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In this article, the quasi-Gaussian entropy theory is derived for pure quantum systems, along the
same lines as previously done for semiclassical systems. The crucial element for the evaluation of
the Helmholtz free energy and its temperature dependence is the moment generating function of the
discrete probability distribution of the quantum mechanical energy. This complicated moment
generating function is modeled via two distributions: the discrete distribution of the energy-level
order index and the continuous distribution of the energy gap. For both distributions the
corresponding physical–mathematical restrictions and possible systematic generation are discussed.
The classical limit of the present derivation is mentioned in connection with the previous
semiclassical derivation of the quasi-Gaussian entropy theory. Several simple statistical states are
derived, and it is shown that among them are the familiar Einstein model and the one-, two-, and
three-dimensional Debye models. The various statistical states are applied to copper,a-alumina, and
graphite. One of these states, the beta-diverging negative binomial state, is able to provide an
accurate description of the heat capacity of both isotropic crystals, like copper, and anisotropic ones,
like graphite, comparable to the general Tarasov equation. ©1999 American Institute of Physics.
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I. INTRODUCTION

At the end of the last and the beginning of this centu
the fundamentals of classical physics were severely attac
when more and more experimental evidence pointed to
fact that the energy of a system apparently could not
assume any value in a continuous way. Instead, the en
seemed to be discretized, showing specific energy gaps

This was most apparent from spectroscopic data, wh
clearly showed specific emission lines instead of a conti
ous spectrum. Also, the heat capacity of solids at low te
perature clearly deviated from the ‘‘classical’’ Dulong an
Petit value,1 which follows from the equipartition principle
of a set of classical harmonic oscillators.

Einstein2 was actually the first one to recognize th
Planck’s revolutionary idea of quantized energy could v
well explain the strange thermodynamic behavior of solids
relatively low temperature. A few years later, Debye3 signifi-
cantly refined Einstein’s ideas, and up to now the Deb
theory is still a successful theory to describe the thermo
namics of~simple! isotropic solids. Extensions of the Deby
approach to anisotropic and more complicated molecula
polymer crystals are, e.g., the Tarasov equation.4 Note that
the Einstein and Debye models and extensions are all b

a!Author to whom correspondence should be addressed; electronic
amadei@seurat.chem.uniromal.it
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on a quantum harmonic oscillator Hamiltonian.
In this paper we will set up a ‘‘macroscopic’’ statistica

mechanical theory to describe the thermodynamics of qu
tum mechanical systems, solids in particular, based on a
simple physical principles. Without relying on a specifi
Hamiltonian, we simply use the fact that the energy can
sume only discrete values. Combining this with the gene
definition of the canonical partition function and the Helm
holtz free energy, we develop a theory which employs
properties of the underlying energy distribution function
model the thermodynamics. Along the same lines
previously5–10 set up such a theory, the quasi-Gaussian
tropy theory, for semiclassical systems. In that case
showed that for fluid systems already a simple continu
model distribution~e.g., a Gamma distribution! is able to
describe accurately the thermodynamics of polar and ap
molecules like water6,11 and the Lennard-Jones fluid12,13over
a large temperature range.

The paper is organized as follows. In Sec. II we der
how the Helmholtz free energy can be expressed in term
the distribution functions of the order indexl of the energy
levels and the energy gapD«. In Sec. III we describe pos
sible models for these distributions and their physica
mathematical restrictions. In Sec. IV we present some sta
tical states, i.e., the thermodynamics of various combinati
of distribution functions ofl andD«. These statistical state
il:
1 © 1999 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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will be applied to copper,a-alumina, and graphite in Sec. V
Conclusions are given in Sec. VI.

II. GENERAL FRAMEWORK

The Helmholtz free energy in the canonical ensemble

A52kT ln Q, ~1!

where the quantum mechanical canonical partition funct
is given by14,15

Q5(
n

e2b«n5(
L

e2b«LV~«L!. ~2!

In this expression,«n are the energies of the different phys
cal states of the system, and«L is the Lth energy level, or-
dering the possible energies of the system in increasing m
nitude from the ground state, whereL is the order index, and
V(«L) is the corresponding degeneracy factor. As usuab
51/kT with k the Boltzmann constant.

The excess free energy with respect to a system at ‘‘t
perature’’b0 can be expressed as7,8

D~bA!5bA2b0A0

52 ln
(Le2b«LV~«L!

(Le2b0«LV~«L!

52 ln
(Le2Db«Le2b0«LV~«L!

(Le2b0«LV~«L!
52 ln^e2Db«L&b0

~3!

52 ln
(Le2b«LV~«L!

(LeDb«Le2b«LV~«L!
5 ln^eDb«L&b , ~4!

whereDb5b2b0 and ^¯&b and ^¯&b0
are canonical en-

semble averages in theb andb0 ensemble. Note that

^e2Db«L&b0
5(

L
e2Db«Lp0~«L![G«L

0 ~2Db!, ~5!

^eDb«L&b5(
L

eDb«Lp~«L![G«L
~Db! ~6!

are the moment generating functions16–18 ~MGF! of the dis-
crete probability distribution functionsp0(«L) andp(«L) of
the energy«L . Here, the zero subscript onp0(«L) and su-
perscript onG«L

0 (2Db) denote that the distribution an

MGF are evaluated at fixed temperatureb0 .
In general, the moment generating function of a discr

probability distribution p(x) is defined as Gx(t)
5( ie

txip(xi)5^etxi&, and for a continuous probability dis
tribution r(x) asGx(t)5* etxr(x)dx5^etx&. It corresponds
to the Laplace transform of the distribution. For reasons t
will become clear later on, instead of Eq.~4! we prefer to use
Eq. ~3!. From this equation it follows that the free energ
difference is defined once the distribution of the energy
one temperatureb0 is known. The key point is therefore th
evaluation of the corresponding MGFG«L

0 (2Db).

