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In this article we present an equation of state for ¯ uids, based on the quasi-Gaussian entropy
theory. The temperature dependence along isochores is described by a con® ned Gamma state,
previously introduced, combined with a simple perturbation term. The 11 parameters occur-
ring in the free energy and pressure expressions along the isochores are obtained from mol-
ecular dynamics simulation data. The equation of state has been parametrized for the
Lennard-Jones ¯ uid in the (reduced) density range 0± 1.0 and (reduced) temperature range
1.0± 20.0 using (partly new) NV T molecular dynamics simulation data. An excellent agreement
for both energy and pressure was obtained. To test the ability to extrapolate to unknown state
points, the parametrization was also performed on a smaller set of data in the temperature
range 1.0± 6.0. The results in the two cases are remarkably close, even in the high temperature
range, and are often almost indistinguishable, in contrast to a pure empirical equation of state,
like for example the modi® ed Benedict± Webb± Rubin equation. The coexistence line agrees in
general very well with Gibbs ensemble and NpT simulation results, and only very close to the
critical point there are deviations. Our estimate of the critical point for both parametrizations
is somewhat di� erent from the best estimate based on Gibbs ensemble simulations, but is in
excellent agreement with other estimates based on NV T simulations and integral equations.

1. Introduction

Equations of state of ¯ uids are of immense practical
industrial importance. In practically all branches of
chemical technology and materials science (oil re® nery,
gas and liquid separation, synthesis, polymerization,
material design, etc.), detailed knowledge of equations
of state (EOS) is mandatory.

It is common practice to model the phase behaviour
of ¯ uids and ¯ uid mixtures with empirical or semi-
empirical models. Up to now the equations of state
most frequently used are empirical modi® cations of
the van der Waals EOS, like the Soave± Redlich±
Kwong and the Peng± Robinson equation [1]. These
equations are satisfactory for simple apolar systems,
but for more complex systems they only give acceptable
results if many adjustable parameters are used. Another
type of empirical EOS, the modi® ed Benedict± Webb±

Rubin (MBWR) equation, has been applied rather suc-
cessfully to describe the pV T surface of, for example, air,
para hydrogen, nitrogen, oxygen [2] and methane [3].

For the Lennard-Jones (LJ) ¯ uid, a model system
which captures all basic physical aspects of non-polar
¯ uids, the MBWR equation has been one of the most
successful up to now, even more successful than many
available s̀emi-theoretical’ equations of state, i.e. the
ones which are partly based on statistical mechanics [4].

However, the MBWR equation, like other empirical
equations of state, is accurate only within a limited tem-
perature range: after the parametrizations by Nicolas et
al. [5] and Johnson et al. [4] for the (reduced) tempera-
ture range 0.75 < T < 6.0, largely based on molecular
dynamics and Monte Carlo simulation data, new par-
ameters were obtained to improve the l̀ow temperature’
(0.45 < T < 0.85) range by Sun and Teja [6].

All empirical equations of state lack (by de® nition) a
® rm foundation in the statistical mechanics of ¯ uids. In
general, they can only be used as a local description
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within the range in which the parameters were obtained,
and often they have di� culties reproducing properly
temperature and density derivatives of the free energy,
such as the heat capacity.

The semi-theoretical EOS, often based on simple per-
turbation expansions, are accurate if a pure empirical
part is added. This implies that also for these equations,
temperature and density extrapolations outside the
parametrization range may not be accurate, and often
properties which were not used in the parametrization
are not reliable even within the parametrization range.
The most recent semi-theoretical EOS for LJ ¯ uids are
the Kolafa± Nezbeda (KN) [7] and Mecke et al. (VDW)
[8] ones. The KN equation is based on a ® rst order
perturbation expansion with respect to a temperature
dependent hard-sphere reference, combined with an
empirical temperature-density polynomial. In the
Mecke et al. VDW equation the hard-sphere reference
is directly combined with an empirical polynomial. In
both equations the temperature dependence of the hard-
sphere reference is obtained by the hybrid Barker± Hen-
derson theory [9] which links the LJ potential with the
hard-sphere diameter at every temperature. In their
parametrization ranges these EOS can be more accurate
than the MBWR equations but still could have the prob-
lems previously mentioned, due to the presence of pure
empirical terms for the temperature and density depen-
dence.

In this paper we will present a new equation of state,
based on the quasi-Gaussian entropy (QGE) theory.
This is a statistical mechanical approach based on prob-
ability distribution functions of ¯ uctuations inside the
system, instead of the usual partition functions. In
recent articles we illustrated its basic form for the
three main statistical ensembles: the canonical ensemble
(NV T ) using the energy [10] or excess energy [11] ¯ uc-
tuations, the isothermal± isobaric ensemble (NpT ) using
the enthalpy [10] or volume [12] ¯ uctuations, and the
grand canonical ensemble (¹VT ) using the grand canon-
ical heat function [10] or ¯ uctuations of the number of
particles [12]. For each of these three ensembles we
applied the theory at the level of Gamma or Gamma-
like (e.g. Inverse Gaussian) probability distributions,
which are the types of physically allowed distributions
just beyond the simplest one, the Gaussian. Application
to di� erent kinds of molecules showed that Gamma
distributions can be used successfully to describe the
thermodynamics of ¯ uids. Hence the corresponding
Gamma s̀tatistical state’ can be considered as a general
theoretical model for ¯ uid systems.

In particular, in the canonical ensemble the Gamma
statistical state based on the excess energy provided an
excellent description of the thermodynamics along iso-
chores over a large range of density and temperature,

and was applicable to virtually all the usual ¯ uid phase
conditions [11, 13, 14].

These results strongly suggest that the Gamma statis-
tical state can be an excellent model to obtain a general
EOS, really based on a coherent physical theory. In this
paper we use the previously introduced con® ned
Gamma statistical state [11] for the excess energy ¯ uc-
tuations (NV T ensemble) , in combination with a simple
perturbation term, which will be derived in section 2.2.
Assuming the resulting perturbed con® ned Gamma state
to be virtually an exact statistical state at every density,
at least within the density range of interest, we can build
up in a simple way a complete equation of state. In fact,
the temperature dependence along each isochore is
directly provided by the perturbed con® ned Gamma
state, if the parameters of the excess free energy expres-
sion and those of the pressure expression are known at
the arbitrary reference isotherm T 0. Such parameters
correspond to di� erent physical properties of the
system at the reference isotherm, depending only on
the density.

In this article we obtain them from molecular
dynamics simulation data, and two approaches will be
used to obtain an EOS. Firstly, we will evaluate from
energy and pressure data the necessary free energy and
pressure input properties at T 0 for a set of densities, and
hence the temperature along the corresponding iso-
chores will be obtained (discrete density equation of
state, DD EOS). Secondly, we will obtain the density
dependence of the free energy input properties, by inter-
polating a set of thermodynamic properties related to
these at the reference isotherm T 0 by simple poly-
nomials. In this way we obtain a fully analytical equa-
tion (continuous density equation of state, CD EOS).

The resulting equations of state will be applied to the
LJ ¯ uid in the density range 0± 1.0 (in reduced units),
using for both DD and CD equations two temperature
ranges for their parametrization: a large temperature
range (1.0 < T < 20.0) and a smaller one (1.0 <
T < 6.0). For the parametrization of both CD EOS
only energy data were used except at the reference iso-
therm T 0 = 2.0, where also pressure data were involved.
Conversely, the DD EOS parametrizations involved for
each isochore both energy and pressure data. The two
parametrizations for the DD and CD equations provide
an excellent description of the thermodynamics in a very
large temperature± density range, and also are able to
reproduce with high accuracy properties which were
not involved in the parametrization, like the heat ca-
pacity or, for the CD EOS, the pressure. Remarkably,
the parametrization in the smaller temperature range
(1.0 < T < 6.0) gives results which are extremely close
to the ones obtained from the large temperature range
(1.0 < T < 20.0), even at the highest temperatures.

1470 A. Amadei et al.
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The article is organized as follows. In section 2 we
describe the temperature dependence of the EOS,
giving a summary of the QGE theory [11, 14] (section
2.1) and introducing the perturbation (section 2.2). In
section 3 we describe in general how to obtain the
input properties of the perturbed Gamma state and
the models used for the interpolation. In sections 4
and 5 we give technical details on the molecular
dynamics simulations and parametrization procedure.
Finally, in sections 6 and 7 we discuss the results
obtained, also comparing our EOS with the MBWR,
KN and VDW equations and give some general conclu-
sions.

