
crete energy distribution transforms into a continuous distri-
bution, as described in previous articfes.

We derived restrictions on possible model distributions
for the index and energy gap distributions, and presented
some examples of statistical states, i.e., the thermodynamics
of a combination of a specific index and energy gap distri-
bution. We combined the simplest physically acceptable in-
dex distribution, a diverging negative binomi@NB) with
several energy gap distributions: the delta function, power
function, beta and gamma distributions. It is very interesting
to note that among these various statistical states are some
which are thermodynamically equivalent to well-known

our termg. From our “macroscopic” treatment, starting models, like the Einstein modétquivalent to the delta-dNB
from the energy fluctuations of the whole system, it cannoktatg and the one-, two-, and three-dimensional Debye mod-
be expected that the model distribution fgAe) matches in  g|g (equivalent to the power-dNB stajesThis is a conse-

a precise way the distribution, which arises from an analysigyence of the fact that the dNB distribution is the exact index
of experimental data using atomic details and a mode}jistribution of a set of quantum harmonic oscillators. Inter-
Hamiltonian (see, e.g., Young and Kopfélfor the fre- estingly, within the QGE scheme these models can therefore
quency distribution of graphile however, the thermody- 3150 be derived without an explicit Hamiltonian model, only
namic functions of the system, which are macroscopic obysing a basic set of physical requirements and assumptions.
servables, are reproduced very well using, for example, &he beta-dNB state can be regarded as a generalization of the
simple beta distribution. Debye models, to which it reduces for=1. All these states
reduce in the classical limit to the diverging gamma stéte,
which is the exact statistical state of a set of classical har-
monic oscillators.

In this article we described how to derive the tempera-  The different statistical states were applied to copper,
ture dependence of thermodynamic functions of pure quana-alumina, and graphite, showing that in all cases the beta-
tum systems using the quasi-Gaussian entropy th@BE),  dNB state provides an accurate thermodynamic description
of these crystals, both at low and high temperature. For an
anisotropic crystal like graphite, which consists of weakly
bound layers, the beta energy gap distribution differs greatly
from the one corresponding to the Debye model, but they
become identical for the simple isotropic monatomic copper
e crystal. For graphite, the accuracy of the beta-dNB state is

e comparable to that of the general Tarasov equation, having
Ryt | the same number of parameters.
s Finally, the complexity of the statistical states may be

VI. DISCUSSION AND CONCLUSIONS

0.0015

0.0010 |
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0.0005 | /

X

0.0000

~
_

]

"""""I’?l""' o mmmmmmmmmmmmmmmo =
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Energy gap AEK (K)

FIG. 6. Energy gap distributiongA¢) of graphite: delta function, Eq24)

(---), power function, Eq(26) (—), beta distribution, Eq(25) (—), gamma

distribution, Eq.(27) (

----- ) and Tarasov distribution, E¢53) (— — —).

enlarged in a rather systematic way, either by using more
complicated energy gap distributions and/or by employing
more complicated discrete index distributions, for example
arising from the GHP family.
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