As the system is a macroscopic thermodynamic syst
it may be decomposed into a very large number (Ne) of
identical and statistically independent ‘‘elementa
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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systems.’’5 Clearly, the energy«L is the sum of the energie
« l of the elementary systems. The distributionp0(«L) is
therefore theNe-fold convolution of the ‘‘elementary distri-
bution’’ p0(« l), and hence17

G«L

0 ~2Db!5@g« l

0 ~2Db!#Ne, ~7!

whereg« l

0 (t) is the MGF ofp0(« l). From the central limit

theorem,16 p0(«L) must be a unimodal distribution.
In contrast to the semiclassical case,8 where the instan-

taneous energyU is a continuous variable, for quantum sy
tems«L and« l are in principle discrete variables. Howeve
since the energy levels are in general not equidistant, it is
appropriate to modelp0(« l) merely by a simple ‘‘lattice dis-
tribution,’’ which is defined on equally spaced intervals17

We assume that the overall distributionp0(«L) is ‘‘quasi-
Gaussian,’’ implying that the elementary distribution can
modeled by analytical, relatively simple~unimodal! curves.
Hence, we will make the following two very reasonable a
sumptions.

~1! We assume that the MGFg« l

0 (2Db) in Eq. ~7! can

in turn be factorized intoNs ‘‘subelementary’’ MGFs. This
means that the energy per elementary system can be wr
as a sum of energies« l i

of the subelementary distributions
Each of these subelementary MGFs is characterized by s
specific fixed energy gapD« i ( i 51¯Ns). Hence we can
write the energy« l i

as

« l i
5«0,i1D« i• l i l i50,1,..., ~8!

with «0,i the temperature-independent ground-state energl i

the level order index, andD« i the energy gap of theith
subelementary distribution. Therefore we have

g« l

0 ~2Db!5)
i 51

Ns

g̃« l i

0 ~2Db!

5e2Db«0)
i 51

Ns

g̃l i
0~2DbD« i !, ~9!

where«05( i 51
Ns «0,i . Note that sinceD« i is constant for each

i, it now appears inside the argument of the subelemen
MGF g̃l i

0(t), as for any constantsc1 and c2 we have17

Gc11c2x(t)5^et(c11c2x)&5etc1Gx(tc2). Using Eqs.~3!, ~5!,
~7!, and~9!, the free energy difference is therefore

D~bA!52Ne ln g« l

0 ~2Db!

5Ne«0Db2Ne(
i 51

Ns

ln g̃l i
0~2DbD« i !. ~10!

Note that Eq.~9! corresponds to a special ‘‘clustering
of the physical states of the elementary system, such tha
partition function can be factorized in an inhomogeneo
way. Such a factorization cannot be exact, as in the ‘‘in
nite’’ temperature limit any partition function can, if pos
sible, only be homogeneously factorized.~Note that a homo-
geneous factorization of the elementary system should
to a new definition of the elementary system.! It is therefore
likely that this first assumption is reasonable for solid s
tems.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~2! We furthermore assume that the distribution of t
order indexl i is the same for eachi and hence independen
of the value ofD« i . For an elementary system which co
tains still an ‘‘infinite’’ number of molecules, we can safe
say that the value of the energy gap varies in an alm
continuous way. We can therefore rewrite the sum in
~10! also in terms of the~continuous! probability density of
the energy gapr~D«!,

D~bA!

5Ne«0Db2NeNsE
0

`

ln$g̃l
0~2DbD«!%r~D«!dD«

5E0Db2NE
0

`

lnH (
l 50

`

e2DbD«• l p0~ l !J r~D«!dD«,

~11!

where we definedE05Ne«0 andN5NeNs .

We see that the free energy difference for quantum m
chanical systems can be described by two distribution fu
tions: one being the discrete probability distributionp0( l ) of
the order indexl of the subelementary energy levels, and t
other being the continuous probability density functionr~D«!
of the energy gapD« within each elementary system.

The free energy difference is therefore completely
fined by thetypeof distributionsp0( l ) andr~D«!, and by the
valuesof E0 , N, and the parameters$ai ,0%, $bi ,0% that specify
p0( l ) and$ci% that specifyr~D«!.

Using the same notation as for the semiclassical ca8

the parameters$ai ,0% and $bi ,0% of the distributionp0( l ) are
evaluated atb0 ~indicated by the zero subscript!, and hence
are temperature independent. Equations~3! and ~11! there-
fore directly yield the full temperature dependence of
excess free energy and derived thermodynamic functio
We could, on the other hand, make a similar derivation st
ing from Eq.~4!. In that case we would need the distributio
p( l ), the parameters of which are temperature depend
The corresponding free energy expression is thus both
plicitly and implicitly temperature dependent. To get the f
explicit temperature dependence, we should first formu
and solve an ordinary differential equation inCV andT, the
thermodynamic master equation~TME!,5,8,9 providing in the
end the same solution as Eqs.~3! and~11!, where the TME is
implicitly solved. For convenience we therefore used Eq.~3!
instead of Eq.~4!.

From Eq. ~11! it follows that the free energy, energy
entropy, and heat capacity are given by

A~T!5E02TS01~U02E0!S T

T0
D

2NkTE
0

`

lnH (
l 50

`

e2DbD«• l p0~ l !J r~D«!dD«,

~12!
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U~T!5E02NE
0

` ]

]b

3 lnH (
l 50

`

e2DbD«• l p0~ l !J r~D«!dD«, ~13!

S~T!5S02
~U02E0!

T0

1NkE
0

`

lnH (
l 50

`

e2DbD«• l p0~ l !J r~D«!dD«

2
N
T E

0

` ]

]b
lnH (

l 50

`

e2DbD«• l p0~ l !J r~D«!dD«,

~14!

CV~T!5Nkb2E
0

` ]2

]b2

3 lnH (
l 50

`

e2DbD«• l p0~ l !J r~D«!dD«, ~15!

whereU0 andS0 are the values of the energy and entropy
the reference temperatureT051/kb0 .

To obtain the numerical values of the parameters$ai ,0%,
$bi ,0%, $ci%, E0 , and N, we can use the ‘‘method o
moments ,’’16 i.e., equating the first few theoretical momen
or cumulants ofp0(«L) @expressed in terms of the paramete
of p0( l ) andr~D«!# and the corresponding sample momen
or cumulants of the energy«L ~which, via statistical mechan
ics, are given by thermodynamic quantities like average
ergy, heat capacity etc.!.

For a distribution with MGFGx(t), the cumulantskn@x#
of order n are defined as16–18 kn@x#5(]n ln Gx(t)/]tn)t50.
From Eq.~3! we see thatt52Db, so t50 actually corre-
sponds tob5b0 . To obtainr independent equations to solv
the unknown parameters, we have to take derivatives u
therth order on both the left- and right-hand side of Eq.~11!,
which slightly rewritten reads

2D~bA!5 ln G«L

0 ~ t !