2. Temperature dependence

For the temperature dependence along isochores we
will use a perturbed con® ned Gamma state, based on the
con® ned Gamma state previously introduced [11, 14]
which will be reviewed in section 2.1. The perturbation
will be described in section 2.2.

2.1. Basic theory and con® ned Gamma state
The Helmholtz free energy in the canonical ensemble

is given by

A = ­ kT ln Q, (1)

Q @ 1
N!

QeQkinQpot, (2)

where N is the number of molecules, Qe is the electronic
partition function, Qkin is the kinetic energy partition
function, de® ned by the momenta of the system,
including the Planck constants. Qpot is the con® gura-
tional partition function, which can be expressed,
using the general approximation previously introduced
[11], as

Qpot @ Qv
id

0

exp (­ b U0 ) dx, (3)

with

U0 = U + w + E0 ­ E0
id (4)

the ideal reduced (or `potential’) energy. In these expres-
sions x are the atomic coordinates, U is the intermol-
ecular potential energy and w the intramolecular
potential energy (excluding bond length and bond
angle vibrational energies) . E0

id and Qv
id are the overall

vibrational ground state energy and vibrational parti-
tion function of the ideal gas ( U = 0), E0 is the overall
vibrational ground state energy of the actual system and
b = 1/kT . The prime on the integral means that we
integrate only over con® gurations where all the bond
lengths and angles are ® xed. The star denotes an inte-
gration over the accessible part of the con® gurational

space only [11], assuming that a (temperature indepen-
dent) part of the con® gurational space of the corre-
sponding ideal gas is inaccessible for the actual system
due to èxcluded volume’ e� ects.

We de® ne the ideal reference state as

Aref = ­ kT ln Qref , (5)

Qref =
1

N!
QeQkinQpot

ref , (6)

Qpot
ref = Qv

id

0

dx, (7)

and the con® ned ideal reference state as

A ref = ­ kT ln Q ref , (8)

Q ref =
1

N!
QeQkinQpot

ref , (9)

Qpot
ref = Qv

id

0

dx. (10)

The di� erence between the two states is merely the inte-
gration limits in con® gurational space: the full con® g-
urational volume of the ideal gas in equation (7), and the
con® gurational volume of the actual system with poss-
ible excluded volume e� ects in equation (10). We can
express the ideal reduced (A 0 ) and con® ned ideal
reduced (A ) free energies as excess properties in the
following way:

A 0 = A ­ Aref = A ­ kT ln e , (11)

A = A ­ A ref = kT ln GU 0 ( b ) , (12)

where

GU0 ( b ) = h exp ( b U0 ) i = exp ( b U0 ) q (U0 ) dU0 =
Qpot

ref

Qpot

(13)

is the moment generating function (MGF) [15± 17] of the
energy probability distribution function q (U0 ) , and

e =

0

dx

0

dx

(14)

is the fraction of con® gurational space which is access-
ible to the system. The ideal reduced and con® ned ideal
reduced internal energy, heat capacity, entropy and
pressure are given by

L J ¯ uid equations of state 1471
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U 0 = ­ ¶
¶ b

ln
Qpot

Qpot
ref V

= h U0 i = U , (15)

C 0
V =

¶ U 0

¶ T V
= CV , (16)

S 0 = ­ (A 0 ­ U 0 )
T = S + k ln e , (17)

S = ­ k ln GU0 ( b ) + U /T , (18)

p 0 = ­ ¶ A 0

¶ V T
= p + T x , (19)

p = ­ ¶ A
¶ V T

, (20)

where

x = k
d ln e

dV
. (21)

Due to the central limit theorem [15, 17], in a macro-
scopic system the energy distribution must be close to a
Gaussian, and hence it is possible to model the energy
probability density q (U0 ) and its moment generating
function GU 0 ( b ) = h exp ( b U0 ) i = exp ( b U0 ) q (U0 ) dU0

via a generalized Pearson system for unimodal curves
[11, 18]. The parameters of the probability distribution,
which in general depend on temperature, can be
expressed in terms of the central energy moments
Mn = h (U0 ­ U )n i and these in turn via statistical
mechanics in terms of CV and its temperature deriva-
tives. We thus obtain a closed ordinary di� erential equa-
tion, the thermodynamic master equation (TME) [11,
18], the solutions of which provide the whole thermo-
dynamics along an isochore. The distribution com-
pletely determines the thermodynamics, and so the
statistical state of the system. We showed that the use
of a Gamma distribution (giving rise to a Gamma
statistical state) to model q (U0 ) and GU 0 ( b ) reproduces
very well the thermodynamics of di� erent types of
molecules, both polar (water) and non-polar (methane),
over a large temperature-density range. Hence this
statistical state can be considered as a general condition
for ¯ uids. For the Gamma state, with energy distribu-
tion

q (U0 ) =
µa

G (a) (U0 ­ U0
m)a­ 1 exp ­ µ(U0 ­ U0

m) , (22)

where the parameters a, µ and U0
m can be expressed in

terms of U , CV and ¶ CV / ¶ T , the con® ned ideal reduced
properties are [11]

CV (T ) = CV 0
d (T )
d 0

2

, (23)

S (T ) =
CV 0

d 2
0

d (T ) + ln 1 ­ d (T )f g , (24)

U (T ) = U0 + (T ­ T 0) CV 0
d (T )
d 0

, (25)

A (T ) = U0 ­ T 0CV 0

d 0
­ TCV 0

d 2
0

ln 1 ­ d (T )f g , (26)

p (T ) = p0 + B0 + B1
T

T (1 ­ d 0) + T 0 d 0

+ B2
T
T 0

ln
T (1 ­ d 0)

T (1 ­ d 0) + T0 d 0
, (27)

where d follows from the TME

d (T ) =
T 0 d 0

T (1 ­ d 0) + T 0 d 0
, (28)

d 0 =
T 0( ¶ CV 0/ ¶ T )V

2CV 0
+ 1 (29)

and

Bi = Ai1T 0
¶ p0

¶ T V
+ Ai2T

2
0

¶ 2p0

¶ T2
V

, i = 0, 1, 2, (30)

with

A01 = ­ 2(1 ­ d 0) ln (1 ­ d 0) + d 0

D
,

A02 =
1
d 0

(1 ­ d 0) ln (1 ­ d 0) + d 0

D
,

A11 =
d 0

D
,

A12 = ­ 1
d 0

ln (1 ­ d 0) + d 0

D
,

A21 =
2(1 ­ d 0)

D
,

A22 =
1
D

, (31)

and

D = 2(1 ­ d 0) ln (1 ­ d 0) + d 0(2 ­ d 0) . (32)
A zero subscript denotes properties evaluated at the
arbitrary reference temperature T 0. Note that equations
(23) ± (26) , combined with equations (15) ± (17) , express
the free energy and all its temperature derivatives
along an isochore from the knowledge of four input
properties at T0: U , CV , ¶ CV / ¶ T and e . In addition,
the pressure and its temperature derivatives follow from

1472 A. Amadei et al.



D
ow

nl
oa

de
d 

B
y:

 [E
B

S
C

O
H

os
t E

JS
 C

on
te

nt
 D

is
tri

bu
tio

n]
 A

t: 
14

:0
9 

25
 M

ar
ch

 2
00

8 

equation (7), combined with equation (19), using four
additional input parameters at T 0: p , ¶ p / ¶ T , ¶ 2p / ¶ T 2

and x .

2.2. The perturbed con® ned Gamma state
The fact that the ¯ uid thermodynamics can be

described by Gamma states with high accuracy over a
large range of temperature and density, implies that the
exact statistical states of ¯ uid systems must be some
kind of perturbed Gamma state, where such a perturba-
tion is in general small and often negligible. We can
explicitly introduce the perturbation by considering
that for a system in a perturbed Gamma state it is poss-
ible to decompose the con® gurational integrals in equa-
tions (3) and (10) as

0

exp (­ b U0 ) dx =
0 G

exp (­ b U0 ) dx

+
0 P

exp (­ b U0 ) dx (33)

and

0

dx =
0 G

dx +
0 P

dx, (34)

where the G superscript means that the integrals are over
the part of accessible con® gurational space which can be
exactly described by a Gamma state over the whole
temperature range and P denotes integration over the
remaining perturbation part of the accessible con® gura-
tional space, see also ® gure 1.