5E0t2NE
0

`

lnH (
l 50

`

etD«• l p0~ l ;$ai ,0%,$bi ,0%!J
3r~D«;$ci%!dD«, ~16!

yielding the following set of equations:

k1,exp@«L#5E01NE
0

`

k1@ l #~D«,$ai ,0%,$bi ,0%!

3D«r~D«;$ci%!dD«, ~17!

k2,exp@«L#5NE
0

`

k2@ l #~D«,$ai ,0%,$bi ,0%!

3D«2r~D«;$ci%!dD«, ~18!

¯

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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kn,exp@«L#5NE
0

`

kn@ l #~D«,$ai ,0%,$bi ,0%!

3D«nr~D«;$ci%!dD«,

n52,...,r , ~19!

where the sample~‘‘experimental’’! cumulants are given
by5,7,14,15

k1,exp@«L#5U0 , ~20!

k2,exp@«L#5~kT0!@T0CV0#, ~21!

k3,exp@«L#5~kT0!2FT0
2 ]CV0

]T
12T0CV0G , ~22!

¯

kn,exp@«L#5~21!n11S ]nbA

]bn D
b0

, n51,...,r . ~23!

In these equations,U0 , CV0 , etc., are the values of the en
ergy, heat capacity, etc., at the reference temperatureT0

51/kb0 , andkn@ l #(D«,$ai ,0%,$bi ,0%) are the theoretical cu
mulants ofp0( l ), expressed in terms of the parameters.

Note that in the classical limit all energy gaps will ten
to zero; hencer~D«! will tend to a Dirac delta function
d~D«!, and the distributionp0( l ) transforms into a continu
ous probability densityr(u) for the semiclassical continuou
energyu of an elementary system.

III. MODEL DISTRIBUTIONS

A. Model distributions for r„D«…

We can make the following assumptions for the mo
distribution of the energy gapr~D«!.

First, as already mentioned, the variableD« is approxi-
mately continuous; hencer~D«! is a continuous distribution
function. Second, the domain ofD« with nonzero probability
is in general finite. However, the upper limitD«m may be so
large that we can approximate the distribution by one wh
is analytically defined up to infinity. In that case we shou
of course have limD«˜`r(D«)50.

The restrictions on the possible distributionsr~D«! are
therefore~1! the distribution should be defined for values
D«>0, ~2! the upper limit may be finite (D«m) or infinite,
and~3! for the free energy to converge forb.0, the integral
*0

` ln$g̃l
0(2DbD«)%r(D«)dD« should converge for a specifi

choice of the distributionp0( l ) and corresponding MGF
g̃l

0(t). In principle, we can use any system or family of d
tributions, for example, the Pearson system,19–21 to obtain
model curves with a sufficiently flexible shape.

The simplest possible distribution is the Dirac de
function,

r~D«;D«E!5d~D«2D«E!, D«E>0, ~24!

where it is assumed that there is only one unique energy
D«E .

One of the possible more complex curves with a fix
upper limit is the beta distribution,16,22
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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r~D«;a,b,D«m!5
1

B~a,b!

1

D«m
a1b21 D«a21

3~D«m2D«!b21,

D«m.0, a.0, b.0, ~25!

where 0<D«<D«m and B(a,b)5G(a)G(b)/G(a1b) is
the Euler beta function andG(a) the Gamma function.23

Note that fora integer,G(a)5(a21)!. Equation~25! rep-
resents a distribution with a very flexible shape; for examp
with b51 we obtain the power function,16

r~D«;a,D«m!5
a

D«m
a D«a21, D«m.0, a.0. ~26!

Note that fora53 we obtain a parabola and fora51 the
uniform distribution.

Finally, a simple and often used distribution with n
finite upper limit forD« is the gamma distribution,16,21

r~D«;a,t!5
ta

G~a!
D«a21e2tD«, a.0, t.0, ~27!

whereD«>0.
Note that for each distribution we can define a cor

sponding characteristic temperature~see also Sec. IV!. For
the Dirac delta function we defineQE5D«E /k, for the
power function with parametera we defineQDa5D«m /k,
for the beta distribution with parametersa and b we define
QBa,b5D«m /k, and, finally, for the gamma distribution with
parametera we defineQGa51/(kt). By equating the aver-
age energy gap~D«! for the various distributions,24,25 we
obtain approximate relationships between the different ch
acteristic temperatures,

QE'
a

a11
QDa'

a

a1b
QBa,b'aQGa . ~28!

B. Model distributions for p 0„ l …

For the model distributionp0( l ) we can formulate sev-
eral physical–mathematical restrictions.

First, for physical reasons, the domain ofl is 0,1,2,... .
Second, we see from Eq.~3! that the MGFG«L

0 (2Db) di-

verges forb˜0. Hence, to guarantee for any finite upp
limit of D« the correct behavior ofG«L

0 (2Db), from Eq.

~11! it follows that also the MGFg̃l
0(t)5g̃l

0(2DbD«) must
diverge for b˜0, i.e., for some specific finite value oft
˜td5b0D«. Hence the MGF of any appropriate model di
tribution must be finite fort,td and diverge at some finite
value of t, i.e., attd .

One of the possible and very convenient families or s
tems of discrete distributions, the generalized hypergeom
ric probability ~GHP! family, is a generalization of a discret
version of the Pearson system,19 set up by Katz7,26and Ord.19

The Katz system, the simplest discrete analog of the Pea
system, was generalized by Kemp to the family of GH
distributions.17,27,28 The corresponding difference equatio
for p0( l ) is
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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p0~ l 11!2p0~ l !

p0~ l !

5
~a1,01 l !¯~ap,01 l !l2~b1,01 l !¯~bq,01 l !~11 l !

~b1,01 l !¯~bq,01 l !~11 l !
,

~29!

with MGF

g̃l
0~ t !5

pFq@a1,0,...,ap,0 ;b1,0,...,bq,0 ;let#

pFq@a1,0,...,ap,0 ;b1,0,...,bq,0 ;l#
, ~30!

wherel.0; pFq@a1,0,...,ap,0 ;b1,0,,...,bq,0 ;x# is the gener-
alized hypergeometric function,17,23with $ai ,0% and$bj ,0% the
parameters of the distribution~i 51,...,p, j 51,...,q!. For a
given orderp andq the distribution follows from solving Eq
~29! or inverting the MGF, Eq.~30!. From the second
physical–mathematical restriction~the divergence of the
MGF!, combined with general properties of the generaliz
hypergeometric functions, we obtain that for any accepta
distribution within the GHP family, the ordersp and q in
Eqs.~29! and ~30! must be given by

p5q11, ~31!

with ai ( i 51,...,p) not a negative integer. In those conditio
the MGF converges when

let,1, ~32!

and diverges elsewhere. From this follows that

l5e2td5e2b0D«, ~33!

eliminating thus one of the parameters. Note that
limD«˜`l˜0 and the MGFg̃l

0(t) is still converging for any
b.0. It is therefore possible to combine members of t
family with distributionsr~D«! that are defined up to infinity

The simplest case of Eqs.~29! and~30! is $p51, q50%,
which corresponds to the Katz family of distributions~bino-
mial, Poisson, and negative binomial!. The Poisson distribu-
tion is actually a limiting case and corresponds to$p50, q
50% and, since its MGF is therefore always converging,17 it
is physically not acceptable. In this respect the Poisson
tribution plays the same role as the Gaussian distributio
the continuous Pearson system.5 For the binomial distribu-
tion a1,052n is a negative integer, so the MGF also nev
diverges.

Hence the only physically acceptable distribution with
the Katz family is the diverging negative binomial distrib
tion,

p0~ l ;n,l!5S n1 l 21
n21 Dl l~12l!n l 50,1,..., ~34!

wherea1,05n.0 is not necessarily an integer. The corr
sponding MGF is given by

g̃l
0~ t !5

1F0@n;let#

1F0@n;l#
5S 12l

12letD n

, ~35!

with l given by Eq.~33!.
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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IV. STATISTICAL STATES

Since for solid systems the most interesting thermo
namic property is the heat capacity, we will only give e
plicit expressions forCV(T). Other thermodynamic proper
ties can be easily derived, using Eqs.~12!–~14!.

For the assessment and parametrization of the var
model distributions and corresponding statistical states,
will use the following experimental facts.

~1! At low temperature, for isotropic crystals the heat cap
ity increases as15,29 CV(T)'c3,expT

3. However, for an-
isotropic crystals the heat capacity may increase ove
considerable temperature range in a different way. In
case of layer lattices like graphite,30 gallium, and black
phosphorus,29 it is found thatCV(T)'c2,expT

2. For solids
which are supposed to consist of polymeric chains, l
selenium and tellurium,29 the heat capacity increases
CV(T)'c1,expT. In general, we can say that the heat c
pacity at low temperature for different crystal class
behaves asCV(T)'cs,expT

s, i.e., aTs-law, with s51, 2,
or 3. Note, however, that very close to zero Kelvin, t
heat capacity even of very anisotropic crystals will b
have like T3, although over a very small temperatu
range~typically a few Kelvin!.

~2! At high ~‘‘infinite’’ ! temperature, the heat capacity co
verges to the classical Dulong and Petit valueCV` ~i.e.,
3Nk for monatomic solids consisting ofN atoms, for
example!.

For the discrete distributionp0( l ) we start with the sim-
plest physically acceptable member of Kemp’s GHP fam
of distributions, the diverging negative binomial~dNB!. Ac-
cording to Eqs.~33!–~35!, this distribution is given by

p0~ l ;n,D«!5S n1 l 21
n21 De2b0D«• l~12e2b0D«!n, ~36!

g̃l
0~2DbD«!5S 12e2b0D«

12e2bD« D n

, ~37!

whence from Eq.~11!, the heat capacity is given by

CV~T!5NnkE
0

` ~bD«!2e2bD«

~12e2bD«!2 r~D«!dD«. ~38!

First, we can eliminate the parametersN andn, irrespec-
tive of the particular distributionr~D«!, by evaluating the
high temperature limit of Eq.~38!, and equating this to the
Dulong and Petit valueCV` ,

lim
b˜0

CV~T![CV`5 lim
b˜0

NnkE
0

` ~bD«!2~12bD«1¯ !

~1211bD«2¯ !2

3r~D«!dD«

5NnkE
0

`

r~D«!dD«

5Nnk. ~39!

For r~D«! we can use either one of the distributions
Sec. III A @Eqs.~24!–~27!#. A combination of the diverging
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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negative binomialp0( l ;n,l(D«)), Eq. ~36!, with, e.g., a
beta distributionr(D«;a,b,D«m), Eq. ~25!, will be referred
to as ‘‘beta-dNB state.’’

A. Delta-dNB state

The ‘‘delta-dNB state,’’ withr~D«! the delta function
given by Eq.~24!, yields the following expression for th
heat capacity, Eq.~38!:

CV~T!5CV`S QE

T D 2 e2QE /T

~12e2QE /T!2 , ~40!

where we defined the characteristic temperatureQE

5D«E /k.
Obviously, this is the well-known Einstein model,2,15,31

which has the right qualitative behavior. The low tempe
ture behavior of the heat capacity, however, does not m
any of the experimentalTs-laws, since

CV~T! ˜
T˜0

CV`S QE

T D 2

e2QE /T, ~41!

which goes to zero too rapidly.

B. Power-dNB state

The ‘‘power-dNB state,’’ uses forr~D«! the power dis-
tribution, Eq.~26!. The heat capacity is given by

CV~T!5CV`aS T

QDa
D aE

0

QDa /T xa11e2x

~12e2x!2 dx, ~42!

where we definedQDa5D«m /k.
Obviously, for a51, 2, and 3 this corresponds to th

one-, two-, and three-dimensional Debye models.3,4,15,31 In
the low temperature limit, the upper limit of the integral go
to infinity, and hence integrating Eq.~42! by parts and using
e2x/(12e2x)5(n51

` e2nx, we see thatCV(T) behaves at
low temperature as24

CV~T! ˜
T˜0

CV`aS T

QDa
D aE

0

` xa11e2x

~12e2x!2 dx

5CV`aG~a12!z~a11!S T

QDa
D a

~a>1!,

~43!

with z(x)5(n51
` n2x the Riemann zeta function23 which

rapidly goes to one for increasingx.1. Special values are
z(2)5p2/6 and z(4)5p4/90; z~3!'1.202 06. If we want
our model to reproduce aTs-law at low temperature, it fol-
lows from Eq.~43! that a5s. Moreover, if we measure th
proportionality constantcs,exp at low temperature, we ca
hence estimateQDs in the ‘‘elastic’’ limit as

QDs,el5S sG~s12!z~s11!CV`

cs,exp
D 1/s

. ~44!