Using equations (33) and (34) we can rewrite equation
(11) as

A 0 = ­ kT ln

0

exp (­ b U0 ) dx

0 G

exp (­ b U0 ) dx

­ kT ln

0 G

exp (­ b U0 ) dx

0 G

dx

­ kT ln

0 G

dx

0

dx

­ kT ln e , (35)

where

­ kT ln

0 G

exp (­ b U0 ) dx

0 G

dx

AG (36)

is the Helmholtz free energy of the Gamma region,
which is given by equation (26). In fact, equation (36)
implies that there exists a TME for the Gamma part of
con® gurational space only, with as solution the proper-
ties given by equations (23) ± (27) . In the last term of
equation (35), e is as usual the fraction of accessible
con® gurational space with respect to the whole (ideal
gas) one, equation (14), and ( 0 G

dx/ 0
dx) in the

third term is the fraction of the Gamma part within
the accessible part of con® gurational space, see also
® gure 1. If we use a PadeÂ approximant [19, 20] in b
for the ® rst term in equation (35), the perturbation, we
have

­ k ln

0

exp (­ b U0 ) dx

0 G

exp (­ b U0 ) dx

@ Fm
1 ( b )

Fn
2( b ) , (37)

where Fm
1 ( b ) and Fn

2( b ) are two polynomials in b of
order m and n. Hence

A 0 = AG + T
Fm

1 ( b )
Fn

2( b ) ­ kT ln

0 G

dx

0

dx

­ kT ln e . (38)

In the case m = n = 0, i.e. a [0/0]approximant[12], the
perturbation term becomes a constant in b and the per-
turbed Gamma state is completely equivalent to a pure
con® ned Gamma state. The expansion of immediate
higher complexity is either a [1/0]or [0/1]approximant.
While in the former case we obtain again a con® ned
Gamma state with a constant shift for the internal
energy, in the latter case we obtain a perturbed

L J ¯ uid equations of state 1473

G

P

1- e

Figure 1. Schematic view of con® gurational space and the
di� erent regions of equations (33) and (34) : dark grey
denotes the inaccessible part (with fraction 1 ­ e ), the
inner part (with fraction e ) is accessible and divided into
a Gamma region ( G ) and a small perturbation region (P).
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Gamma state that really goes beyond a usual con® ned
Gamma state. The perturbation term is in this case
simply

­ k ln

0

exp (­ b U0 ) dx

0 G

exp (­ b U0 ) dx

@ a0

b0 + b1 b
=

Ţ
T + g

, (39)

where ¸= a0/b0 and g = b1/kb0. Considering that from
equation (39)

lim
T ! 1

­ k ln

0

exp (­ b U0 ) dx

0 G

exp (­ b U0 ) dx

= +k ln

0 G

dx

0

dx

@ ¸ (40)

we can rewrite equation (38) as

A 0 = AG +
Ţ 2

T + g
­ Ţ ­ kT ln e

= AG ­ ģ T
T + g

­ kT ln e . (41)

So the physical meaning of ¸ is related to the fraction of
the accessible con® gurational space that is associated
with the Gamma state, and hence ¸ must be always
zero or negative.

Moreover, since

­ ¶
¶ b

ln

0

exp (­ b U0 ) dx

0 G

exp (­ b U0 ) dx

= U ­ UG @ ­ ģ T 2

(T + g ) 2 , (42)

where UG is the ideal reduced internal energy corre-
sponding to the Gamma part of con® gurational space,
given by equation (25), we ® nd for the in® nite tempera-
ture limit

lim
T ! 1

U ­ UG Umax @ ­ ģ , (43)

where Umax is the di� erence in the ideal reduced
internal energy corresponding to the whole accessible
phase space and the one corresponding to the Gamma
part only, at in® nite temperature. This gives a physical
interpretation to g as well. Note that the in® nite tem-

perature limit of the ideal reduced internal energy is a
® nite value (see [11] and [14]), and that from this last
equation follows that g and Umax must always have
the same sign.

For the low temperature limit of U ­ U G we should
distinguish two di� erent cases.

If g > 0, the perturbation term is de® ned down to
T = 0 and from equation (42) we have

lim
T ! 0

U ­ UG @ 0, (44)

which implies that the ground state energy of the system
lies within the Gamma part of accessible con® gurational
space. The perturbation therefore deals for the greater
part with high energy con® gurations, i.e. the right-hand
tail of the energy distribution q (U0 ) .

If g < 0, there is a singularity at temperature
T s = ­ g , where the perturbation term becomes in® nite.
Hence

lim
T ! T s

U ­ UG @ ­ 1 . (45)

Such a condition should be considered as an approxima-
tion in the case where the ground state energy does not
belong to the Gamma part of phase space, and the
perturbation deals with the low-energy con® gurations,
i.e. the left-hand tail of q (U0 ) . In fact, a real mathemat-
ical singularity can only occur at T = 0. So for densities
where the perturbed Gamma state is virtually the exact
state, T s must be regarded as a limit temperature which
de® nes the interval [0, T s], where the perturbation term
is numerically diverging.

Hence for this simplest perturbed con® ned Gamma
state we ® nally obtain

A 0 = AG +
UmaxT
T + g

­ kT ln e , (46)

U 0 = UG +
UmaxT2

(T + g )2 , (47)

S 0 = SG ­ Umax g

(T + g )2 + k ln e , (48)

C 0
V = CV G + 2

Umax g T

(T + g )3 , (49)

p 0 = pG + x T ­ d Umax

dV
T

T + g
+

dg
dV

UmaxT

(T + g )2 ,

(50)

where clearly AG , UG , SG , CV G and pG are given by equa-
tions (23) ± (27) , and if Umax = g = 0, equations (46) ±
(50) reduce to the con® ned Gamma state expressions.
With respect to the con® ned Gamma state equations
we have introduced two additional parameters, Umax

and g , and their volume derivatives to obtain the full
thermodynamics along an isochore. In the remainder of
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this article, we will denote by a G subscript the properties
that correspond to the Gamma part of con® gurational
space.

3. Density dependence

To build a complete equation of state we assume that
the perturbed con® ned Gamma state, given by equations
(46) ± (50), is the correct statistical state at every density,
at least inside the density range of interest. A strong
theoretical advantage to choosing the isochore descrip-
tion as a general one is the fact that it is based on
¯ uctuations of the `potential’ energy U0 , which are in
general well converging even close to the critical point,
although at the critical point, according to the critical
point ¯ uctuation theory, these ¯ uctuations and hence
CV should diverge [21]. This is in contrast with the
volume ¯ uctuations, which are clearly in® nite at the
critical point but also tend to diverge in the critical
point region. We therefore do not expect that the critical
point and coexistence region will create severe di� culties
for this equation of state, based on the isochore perturbed
Gamma state for the potential energy. Moreover, if we
would assume that the isotherm description using the
Gamma level of the QGE theory for density ¯ uctuations
(e.g. the diverging Gamma state for the volume[12]) is the
general statistical state at every temperature, the resulting
EOS does not allow phase separations in the system, since
the pressure along each isotherm is in that case monoto-
nically increasing with density. Conversely, with the pres-
ent choice that the Gamma level isochore description is
the general statistical state, it is always possible to obtain
an EOS which allows phase separations.

Equations (46) ± (50) provide directly the equation of
state if we have the explicit density dependence of the
properties UG 0, CV G 0, d 0, Umax , g and e , or of any other
six independent thermodynamic properties at the refer-
ence isotherm T0. Note that for the pressure equation
(equation (50) with (27) and (30)), besides d Umax/dV ,
dg /dV and x = k d ln e /dV , also pG 0, ( ¶ pG 0/ ¶ T )V and
( ¶ 2pG 0/ ¶ T2)V can be obtained via thermodynamic rela-
tions in terms of volume derivatives of UG 0, CV G 0 and d 0.
Also note that the G subscripts refer to the properties in
equations (23) ± (27) which describe the Gamma part of
con® gurational space only.