Otherwise, we can use experimental heat capacity dat
obtainQDs .

C. Beta-dNB state

The ‘‘beta-dNB state,’’ employs forr~D«! the beta dis-
tribution, given by Eq.~25!. The heat capacity is given by
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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CV~T!5CV`

1

B~a,b! S T

QBa,b
D a1b21

3E
0

QBa,b /T

xa11S QBa,b

T
2xD b21 e2x

~12e2x!2 dx

~45!

5CV`

1

B~a,b! S QBa,b

T D 2E
0

1

ya11

3~12y!b21
e2~QBa,b /T!y

~12e2~QBa,b /T!y!2 dy, ~46!

whereQBa,b5D«m /k. For b51, using the fact thatB(a,1)
51/a, these expressions become thea-dimensional Debye
model, Eq.~42!. For the low temperature behavior we defin
a5QBa,b /T, and integrating Eq.~46! by parts and using the
same kind of substitution as in Eq.~43!, i.e., e2ay/(1
2e2ay)5(n51

` e2nay, we have

CV~T!5
CV`

B~a,b!
a2E

0

1

ya11~12y!b21
e2ay

~12e2ay!2 dy

5
CV`

B~a,b!
aF ~a11!E

0

1

ya~12y!b21
e2ay

12e2ay dy

2~b21!E
0

1

ya~12y!b22
e2ay

12e2ay dyG
5

CV`

B~a,b!
aF ~a11! (

n51

` E
0

1

ya~12y!b21e2naydy

2~b21! (
n51

` E
0

1

ya~12y!b22e2naydyG
5

CV`

B~a,b!
aF ~a11!B~a11,b! (

n51

`

1F1~a11,

a1b11;2na!2~b21!B~a12,b21!

3 (
n51

`

1F1~a12,a1b11;2na!G
˜

a˜` CV`

B~a,b!
aF ~a11!B~a11,b!

G~a1b11!

G~b!

3 (
n51

`

~na!2~a11!2~b21!B~a12,b21!

3
G~a1b11!

G~b21! (
n51

`

~na!2~a12!G
5CV`

G~a12!

B~a,b! Fz~a11!S T

QBa,b
D a

1~12b!z~a12!S T

QBa,b
D a11G

5CV`

G~a12!

B~a,b!
z~a11!S T

QBa,b
D a

, ~47!
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where in the fourth step we used a limit property of t
Kummer confluent hypergeometric function1F1(a,b;x), see
Ref. 23. To obtain aTs-law, we see that also in this casea
5s, and hence from very low temperature data we can e
mateQBs,b,el via

QBs,b,el5S G~s12!z~s11!CV`

B~s,b!cs,exp
D 1/s

~48!

or obtainQBs,b using other experimental heat capacity da

D. Gamma-dNB state

Finally, the ‘‘gamma-dNB state’’ state, with the gamm
distribution forr~D«! given by Eq.~27!, yields for the heat
capacity

CV~T!5CV`

1

G~a! S T

QGa
D aE

0

` xa11e2~11T/QGa!x

~12e2x!2 dx,

~49!

where we defined the characteristic temperatureQGa

51/kt. For the low temperature behavior, we can integr
Eq. ~49! by parts, substitutee2x/(12e2x)5(n51

` e2nx and
z5(n1T/QGa)x, and use the Taylor series of the gener
ized Riemann zeta function17,23 z(x,k)[(n51

` (n1k)2x

5( r 50
` (21)r(s) rz(x1r )kr /r !, with (s) r5s(s11)¯(s1r

21) Pochhammer’s symbol.17 The low temperature behav
ior is therefore

CV~T!5
CV`

G~a! S T

QGa
D aE

0

`

xa11e2~T/QGa!x
e2x

~12e2x!2 dx

5
CV`

G~a! S T

QGa
D aF ~a11!E

0

`

xae2~T/QGa!x
e2x

12e2x dx

2S T

QGa
D E

0

`

xa11e2~T/QGa!x
e2x

12e2x dxG
5

CV`

G~a! S T

QGa
D aF ~a11! (

n51

` S n1
T

QGa
D 2~a11!

3E
0

`

zae2zdz2S T

QGa
D (

n51

` S n1
T

QGa
D 2~a12!

3E
0

`

za11e2zdzG
5CV`

G~a12!

G~a! S T

QGa
D aFz~a11,T/QGa!

2z~a12,T/QGa!S T

QGa
D G

5CV`

G~a12!

G~a!
z~a11!S T

QGa
D aF11(

r 51

`

~21!r

3
~a11!r

r !

~a1r 11!z~a1r 11!

~a11!z~a11! S T

QGa
D r G

˜

T˜0

CV`a~a11!z~a11!S T

QGa
D a

. ~50!
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We see that whena5s we get approximately aTs-behavior,
and so we can obtain the ‘‘elastic’’QGs from

QGs,el5S s~s11!z~s11!CV`

cs,exp
D 1/s

. ~51!

Note that also for this statistical state the heat capa
converges to the Dulong and Petit value, even though
distributionr~D«! has no finite maximum energy gapD«m .

E. Classical limit

Obviously, in the classical limit all energy gaps will ten
to zero, and hencer~D«! will tend to a Dirac delta function
@Eq. ~24!#, i.e., with D«E˜0. Therefore the parameterl
5e2b0D«E of the dNB distributionp0( l ) tends to one. It is
interesting to note that Pessin32 has proved that asl˜1 with
n constant, the negative binomial distribution tends to
gamma; in this case a diverging negative binomial tending
a diverging gamma distribution. Hence all the described s
tistical states will transform in the classical limit to a diver
ing gamma state8 with

lim
D«˜0

CV~T!5CV`5CV0 . ~52!

As already observed, the delta-dNB and power-dN
states correspond to the Einstein and Debye models, s
the energy and index distribution of a single quantum h
monic oscillator~QHO! is given by a~diverging! geometric
distribution,17 and that of a set of independent QHOs by
~diverging! negative binomial distribution~being the convo-
lution of geometric distributions!. Hence we see that in th
classical limit the dNB states, corresponding to a QH
Hamiltonian, convert into a diverging gamma state ofN clas-
sical harmonic oscillators, withCV(T)5CV053Nk accord-
ing to the equipartition principle, see also Ref. 5.

V. APPLICATIONS TO Cu, a-Al2O3 , AND GRAPHITE

We applied the various statistical states to solid C
a-Al2O3 ~a-alumina or sapphire!, and graphite. Experimen
tal CV heat capacity data were taken from Castanetet al.33

and for graphite we usedCp data from DeSorbo and Tyler30

(10,T,300 K) and Butland and Maddison34 (300,T
,3000 K). In the latter caseCV was calculated using the
Nernst–Lindemann approximation.4,35

An analysis of the low temperature data (10,T
,25 K) on log–log scale showed thata53.11 for Cu,a
53.07 for a-alumina, anda52.00 for graphite; hence fo
the former two we seta5s53, for graphitea5s52. Note
that CV of graphite behaves likeT3 only below 1 K ~see
Refs. 36 and 37!. Taking CV`53R for copper and graphite
and 15R for alumina, we used the Mathematica38 routine
‘‘FindMinimum’’ to obtain the best least-square values
the different characteristic temperatures, as well asb for the
beta-dNB state. For copper we used experimental heat ca
ity data within the range 10,T,1000 K, for a-Al2O3
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. Heat capacity of Cu: experimental data~l!, delta-dNB state, Eq.
~40! ~---!, power-dNB state, Eq.~42! ~—!, beta-dNB state, Eq.~45! ~—!, and
gamma-dNB state, Eq.~49! ~-•-•-!. Parameters are listed in Table I.

TABLE I. Characteristic temperatures and parameters of Cu for var
statistical states.

Method CV` /R a5s
QE

~K!
QDa

~K!
QBa,b

~K! b
QGa

~K!
cs,exp

(J/mol Ks11)

CV fit 3 3 228 313 316 1.035 86.7
Literature 3 3 225a 313a

315b,c,d

318e

Elastic limit 3 3 ¯ 345 352 1.035 190 4.755•1025b

Literature 3 3 ¯ 345e

aReference 43.
bReference 33.
cReference 24.
dReference 15.
eReference 31.

TABLE II. Characteristic temperatures and parameters ofa-Al2O3 for vari-
ous statistical states.

Method CV` /R a5s
QE

~K!
QDa

~K!
QBa,b

~K! b
QGa

~K!
cs,exp

(J/mol Ks11)

CV fit 15 3 678 933 1059 1.482 263
Literature 15 3
Elastic limit 15 3 ¯ 1034 568.9 8.8•1026a

Literature 15 3 ¯ 1035a

aReference 33.

TABLE III. Characteristic temperatures and parameters of graphite for v
ous statistical states.

Method CV` /R a5s
QE

~K!
QDa

~K!
QBa,b

~K! b
QGa

~K!
cs,exp

(J/mol Ks11)

CV fit 3 2 1094 1820 3575 3.32 761
Literature 3 2 ;1878a

Elastic limit 3 2 ¯ 1322 935 2.06•1024b

Literature 3 2 ¯ 1370c

aReference 4, using a Tarasov equation.
bReference 30.
cReference 44.
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
within the range 10,T,2000 K, and for graphite within the
range 10,T,3000 K. We also evaluated the ‘‘elastic
characteristic temperatures from the low temperatureTs

behavior,30,33 using Eqs.~44!, ~48!, and~51!. Parameters are
given in Tables I–III and the resulting heat capacity curv
using the parameters obtained by least-square fit are give
Figs. 1–3. Root-mean-square deviations from the experim
tal CV data are presented in Table IV.

For copper~Table I, Fig. 1!, which is an example of a
simple isotropic monatomic crystal, we see that as expec
the power-dNB state~three-dimensional Debye model! pro-
vides a good description, both at low and high temperatu
indicated by the fact that the least-square and ‘‘elastic’’ v
ues ofQ are in fair agreement. For the beta-dNB state, wh
may be regarded as a generalization of the Debye model
find that b51.035, very close to the Debye valueb51. It
hence gives almost indistinguishable results from the pow

s

i-

FIG. 2. Heat capacity ofa-Al2O3 : experimental data~l!, delta-dNB state,
Eq. ~40! ~---!, power-dNB state, Eq.~42! ~—!, beta-dNB state, Eq.~45! ~—!,
and gamma-dNB state, Eq.~49! ~-•-•-!. Parameters are listed in Table II.

FIG. 3. Heat capacity of graphite: experimental data~l!, delta-dNB state,
Eq. ~40! ~---!, power-dNB state, Eq.~42! ~—!, beta-dNB state, Eq.~45! ~—!,
and gamma-dNB state, Eq.~49! ~-•-•-!. Parameters are listed in Table III.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dNB state. Both the delta-dNB~Einstein! and gamma-dNB
reproduce the qualitative behavior, but deviate especiall
low temperature; the delta-dNB state tending to zero too f
the gamma-dNB state too slow.

Alumina ~Table II, Fig. 2! is somewhat less isotropi
than copper, but still the power-dNB state~Debye model!
agrees very well with the experimental data. For the be
dNB state we find a valueb'1.5 which deviates more from
unity and results in a somewhat better description than
Debye model. Again, the delta-dNB and gamma-dNB sta
are comparable to each other and less accurate than the
two states.

Finally, graphite ~Table III, Fig. 3! is an anisotropic
crystal consisting of weakly bound layers37 with a different
low-temperature behavior up to about 100 K: aT2-law.30 In
this case we see that the simple delta-dNB state~Einstein
model! deviates more than for isotropic crystals. Also t
two-dimensional Debye model~power-dNB state! is less ac-
curate, and now comparable to the gamma-dNB state.
beta-dNB state, however, with a largeb value~3.22!, gives a
very accurate description over the whole temperature ra
also indicated by the fact that the least-square and ‘‘elas
Q values are very close.

Around 1950, Tarasov39–41 derived a model to describ
the heat capacity of anisotropic crystals. Using quantum h
monic oscillators, he furthermore assumed that the freque
spectrum at low frequency~up to n3! could be described by
a three-dimensional continuum model, fromn3 to n2 by a
two-dimensional, and fromn2 to n1 by a one-dimensiona
continuum model. DefiningD«a5hna , the ‘‘Tarasov’’ dis-
tribution r~D«! is given by

r~D«!55
3

D«2

D«1D«2D«3
, 0,D«,D«3

2
D«

D«1D«2
, D«3,D«,D«2

1

D«1
, D«2,D«,D«1

. ~53!