We can directly obtain the input properties needed
(excluding e ), relating them to proper physical `observ-
ables’ at the reference isotherm T 0, the energy (equation
(47)) and its temperature derivatives:

U0 = UG 0 + Umax
T 2

0

(T 0 + g )2 , (51)

T 0CV 0 = T0CV G 0 + 2 Umax
T2

0 g

(T 0 + g )3 , (52)

T2
0
¶ CV 0

¶ T = ­ 2T 0CV G 0(1 ­ d 0) ­ 2 Umax
T2

0 g (2T0 ­ g )
(T 0 + g )4 ,

(53)

T 3
0
¶ 2CV 0

¶ T 2 = 6T 0CV G 0(1 ­ d 0)2 + 12 Umax
T 3

0 g (T 0 ­ g )
(T 0 + g )5 ,

(54)

T 4
0
¶ 3CV 0

¶ T 3 = ­ 24T 0CV G 0(1 ­ d 0)3

­ 24 Umax
T 4

0 g (2T0 ­ 3g )
(T 0 + g )6 , (55)

where equations (51) ± (55) can be used as a system to
express our input properties if the energy and its tem-
perature derivatives are known along the reference iso-
therm. In the case a model for the molecular potential is
available, as for the LJ ¯ uid, we could in principle cal-
culate explicitly the central moments of the potential
energy and hence obtain the energy and its temperature
derivatives for equations (51) ± (55) from the statistical
mechanical relations [14]

U0 = h U0 i 0, (56)

T 0CV 0 =
1

kT 0

2[M2,0], (57)

T2
0
¶ CV 0

¶ T =
1

kT 0

2

[M3,0 ­ 2kT0M2,0], (58)

T 3
0
¶ 2CV 0

¶ T 2 =
1

kT 0

3

[M4,0 ­ 6kT0M3,0

+ 6(kT0)2M2,0 ­ 3M2
2,0], (59)

T 4
0
¶ 3CV 0

¶ T 3 =
1

kT 0

4

[M5,0 ­ 12kT0M4,0 + 36(kT 0)2M3,0

­ 10M3,0M2,0 + 36kT0M2
2,0 ­ 24(kT 0)3M2,0],

(60)

where Mn,0 = h (U0 ­ U0)n i 0 is the nth central potential
energy moment for a given density at the reference iso-
therm. Similarly, di� erentiating equations (51) ± (55) in
the volume and using thermodynamic relations which
link heat capacity volume derivatives to temperature
derivatives of the pressure, we can obtain a new
system of equations for the input derivatives needed
for the pressure expression. Again, from the molecular
potential we could in principle obtain these pressure
derivatives along the reference isotherm directly calcu-

L J ¯ uid equations of state 1475
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lating correlation terms between the instantaneous
energy and virial with equations analogous to equations
(56) ± (60). Finally, we could estimate also the 6th par-
ameter, the con® nement term k ln e and its volume deri-
vative x by comparing at every density A0 and p0,
obtained from our theory, with p 0

0 and A 0
0 (which can

be calculated by numerically integrating p 0
0 in the den-

sity), obtained either from experiment or from direct
calculation of the virial with a model potential.

In this way the full equation of state could be de® ned
from the knowledge of only a limited set of physical
properties at the reference isotherm. Unfortunately,
such a direct way cannot be used, as for any arbitrary
reference isotherm chosen, the required high order tem-
perature derivatives of the heat capacity and pressure
are beyond the available accuracy. Even in the case of
the LJ ¯ uid, where a model potential is present, the
direct calculations of high order central moments of
energy and virial-energy correlations are beyond present
computational power.

Hence we were forced to follow a di� erent strategy,
using for each isochore energy values obtained, at least,
at ® ve di� erent temperatures in order to evaluate the
input properties. Similarly using pressure values at
least at ® ve di� erent temperatures at each isochore, it
is possible to obtain also the pressure input properties.
So if the con® nement fraction and its volume derivative
are known (see above) , the full discrete density (DD)
equation of state can be obtained. For densities in
between subsequent isochores where the input proper-
ties were evaluated, a local numerical interpolation can
be used.

In order to simplify the EOS and severely test the
intrinsic coherence of the simulations and the power of
the theory, we will also use a di� erent approach (con-
tinuous density (CD) equation). From the free energy
input parameters obtained for a set of densities and
pressure values only at the reference isotherm, we calcu-
late six independent thermodynamic properties per iso-
chore along the reference isotherm. Afterwards these six

properties were interpolated in the whole density range
of interest by ® tting their values with simple model func-
tions.

We chose as independent properties A0, U0, CV 0, SG 0,
CV G 0 and e , as they are basic thermodynamic quantities
for which we do not expect a too complex density behav-
iour.

From these last properties we can retrieve the density
dependence of the `natural parameters’ of the equation
of state, UG 0, d 0, Umax and g , by inversion of equations
(46)± (70):

g = ­ T 0 1 + 2
S0 ­ SG 0

CV 0 ­ CV G 0
, (61)

Umax =
(CV 0 ­ CV G 0)(T0 + g )3

2T0 g
, (62)

U G 0 = A0 + T0SG 0 ­ UmaxT 0

T 0 + g
, (63)

where clearly S0 = S 0
0 ­ k ln e = (U0 ­ A0)/T 0. Fur-

thermore, d 0 can be solved numerically from

SG 0

CV G 0
=

1
d 0

+
1
d 2

0
ln (1 ­ d 0) . (64)

From the pressure equation (equation (50)) and its ® rst
and second temperature derivatives, we obtain the
required input derivatives for the pressure expressions
(equations (50), (27) and (30)) (see equations (65± 67)) ;
where we have de® ned for convenience

L 1 = ­ T0

T 0 + g
,

L 2 =
UmaxT0

(T0 + g )2 ,

W 1 = ­ g

(T 0 + g )2 ,

W 2 = ­ Umax

(T 0 + g )2 1 ­ 2g
T 0 + g

,

1476 A. Amadei et al.

dg
dV =

W 1
¶ 2p0

¶ T 2
V

­ ¶ 2pG 0

¶ T 2
V

­ Z1
¶ p0

¶ T V
­ ¶ pG 0

¶ T V

W 1Z2 ­ W 2Z1
, (65)

d Umax

dV = ­
W 2

¶ 2p0

¶ T 2
V

­ ¶ 2pG 0

¶ T 2
V

­ Z2
¶ p0

¶ T V
­ ¶ pG 0

¶ T V

W 1Z2 ­ W 2Z1
(66)

pG 0 = p0 ­ L 1
d Umax

dV
­ L 2

dg
dV

, (67)
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Z1 =
2g

(T 0 + g )3 ,

Z2 =
2 Umax

(T 0 + g )3 1 ­ 3g
T0 + g

, (68)

The temperature derivatives of the pressures p and pG ,
appearing in equations (65) and (66), can be easily
expressed via Maxwell relations as volume derivatives
of S , SG , CV and CV G , which are modelled via simple
analytical polynomials as a function of volume:

¶ p0

¶ T V
=

¶ S0

¶ V T
,

¶ pG 0

¶ T V
=

¶ SG 0

¶ V T
,

T 0
¶ 2p0

¶ T 2
V

=
¶ CV 0

¶ V T
,

T 0
¶ 2pG 0

¶ T2
V

=
¶ CV G 0

¶ V T
. (69)

For the con® nement fraction e we used in both DD
and CD equations the simple hard-sphere model based
on the Carnahan± Starling equation of state [22], which
proved to be an excellent description of the phase-space
con® nement of small molecules like water [11]:

k ln e = Nk
(3´

2 ­ 4 )́
(1 ­ )́ 2 , (70)

x = k
d ln e

dV = ­ q Nk
(2´2 ­ 4 )́
(1 ­ )́3 , (71)

with

´= q Nv (72)
the packing fraction, where q N = N/V is the molecular
density, v = p s 3

HS/6 the hard sphere volume per mol-
ecule and s HS the corresponding hard sphere diameter.
This clearly reduces e and x to one parameter, i.e. v.

For the CD equations we treated the density depen-
dence of the other parameters by simple interpolating
functions. To obtain the density dependence of A0 (and
A 0

0), the pressure at T 0 was modelled using a [10/1]PadeÂ
approximant. This, via expansion, is a generalization of
the [0/1] expression, which corresponds to a diverging
Gamma state for the volume ¯ uctuations [12]

p0 =
kT 0 q N + a 0

0 q
2
N + + a 0

8 q
10
N

1 ­ a 0
9 q N

= a0 q N + a1 q
2
N + + a8 q

9
N +

(kT 0 ­ a0) q N

1 ­ a9 q N
(73)

after reorganizing the terms. The ideal reduced and con-
® ned ideal reduced pressures are now given by

p 0
0 = p0 ­ q NkT 0, (74)

p0 = p0 ­ ( x + q Nk)T 0. (75)

Moreover, since limq N ! 0 A = 0, we ® nd by integration
the desired expressions of A0 and A 0

0:

A0

N =
q N

0
p0

dq N

q 2
N

= a1 q N + 1
2a2 q

2
N + + 1

8 a8 q
8
N

+ (a0 ­ kT 0) ln (1 ­ a9 q N)

+ kT 0
(3´2 ­ 4 )́
(1 ­ )́2 , (76)

A 0
0

N = a1 q N + 1
2a2 q

2
N + + 1

8a8 q
8
N

+ (a0 ­ kT 0) ln (1 ­ a9 q N) . (77)

For the density dependence of the ideal reduced
internal energy and Gamma ideal reduced entropy and
heat capacity, we used a simple ® fth order Taylor expan-
sion in q N :

U0

N = b0 q N + b1 q
2
N + b2 q

3
N + b3 q

4
N + b4 q

5
N, (78)

SG 0

N = c0 q N + c1 q
2
N + c2 q

3
N + c3 q

4
N + c4 q

5
N, (79)

CV G 0

N = d0 q N + d1 q
2
N + d2 q

3
N + d3 q

4
N + d4 q

5
N. (80)

Finally, for CV 0 we used a ® fth order polynomial plus an
additional term, in order to have a good description
even at very low density:

CV 0

N = e0 q N + e1 q
2
N + e2 q

3
N + e3 q

4
N + e4 q

5
N

+ exp f ­ e5( q N)1/2 g (e6 ­ e0) q N. (81)

In the low density range, the very low energies become
more probable than the very high ones in the absence of
many repulsive collisions. Hence in general for dilute
¯ uids we can assume that the perturbation corresponds
to the very low energy con® gurations, as indeed found
for the LJ ¯ uid. So Umax and g are both negative when
q N < q Ns and both positive when q N > q Ns , where q Ns is
the `switching’ density of the perturbation. Note that
when q N = q Ns , Umax and g are not necessarily zero;
in fact, for a LJ ¯ uid Umax has a singularity at this
density, while g is zero. It should be clear that for
q N < q Ns where g is negative, the singularity tempera-
ture T s = ­ g should always be inside the coexistence
region. This is because for each state point in q N, T

L J ¯ uid equations of state 1477
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space outside the coexistence region the thermodynamic
properties, which clearly do not diverge, are described
by the perturbed Gamma state of the corresponding
isochore. Since in the limit q N ! 0 the coexistence line
tends to zero as well, we must have limq N ! 0 g = 0.
Hence from equation (71) follows limq N ! 0(S0 ­ SG 0)/
(CV 0 ­ CV G 0) = ­ 1/2, and so with the density expres-
sions of S0 = (U0 ­ A0)/T0, SG 0 and CV G 0 (equations
(76) ± (80)) , we ® nd that e6 is given by

e6 = 2c0 + d0 ­ 8v ­ 2 b0 ­ a1 + a9(a0 ­ T 0)[ ]/T 0. (82)
In this way g correctly tends to zero as q N ! 0.

Summarizing, we model the perturbed Gamma state,
either using the free energy and pressure input properties
for each isochore (DD EOS), or interpolating the refer-
ence isotherm parameters with 32 coe� cients (CD
EOS). We report the results in section 6. For both
approaches we used the hard-sphere model for the con-
® nement, equations (70) ± (72) .

It is worth mentioning that, at least for the LJ ¯ uid,
the inclusion of the perturbation in the equation of state
is only really necessary if we want to reproduce with
high accuracy the ¯ uid thermodynamics over a very
large temperature range [23]. For a smaller temperature
range an EOS, based on the con® ned Gamma state,
corresponding to a perturbed Gamma state with

Umax = g = 0, has in general a comparable accuracy,
as indeed obtained for the LJ ¯ uid when 1 < T < 6
(data not shown).

4. Simulation data for the LJ ¯ uid

We will apply the equation of state to the Lennard-
Jones (LJ) ¯ uid, the molecules of which interact via the
following truncated and shifted pair-potential

u(rij) = 4
1
rij

12

­ 1
rij

6

]­ 4[ 1
rc

12

­ 1
rc

6

,

rij < rc, (83)

which is zero at and beyond the cut-o� distance rc. Note
that simulations with this potential, if properly per-
formed, should give thermodynamic averages that are
internally consistent, i.e. ful® l all the basic thermody-
namic relations [24]. In the absence of internal degrees
of freedom, the sum of these pair interactions clearly
yields the ideal reduced energy U . Like equation (83),
all results are given in the usual reduced LJ units [25]. To
avoid confusion with the `con® ned ideal reduced’ prop-
erties as de® ned in section 2.1, the conventional ` ’ on
the properties, to indicate that they are expressed in
reduced LJ units, is dropped in this article. Note also
that for simplicity from now on every thermodynamic
property will be given as a molecular property, although
not explicitly indicated. As èxperimental’ data we used

values obtained by molecular dynamics or Monte Carlo
(MC) simulations.

Usually a long-range correction is applied to the ther-
modynamic averages to compensate for the use of a cut-
o� , assuming the radial distribution function to be unity
beyond rc. However, such long-range corrections [25]
applied to the internal energy, pressure and chemical
potential, are thermodynamically not completely consis-
tent. We decided to use the c̀rude’ uncorrected thermo-
dynamic data from simulations with the truncated and
shifted potential, equation (83), which should be intern-
ally consistent. If wanted, the long-range (LR) and the
shift corrections for the energy, pressure and chemical
potential [4],

U = ULR + Ushift = 32
9 p q N[r­ 9

c ­ 3
2r

­ 3
c ], (84)

p = pLR = 32
9 p q

2
N[r­ 9

c ­ 3
2r

­ 3
c ], (85)

¹ = ¹LR + ¹shift = 64
9 p q N[r­ 9

c ­ 3
2r

­ 3
c ], (86)

can be applied afterwards, as will be done in section 6.
Values in the literature (e.g. Nicolas et al. [5], Sun and

Teja [6], Johnson et al. [4] and references therein) for
di� erent state points of the Lennard-Jones ¯ uid
obtained either by molecular dynamics or Monte
Carlo simulations are usually restricted to the tempera-
ture range below T = 6.0. To be able to severely test our
EOS and its ability to extrapolate to high temperature,
we generated extra state points by molecular dynamics
above T = 6.0. We used the GROMACS software
package [26], with a Gaussian isokinetic temperature
coupling [27, 28] that should provide a canonical distri-
bution in con® gurational space [29], a leap-frog integra-
tion scheme, cut-o� radius rc = 4.0 and shifted
potential, equation (83). After equilibration (50 000
steps), each production run consisted of 1500 000
steps, with timestep t given in table 1. All systems
consisted of 864 atoms, except at T = 20, q N = 1.0,
where a system of 1728 atoms was used, as the thermo-
dynamic averages were somewhat size dependent at
these conditions. At other densities and/or temperatures
both system sizes gave identical results. Values of U
and p are given in table 1, with their estimated
random error [23, 25, 30].

5. Parametrization procedure

Both the DD and CD equations were parametrized on
the following simulation data.

At densities q N = 0.01 and 0.05 (0.95 < T < 6.0) we
used selected data from Sun and Teja [6] (28 points); at
densities 0.1, 0.2, 0.3, . . . , 0.9 and 1.0 (1.0 < T < 6.0) we
used selected data from Johnson et al. [4] (109 points); at
the latter densities for T > 6.0, we used the data from
table 1 (50 points). The data of Sun and Teja were

1478 A. Amadei et al.
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recorrected to obtain truncated-and-shifted potential
values.

The CD equation was parametrized in the following
way. Since it is highly nonlinear in the coe� cients ai, bi,
ci, di, ei and parameter v, an overall ® t to the data at
once was impossible. We therefore adopted the fol-
lowing strategy:

(1) First, the pressure p0 was ® tted at the reference
isotherm T 0 = 2.0 by equation (73), obtaining in
this way the coe� cients ai and also the density
expression of A 0

0 (equation (77)) . Also the energy
U0 along the reference isotherm was ® tted by
equation (78), yielding the coe� cients bi.