This yields for the heat capacity4,37

CV~T!5CV`FD1S Q1

T D2
Q2

Q1
H D1S Q2

T D2D2S Q2

T D J
2

Q3
2

Q1Q2
H D2S Q3

T D2D3S Q3

T D J G , ~54!

where

TABLE IV. Root-mean-square deviations of the heat capacity~J/mol K! for
different statistical states, using the parameters obtained by least-squa
see Tables I–III.

System T-range~K! NdataDelta-dNB Power-dNB Beta-dNB Gamma-dNB

Cu 10–1000 32 0.44 0.15 0.15 0.86
a-Al2O3 10–2000 38 2.69 0.96 0.78 3.73
Graphite 10–3000 108 1.28 0.52 0.08 0.49
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DaS Qa

T D5aS T

Qa
D aE

0

Qa /T xa11e2x

~12e2x!2 dx ~55!

is the a-dimensional Debye function@cf. Eq. ~42!#, andQa

5hna /k the corresponding characteristic temperature.
very low temperature Eq.~54! converges to a three
dimensional Debye model@Eq. ~42!, a53# with QD3

5A3 Q1Q2Q3. Pydaet al.4 analyzed graphite data37 from 0.5
to 1500 K using this equation, obtainingQ152571, Q2

5932, andQ356.0 K. The corresponding heat capacity
on the scale of Fig. 3, coinciding with the beta-dNB resu
and corresponds very well with the experimental data:
root-mean-square deviation is 0.12 J/mol K, which is simi
to that of the beta-dNB state~0.08, see Table IV!. Note that
both the beta-dNB state and the Tarasov equation have t
parameters~QBa,b , a, b, andQ1 , Q2 , Q3!.

In Figs. 4–6 we show the corresponding energy gap d
tributions. Note that the low temperature behavior of the h
capacity is especially sensitive to the left tail ofr~D«!, which
is enlarged in the insets. For copper the power and beta
tributions are virtually identical, and behave very differen
from the gamma distribution at smallD«. For alumina, the
power and beta distribution are more distinct, even at the
tails. Finally, for graphite the beta distribution now more
less resembles the gamma distribution. It is interesting
note that when the value of the maximum energy gapD«m

increases~and hence also the characteristic temperaturesQD

andQB!, the accuracy of the gamma distribution and cor
sponding gamma-dNB state improves; compare, e.g.,
(QB;300K) and graphite (QB;3600 K). It is also evident
that the behavior ofCV is less sensitive to the right tail o
r~D«!. For graphite, compare, e.g., the power and gam
results, which are of comparable accuracy, but have a c
pletely different right tail of the energy gap distribution; als
the beta and Tarasov distribution, which have compara
accuracy inCV , are rather different on the right tail.

This clearly shows the known difficulty of ‘‘inverting’’
the heat capacity to the frequency distribution37 @or r~D«! in

fit,

FIG. 4. Energy gap distributionsr~D«! of Cu: delta function, Eq.~24! ~---!,
power function, Eq.~26! ~—!, beta distribution, Eq.~25! ~—!, and gamma
distribution, Eq.~27! ~-•-•-!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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our terms#. From our ‘‘macroscopic’’ treatment, startin
from the energy fluctuations of the whole system, it can
be expected that the model distribution forr~D«! matches in
a precise way the distribution, which arises from an analy
of experimental data using atomic details and a mo
Hamiltonian ~see, e.g., Young and Koppel42 for the fre-
quency distribution of graphite!; however, the thermody
namic functions of the system, which are macroscopic
servables, are reproduced very well using, for example
simple beta distribution.

VI. DISCUSSION AND CONCLUSIONS

In this article we described how to derive the tempe
ture dependence of thermodynamic functions of pure qu
tum systems using the quasi-Gaussian entropy theory~QGE!,

FIG. 5. Energy gap distributionsr~D«! of a-Al2O3 : delta function, Eq.~24!
~---!, power function, Eq.~26! ~—!, beta distribution, Eq.~25! ~—!, and
gamma distribution, Eq.~27! ~-•-•-!.

FIG. 6. Energy gap distributionsr~D«! of graphite: delta function, Eq.~24!
~---!, power function, Eq.~26! ~—!, beta distribution, Eq.~25! ~—!, gamma
distribution, Eq.~27! ~-•-•-! and Tarasov distribution, Eq.~53! ~— — —!.
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
t

is
l

-
a

-
n-

i.e., by expressing the excess Helmholtz free energy in te
of the moment generating function~MGF! of the ~discrete!
energy distribution of the system, and modeling the latter
a quasi-Gaussian distribution. Using only a few very reas
able assumptions, this complicated MGF can be decompo
into ‘‘subelementary’’ MGFs, which are specified by the di
crete~lattice! distribution of the energy level indexl, and the
continuous distribution of the energy gapD«. In the classical
limit the energy gap distribution tends to a Dirac delta fun
tion located at zero, and hence the complicated overall
crete energy distribution transforms into a continuous dis
bution, as described in previous articles.8

We derived restrictions on possible model distributio
for the index and energy gap distributions, and presen
some examples of statistical states, i.e., the thermodyna
of a combination of a specific index and energy gap dis
bution. We combined the simplest physically acceptable
dex distribution, a diverging negative binomial~dNB! with
several energy gap distributions: the delta function, pow
function, beta and gamma distributions. It is very interest
to note that among these various statistical states are s
which are thermodynamically equivalent to well-know
models, like the Einstein model~equivalent to the delta-dNB
state! and the one-, two-, and three-dimensional Debye m
els ~equivalent to the power-dNB states!. This is a conse-
quence of the fact that the dNB distribution is the exact ind
distribution of a set of quantum harmonic oscillators. Inte
estingly, within the QGE scheme these models can there
also be derived without an explicit Hamiltonian model, on
using a basic set of physical requirements and assumpti
The beta-dNB state can be regarded as a generalization o
Debye models, to which it reduces forb51. All these states
reduce in the classical limit to the diverging gamma state5,8

which is the exact statistical state of a set of classical h
monic oscillators.