(2) The value of v, the hard-sphere volume, was
evaluated in the following way. At each of the
12 isochores, the experimental energy U was
® tted by the expression of U (T ) for the perturbed
Gamma state, given by equations (47) and (25):

U (T ; U G 0, CV G 0, d 0, Umax , g )

= UG 0 + (T ­ T 0)
T 0CV G 0

T (1 ­ d 0) + T0 d 0

+
UmaxT2

(T + g )2 , (87)

yielding an estimate of the ® ve parameters UG 0,
CV G 0, d 0, Umax and g at each density. Using
these estimates, the corresponding values of the
free energy A0 = AG 0 + UmaxT 0/ (T 0 + g ) ,
equations (46) and (26), were evaluated. Since
from the pressure ® t already the coe� cients ai

and hence the density dependence of A 0
0 were

known, the term k ln e could be evaluated at
every density via equation (11) as

k ln e = (A0 ­ A 0
0)/T 0. (88)

L J ¯ uid equations of state 1479

Table 1. Extra molecular dynamics simulation results of this work for the EOS parametrizations, using the truncated and shifted
LJ potential, equation (83). Numbers between parentheses are the random errors of the mean in the last decimal place(s). No
long-range or shift correction is applied to the averages.

q N T p U t q N T p U t

0.1 6.0 0.651 9(2) - 0.450 2(4) 0.002 0.6 6.0 8.593(3) - 2.229 6(10) 0.002
0.1 8.0 0.882 8(2) - 0.388 1(4) 0.002 0.6 8.0 11.572(4) - 1.642 5(12) 0.002
0.1 10.0 1.111 9(2) - 0.330 2(5) 0.000 5 0.6 10.0 14.404(5) - 1.091 8(16) 0.000 5
0.1 12.0 1.339 3(6) - 0.273 9(10) 0.000 1 0.6 12.0 17.131(9) - 0.565 5(29) 0.000 1
0.1 16.0 1.792 6(8) - 0.166 5(10) 0.000 05 0.6 16.0 22.373(19) 0.421 5(49) 0.000 05
0.1 20.0 2.243 8(10) - 0.065 0(18) 0.000 05 0.6 20.0 27.395(7) 1.353 5(26) 0.000 05

0.2 6.0 1.450 8(5) - 0.886 9(5) 0.002 0.7 6.0 12.549(4) - 2.318 7(10) 0.002
0.2 8.0 1.986 5(6) - 0.754 0(6) 0.002 0.7 8.0 16.600(4) - 1.555 3(13) 0.002
0.2 10.0 2.516 5(7) - 0.626 8(7) 0.000 5 0.7 10.0 20.416(5) - 0.846 5(16) 0.000 5
0.2 12.0 3.035 3(16) - 0.507 5(13) 0.000 1 0.7 12.0 24.034(12) - 0.181 7(35) 0.000 1
0.2 16.0 4.067 6(24) - 0.278 2(22) 0.000 05 0.7 16.0 31.046(19) 1.089 9(55) 0.000 05
0.2 20.0 5.089 5(13) - 0.048 2(13) 0.000 05 0.7 20.0 37.624(22) 2.252 9(62) 0.000 05

0.3 6.0 2.485(1) - 1.301 5(6) 0.002 0.8 6.0 18.198(5) - 2.209 2(12) 0.002
0.3 8.0 3.421(1) - 1.084 4(7) 0.002 0.8 8.0 23.553(6) - 1.244 8(16) 0.002
0.3 10.0 4.336(1) - 0.879 5(9) 0.000 5 0.8 10.0 28.577(7) - 0.351 9(19) 0.000 5
0.3 12.0 5.235(3) - 0.680 9(17) 0.000 1 0.8 12.0 33.305(14) 0.479 4(38) 0.000 1
0.3 16.0 6.991(5) - 0.306 2(31) 0.000 05 0.8 16.0 42.409(25) 2.061 2(63) 0.000 05
0.3 20.0 8.716(5) 0.059 7(30) 0.000 05 0.8 20.0 50.920(27) 3.504 8(71) 0.000 05

0.4 6.0 3.879(1) - 1.681 6(7) 0.002 0.9 6.0 26.455(6) - 1.837 4(13) 0.002
0.4 8.0 5.337(2) - 1.363 3(9) 0.002 0.9 8.0 33.119(7) - 0.636 6(16) 0.002
0.4 10.0 6.751(2) - 1.061 6(11) 0.000 5 0.9 10.0 39.595(8) 0.465 8(19) 0.000 5
0.4 12.0 8.131(4) - 0.769 0(20) 0.000 1 0.9 12.0 45.648(16) 1.484 4(35) 0.000 1
0.4 16.0 10.811(8) - 0.217 7(37) 0.000 05 0.9 16.0 57.255(27) 3.413 3(64) 0.000 05
0.4 20.0 13.426(4) 0.314 4(21) 0.000 05 0.9 20.0 68.032(33) 5.166 6(79) 0.000 05

0.5 6.0 5.788(2) - 1.998 4(9) 0.002 1.0 6.0 37.253(7) - 1.104 9(15) 0.002
0.5 8.0 7.957(3) - 1.560 5(10) 0.002 1.0 8.0 46.122(9) 0.349 4(20) 0.002
0.5 10.0 9.997(3) - 1.146 4(12) 0.000 5 1.0 10.0 54.252(9) 1.695 9(21) 0.000 5
0.5 12.0 11.975(7) - 0.746 2(27) 0.000 1 1.0 12.0 62.131(20) 2.949 87(45) 0.000 1
0.5 16.0 15.818(11) 0.014 6(40) 0.000 05 1.0 16.0 76.412(34) 5.226 4(78) 0.000 05
0.5 20.0 19.501(5) 0.722 6(22) 0.000 05 1.0 20.0 89.995(27) 7.339 0(60) 0.000 05
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These values were then ® tted by equation (70),
yielding v and the explicit density dependence
of k ln e and x via equations (70) ± (72) , and the
density dependence of A0 from equation (76).

(3) Since already the density dependence of three of
the six parameters of the isochore expression of
A 0 (T ) were de® ned, we could eliminate 2 of the 5
parameters in the isochore expression of U (T ) at
will, by expressing them in terms of the other
remaining three parameters. We decided to elim-
inate UG 0 and Umax , yielding

U (T ; CV G 0, d 0, g )

= U0 + (T ­ T 0)
T 0CV G 0

T (1 ­ d 0) + T 0 d 0

+ T 0 CV G 0
1
d 0

+
1
d 2

0
ln (1 ­ d 0) ­ S0

T 2

T 0 g
T 0 + g
T + g

2

­ T 0

g
, (89)

where the values of U0 and S0 = (U0 ­ A0)/T 0

are given by the polynomial expressions in q N .
This equation was used to re® t U along each
of the 12 isochores, obtaining new values of
CV G 0, d 0 and g at those densities.

(4) Next, CV G 0 and d 0, converted into SG 0 via

SG 0 = CV G 0
1
d 0

+
1
d 2

0
ln (1 ­ d 0) (90)

were ® tted by equations (79) and (80).
(5) Eliminating all parameters but g in the expres-

sion of U (T ) , we again re® tted the energy values
along each isochore to the following equation to
obtain new values of g at each density:

U (T ; g ) = U0 + (T ­ T 0)
T 0CV G 0

T (1 ­ d 0) + T 0 d 0

+ T 0 SG 0 ­ S0

T2

T 0 g
T0 + g
T + g

2

­ T 0

g
, (91)

where the values of U0, S0, SG 0 and CV G 0 are
given by the polynomial expressions in q N , and
d 0 is obtained from SG 0 and CV G 0 via equation
(64).

(6) Finally, g was converted to CV 0 via

CV 0 = CV G 0 +
2T0(SG 0 ­ S0)

T0 + g
(92)

at each of the 12 densities and ® tted by equation
(81), including the constraint on the zero density
limit of g (equation (82)) . In this iterative way all
the 32 independent coe� cients were obtained.

For the DD equation we used the estimates of v and
the free energy input properties as described in step (2)
above. In addition, we also evaluated the pressure input
properties p 0

0, ¶ p 0
0/ ¶ T , ¶ 2p 0

0/ ¶ T 2, d Umax/dV and
dg /dV from a ® t of the isochore pressure data with
equation (50) and x provided by the value of v.

6. Results and comparison

To test the stability of the parametrization procedure
described above and the ability of the QGE equations of
state to extrapolate to unknown state points, the para-
metrization was performed on two datasets:

(a) all energy values of the dataset described in sec-
tion 5 in the range T < 20.0 (187 points), and

(b) only energy values in the range T < 6.0 (137
points).

The ® nal coe� cients obtained for the CD equation
using dataset A (T < 20.0) are given in table 2, and
the equation based on this set will be referred to as
`QGE-A’, the corresponding DD equation as `dQGE-
A’. The CD equation based on dataset B with T < 6,
the coe� cients of which are given in table 3, will be
referred to as `QGE-B’, the corresponding DD equation
as `dQGE-B’ . Note that the value of v, the hard-sphere
volume per molecule, evaluated using a perturbed
Gamma state model over a large density and tempera-
ture range as reported in tables 2 and 3, is very similar to
the value v 0.19 obtained by Roccatano et al. [23] at a
single isochore using a pure con® ned Gamma state
model in a smaller temperature range (1.4 < T < 10).

In order to have an overall estimate of the accuracy of
the di� erent equations of state, we calculated several
statistical properties. First, we evaluated the value of
c 2 per degree of freedom, de® ned as

c 2/Ndf =
1

Ndf

Ndata

i

Xi,EOS ­ Xi,exp

s Xi,exp

2

, (93)

where X stands for energy and pressure, s Xi,exp is the
experimental error (standard deviation) , and Ndf =
Ndata ­ Npar is the number of degrees of freedom, with
Npar the number of coe� cients of the EOS which were
® tted on the energy and pressure data. Secondly, we
calculated partial c 2 values, de® ned as

c 2
X/Ndata =

1
Ndata

Ndata

i

Xi,EOS ­ Xi,exp

s Xi,exp

2

, (94)
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with X either energy or pressure. Thirdly, we evaluated
the root mean square deviations (RMSD) as well as the
% AAD of U and p, the latter de® ned as

AAD X =
1

Ndata

Ndata

i

Xi,EOS ­ Xi,exp

Xi,exp
, (95)

where X is energy or pressure.
To compare the equations of state in di� erent tem-

perature ranges, we used ® ve di� erent sets of simulation
data for the calculation of the statistics.

(1) All data of Johnson et al. in the range
0.005 < q N < 1.0 and 0.75 < T < 2.0, a total of
121 values of U (59 of which were used for the
regression of our CD and DD equations) and 121
of p (59 of which were used for the regression of
the DD equations) .

(2) The selected energy data of Johnson et al. that
were used for the parametrization of the QGE
equations of state, in the range 0.1 < q N < 1.0
and 1.0 < T < 6.0 (109 values) , and the corre-
sponding 109 pressure values.

(3) Set (2) augmented with values of table 1 for
T < 12.0, in total 149 energy and 149 pressure
values.

(4) Set (2) augmented with all values of table 1, in
total 169 energy and 169 pressure values.

(5) The values of Miyano [31] in the temperature
range 20 < T < 50 (15 energy and 15 pressure
values).

Values of c 2/Ndf , the partial c 2 values, RMSD and
% AAD are given in tables 4 and 5 for the two DD
equations (dQGE-A and dQGE-B), the two CD equa-
tions (QGE-A and QGE-B), the MBWR equations of
Johnson et al. [4] (MBWR-1) and Sun and Teja [6]
(MBWR-2), and the equations of Kolafa and Nezbeda
[7] (KN) and Mecke et al. [8] (VDW).

Since Johnson et al. and Sun and Teja used the ® rst
® ve virial coe� cients to obtain ® ve of the 32 linear
coe� cients of the MBWR equation, the number of
degrees of freedom for c 2 is Ndf = Ndata ­ 27 in their
case. Kolafa and Nezbeda ® tted 20 coe� cients, hence
Ndf = Ndata ­ 20, and Mecke et al. evaluated 32 coe� -
cients based on energy and pressure data, so

L J ¯ uid equations of state 1481

Table 2. The 32 independent coe� cients of the CD perturbed Gamma equation of state QGE-A in equations
(70) ± (71) and equations (76) ± (81) for the density dependence of the six parameters A0, U0, CV 0, SG 0, CV G 0
and e at isotherm T0 = 2.0, based on dataset A (1.0 < T < 20). The value of v corresponds to a hard-sphere
diameter s HS = 0.714 15. All coe� cients are in reduced units.

i ai bi ci di ei

0 - 57.772 381 - 6.766 771 269 - 0.886 540 024 0.240 264 838 2.772 820 359
1 201.854 809 3.575 787 554 - 1.455 723 780 0.649 393 609 - 4.436 228 538
2 - 678.012 949 - 5.960 266 536 1.326 099 535 - 0.997 026 117 3.024 514 616
3 2055.563 845 2.477 668 433 - 1.694 656 701 1.379 970 366 2.423 913 956
4 - 4891.944 123 1.896 517 395 0.658 283 266 - 0.598 175 645 - 2.026 140 177
5 8153.995 69 1.132 779 811
6 - 8577.929 95 0.912 564 161
7 5059.186 825
8 - 1263.124 319 v = 0.190 705
9 - 3.423 831 5

Table 3. The 32 independent coe� cients of the CD perturbed Gamma equation of state QGE-B, based on
dataset B (1.0 < T < 6).

i ai bi ci di ei

0 - 57.772 381 - 6.766 771 269 - 0.872 956 488 0.235 283 471 1.765 739 772
1 201.854 809 3.575 787 554 - 1.928 774 403 1.016 658 808 - 3.773 464 278
2 - 678.012 949 - 5.960 266 536 3.213 196 979 - 2.500 157 643 3.215 568 161
3 2055.563 845 2.477 668 433 - 4.600 892 408 3.675 244 314 1.595 198 541
4 - 4891.944 123 1.896 517 395 2.049 665 016 - 1.690 310 341 - 1.576 624 871
5 8153.995 69 2.498 445 686
6 - 8577.929 95 0.934 749 866
7 5059.186 825
8 - 1263.124 319 v = 0.190 705
9 - 3.423 831 5
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1482 A. Amadei et al.

Table 4. Values of c 2/ Ndf (equation (93)) , and partial c 2 (equation (94)) , root mean square deviations and % AAD (equation
(95)) of U and p, using three di� erent datasets, see text, for di� erent equations of state parametrized in the range T < 6.

Dataset T range dQGE-B QGE-B MBWR-1 MBWR-2

(1) 0.75 < T < 2.0 c 2/ Ndf 10.3 25.2 22.5 89.5
c 2

U / Ndata 4.0 13.6 36.9 100.2
RMSD U 0.005 0.008 0.011 0.021

% AAD U 0.32% 0.67% 0.75% 1.43%
c 2

p/ Ndata 6.5 30.1 3.0 58.8
RMSD p 0.014 0.051 0.009 0.068

% AAD p 2.27% 2.64% 1.18% 2.53%

(2) 1.0 < T < 6.0 c 2/ Ndf 2.3 32.4 43.0 251.8
c 2

U / Ndata 0.8 3.0 70.2 133.5
RMSD U 0.002 0.005 0.027 0.028

% AAD U 0.08% 0.20% 0.71% 1.22%
c 2

p/ Ndata 1.7 52.3 5.2 307.7
RMSD p 0.005 0.082 0.019 0.194

% AAD p 0.17% 0.92% 0.82% 1.76%

(3) 1.0 < T < 12.0 c 2/ Ndf 352.2 119.5 5 930 2 915
c 2

U / Ndata 282.4 79.1 10 799 4 466
RMSD U 0.031 0.021 0.253 0.140

% AAD U 2.05% 1.29% 13.42% 7.39%
c 2

p/ Ndata 185.7 134.2 145.8 914.8
RMSD p 0.13 0.11 0.11 0.25

% AAD p 0.28% 0.76% 0.77% 1.54%

Table 5. Values of c 2/ Ndf (equation (93)) , and partial c 2 (equation (94)) , root mean square deviations and % AAD (equation
(95)) of U and p, using three di� erent datasets, see text, for di� erent equations of state roughly parametrized in the range T < 20.