The different statistical states were applied to copp
a-alumina, and graphite, showing that in all cases the b
dNB state provides an accurate thermodynamic descrip
of these crystals, both at low and high temperature. For
anisotropic crystal like graphite, which consists of weak
bound layers, the beta energy gap distribution differs gre
from the one corresponding to the Debye model, but th
become identical for the simple isotropic monatomic cop
crystal. For graphite, the accuracy of the beta-dNB stat
comparable to that of the general Tarasov equation, hav
the same number of parameters.

Finally, the complexity of the statistical states may
enlarged in a rather systematic way, either by using m
complicated energy gap distributions and/or by employ
more complicated discrete index distributions, for exam
arising from the GHP family.

ACKNOWLEDGMENTS

M.E.F.A. was supported by the TMR grant ‘‘Develop
ment of theoretical and computational methods for study
thermodynamics of molecular systems.’’ A.A. acknowledg
‘‘Istituto Pasteur Fondazione Cenci Bolognetti’’ for financi
support.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



m

ds

ds

.

Di

st,

ter

4441J. Chem. Phys., Vol. 111, No. 10, 8 September 1999 Quasi-Gaussian entropy theory
1A. T. Petit and P. L. Dulong, Ann. Chim.~Paris! 10, 395 ~1819!.
2A. Einstein, Ann. Phys.~Leipzig! 22, 180 ~1907!.
3P. Debye, Ann. Phys.~Leipzig! 39, 789 ~1912!.
4M. Pyda, M. Bartkowiak, and B. Wunderlich, J. Them. Anal.52, 631
~1998!.

5A. Amadei, M. E. F. Apol, A. Di Nola, and H. J. C. Berendsen, J. Che
Phys.104, 1560~1996!.

6A. Amadei, M. E. F. Apol, and H. J. C. Berendsen, J. Chem. Phys.106,
1893 ~1997!.

7M. E. F. Apol, Ph.D. thesis, Rijksuniversiteit Groningen, The Netherlan
1997.

8A. Amadei, M. E. F. Apol, and H. J. C. Berendsen, J. Chem. Phys.109,
3004 ~1998!.

9M. E. F. Apol, A. Amadei, and H. J. C. Berendsen, J. Chem. Phys.109,
3017 ~1998!.

10A. Amadei, Ph.D. thesis, Rijksuniversiteit Groningen, The Netherlan
1998.

11M. E. F. Apol, A. Amadei, H. J. C. Berendsen, and A. Di Nola~in prepa-
ration!.

12D. Roccatano, A. Amadei, M. E. F. Apol, A. Di Nola, and H. J. C
Berendsen, J. Chem. Phys.109, 6358~1998!.

13A. Amadei, M. E. F. Apol, G. Chillemi, H. J. C. Berendsen, and A.
Nola, Mol. Phys.96, 1469~1999!.

14T. L. Hill, Statistical Mechanics~McGraw-Hill, New York, 1956!.
15D. A. McQuarrie, Statistical Mechanics~Harper & Row, New York,

1976!.
16J. K. Patel, C. H. Kapadia, and D. B. Owen,Handbook of Statistical

Distributions ~Marcel Dekker, New York, 1976!.
17N. I. Johnson, S. Kotz, and A. W. Kemp, 2nd ed.Univariate Discrete

Distributions ~Wiley, New York, 1992!.
18A. Stuart and J. K. Ord,Kendall’s Advanced Theory of Statistics, 5th ed.

~Griffin, London, 1987!, Vol. 1.
19J. K. Ord,Families of Frequency Distributions~Griffin, London, 1972!.
20J. K. Ord, inEncyclopedia of Statistical Sciences, edited by S. Kotz, N. L.

Johnson, and C. B. Read~Wiley, New York, 1985!, Vol. 6, pp. 655–659.
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
.

,

,

21N. I. Johnson, S. Kotz, and N. Balakrishnan,Continuous Univariate Dis-
tributions, 2nd ed.~Wiley, New York, 1994!, Vol. 1.

22N. I. Johnson, S. Kotz, and N. Balakrishnan,Continuous Univariate Dis-
tributions, 2nd ed.~Wiley, New York, 1995!, Vol. 2.

23M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions
~Dover, New York, 1972!.

24L. A. Girifalco, Statistical Physics of Materials~Wiley, New York, 1973!.
25D. A. McQuarrie,Statistical Thermodynamics~Harper & Row, New York,

1973!.
26L. Katz, in Classical and Contagious Discrete Distributions, edited by G.

P. Patil~Pergamon, Oxford, 1965!, pp. 175–182.
27A. W. Kemp, Ph.D. thesis, The Queen’s University of Belfast, Belfa

1968.
28A. W. Kemp, Sankhya, Ser. A30, 401 ~1968!.
29W. H. Stockmayer and C. E. Hecht, J. Chem. Phys.21, 1954~1953!.
30W. DeSorbo and W. W. Tyler, J. Chem. Phys.21, 1660~1953!.
31D. C. Wallace,Thermodynamics of Crystals~Wiley, New York, 1972!.
32V. V. Pessin, inClassical and Contagious Discrete Distributions, edited

by G. P. Patil~Pergamon, Oxford, 1965!, pp. 109-122.
33R. Castanet, S. J. Collocott, and G. K. White, CODATA Bull.59, 3

~1985!.
34A. T. D. Butland and R. J. Maddison, J. Nucl. Mater.49, 45 ~1973!.
35W. Nernst and F. A. Lindemann, Z. Elektrochem.17, 817 ~1911!.
36B. J. C. van der Hoeven, Jr. and P. H. Keesom, Phys. Rev.130, 1318

~1963!.
37B. Wunderlich and H. Baur, Adv. Polym. Sci.7, 151 ~1970!.
38S. Wolfram,Mathematica. A System of Doing Mathematics by Compu

~Addison-Wesley, Redwood City, 1988!.
39V. V. Tarasov, Zh. Fiz. Khim.24, 111 ~1950!.
40V. V. Tarasov, Zh. Fiz. Khim.27, 1430~1953!.
41V. V. Tarasov and G. A. Yunitskii, Zh. Fiz. Khim.39, 2077~1965!.
42J. A. Young and J. U. Koppel, J. Chem. Phys.42, 357 ~1965!.
43H. Eyring, D. Henderson, B. J. Stover, and E. M. Eyring,Statistical Me-

chanics and Dynamics~Wiley, New York, 1964!.
44V. V. Tarasov, Compt. Rend. Acad. Sci. U.R.S.S.46, 110 ~1945!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