Dataset T range dQGE-A QGE-A KN VDW

(1) 0.75 < T < 2.0 c 2/ Ndf 38.3 47.3 4.0 2.4
c 2

U / Ndata 36.4 47.5 5.0 2.9
RMSD U 0.011 0.011 0.005 0.003

% AAD U 0.39% 0.70% 0.56% 0.54%
c 2

p/ Ndata 2.7 34.6 2.0 1.2
RMSD p 0.011 0.054 0.010 0.008

% AAD p 1.18% 2.38% 1.48% 0.88%

(4) 1.0 < T < 20.0 c 2/ Ndf 16.3 96.2 25.1 25.3
c 2

U / Ndata 4.0 6.0 13.3 17.4
RMSD U 0.004 0.005 0.013 0.018

% AAD U 0.36% 0.83% 0.92% 1.18%
c 2

p/ Ndata 19.0 168.2 32.3 28.4
RMSD p 0.03 0.20 0.06 0.06

% AAD p 0.34% 0.73% 0.57% 0.41%

(5) 20.0 < T < 50.0 c 2/ Ndata 0.6 1.8 0.6 0.6
c 2

U / Ndata 0.8 0.8 1.0 0.7
RMSD U 0.33 0.33 0.30 0.35

% AAD U 15.54% 15.35% 17.11% 13.19%
c 2

p/ Ndata 0.3 2.8 0.3 0.6
RMSD p 0.66 1.98 0.46 0.77

% AAD p 0.65% 0.88% 0.50% 0.82%
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Ndf = Ndata ­ 32. For the two CD QGE equations
(QGE-A and QGE-B) we have 32 nonlinear coe� cients,
hence Ndf = Ndata ­ 32. Finally, for the two DD QGE
equations (dQGE-A and dQGE-B) we have 10 par-
ameters per isochore, hence Ndf = Ndata ­ 100.

As previously discussed [23], for a LJ ¯ uid a simula-
tion of a few million time-steps seems to provide vir-
tually èxact’ thermodynamic averages as shown by the
extremely small estimated random errors, see table 1. In
such a condition even an excellent model will have sig-
ni® cant deviations with respect to the experimental
properties. Therefore the c 2 and partial c 2 values give
a measure of the physical accuracy of the model itself
with respect to the `exact’ system behaviour, and hence
can only be used for a relative comparison between
di� erent models.

The results for the equations of state which were para-
metrized in the temperature range T < 6 are summar-
ized in table 4.

First of all it is clear that both QGE equations are
very accurate within their parametrization range
(1.0 < T < 6.0). Especially the dQGE-B equation is
very accurate for both energy and pressure and the accu-
racy for the energy is about the same for dQGE-B and
QGE-B. The pressure is for the latter somewhat less
accurate, obviously since in that case almost no pressure
data were used in the regression. Comparing with the
Johnson et al. MBWR-1 equation, we see that the
dQGE-B equation is clearly superior and the QGE-B
is on average comparable ( c 2 values) , with less accuracy
for the pressure and higher accuracy for the energy ( c 2

U ,
RMSD and %AAD U ). The MBWR-2 equation is in
general worse than both QGE equations of state.

In the range 0.75 < T < 2.0, including many low-tem-
perature data which were not used to regress the QGE
equations of state, we have a similar situation. The
dQGE-B equation is clearly superior, and the QGE-B
and MBWR-1 equations are on average comparable,
although the QGE-B describes the energy better.

If we extrapolate in temperature up to twice the para-
metrization range, we see that both QGE equations are
still very accurate compared to the MBWR equations,
especially for the energy. Curiously, the QGE-B equa-
tion is better than the dQGE-B, probably because some
small local noise in the parameters in the range up to
T = 6 is smoothed in the QGE-B equation by the inter-
polation polynomials. It is clear that with both QGE
equations of state it is possible to extrapolate in tem-
perature to at least twice the parametrization range with
good accuracy. The polynomial description of the
MBWR equations does not guarantee a reasonable be-
haviour outside its parametrization range. Since we
almost did not use pressure data for the regression of
the QGE-B equation, the good reproduction of the

pressure data by this equation of state is therefore a
more independent and relevant test.

The results for the equations of state which were para-
metrized roughly in the range up to T = 20 are summar-
ized in table 5.

First of all we see also here that the main di� erence
between the dQGE-A and QGE-A equations is the accu-
racy of the pressure. This property is reproduced very
accurately by the DD equation, and fairly accurately by
the CD equation, where basically no pressure data were
used for the regression. The use of interpolation poly-
nomials for the input properties at T 0 obviously does
not alter much the precision of the energy values.

In the range 1.0 < T < 20.0 all equations are basically
comparable for the energy, and for the pressure the
dQGE-A, KN and VDW equations are roughly com-
parable, although the dQGE-A is slightly better for
both energy and pressure. It should be considered that
although we did not use pressure data for the QGE-A
equation, the average absolute error in the pressure is
still only 0.73%.

In the low temperature range, 0.75 < T < 2.0, both
KN and VDW equations are very accurate for both
energy and pressure, and the pressure accuracy of the
dQGE-A is comparable. The energy of the QGE equa-
tions is still fairly accurate, but for this range less pre-
cise. It must be stressed that both KN and VDW
equations were ® tted using much more data points in
this range than both QGE equations.

Finally, also for these equations we looked at extra-
polations in the temperature range 20 < T < 50, com-
paring with the data of Miyano [31]. We see that all
equations have comparable accuracy in this range, and
only the pressure is, as usual, somewhat less precisely
reproduced by the QGE-A equation. Note that Mecke
et al. used data up to T = 100 to improve the high
temperature behaviour of their empirical polynomial.
However, considering the extremely large temperature
range the accuracy of all equations is still rather high.

Summarizing, we see that the QGE theory at the level
of the perturbed con® ned Gamma state is perfectly cap-
able of describing the thermodynamics of a simulated
model ¯ uid, in this case the Lennard-Jones ¯ uid, with
high accuracy. Moreover, because of their theoretical
basis, the QGE equations are able to extrapolate in
temperature to at least twice the parametrization range
with reasonable accuracy. If we use for the parametriza-
tion the same information as the most successful EOS
up to now (i.e. both energy and pressure data), the DD
QGE equations (dQGE-A and B) are at least compar-
able to the KN and VDW equations and better than the
MBWR equations. If we only use energy data for the
regression and apply simple interpolation polynomials
in density (QGE-A and B), we still have a very accurate

L J ¯ uid equations of state 1483
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Figure 2. Energy U and
pressure p of the LJ ¯ uid
for densities q N = 0.1 and
0.3. Legend: simulation
data ( r ), QGE-A equa-
tion of state (Ð Ð ),
QGE-B equation of state
(± ± ± ) and MBWR-1
equation of state [4]
(- - - ).
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Figure 3. Energy U and
pressure p of the LJ ¯ uid
for densities q N = 0.7 and
1.0. Legend: simulation
data ( r ), QGE-A equa-
tion of state (Ð Ð ),
QGE-B equation of state
(± ± ± ) and MBWR-1
equation of state [4]
(- - - ).
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description of the energy and a fairly accurate descrip-
tion of the pressure, even if we extrapolate outside the
parametrization range. Interestingly, the value of v and
hence of s HS 0.71, obtained for both T < 6 and
T < 20 ranges, still gives a very accurate description at
T = 50 (i.e. 37 times T c), while s HS in the KN equa-
tion, for example, changes from 1.02 (T = 1.0) to 0.82
(T = 50).

In the rest of this results section we will focus on the
properties of the two CD equations of state, i.e. the
QGE-A and QGE-B equations.

In ® gures 2 and 3 the `experimental’ simulation data
of U and p are shown at densities q N = 0.1, 0.3, 0.7 and
1.0, along with the predictions of the QGE-A and QGE-
B equations of state. As can be seen from the ® gures, in
accordance with tables 4 and 5, the QGE-A equation
reproduces in an excellent way the simulation data in
the whole temperature range for all densities. Also the
QGE-B equation shows very good agreement, although

slightly worse outside its parametrization range. For
comparison, the MBWR-1 equation of state of Johnson
et al. is also shown, which clearly deviates strongly for
the energy outside its parametrization range.

To severely test the (physical) quality of the QGE
equations of state, we also looked at a higher order
derivative of the free energy or pVT surface, the heat
capacity CV , which is a very sensitive property. We com-
pared the di� erent equations of state with simulation
data, as well as two di� erent ways to evaluate CV

from simulations.
In ® gure 4 the heat capacity, calculated as the numer-

ical derivative of U , is plotted together with the predic-
tions of the QGE-A, QGE-B and MBWR-1 equations.
While the ® rst two equations give almost identical
results and agree very well with the experimental
values, the latter EOS is clearly o� , already below
T = 6. In tables 6 and 7 we give the partial c 2 values
for the various equations of state in di� erent tempera-

L J ¯ uid equations of state 1485
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Figure 4. Isochoric heat ca-
pacity CV of the LJ ¯ uid
for densities q N = 0.1 0.3,
0.7 and 1.0. Legend: simu-
lation data, based on M2
( r ) and numerical deriva-
tive of U ( ), QGE-A
equation of state (Ð Ð ),
QGE-B equation of state
(± ± ± ) and MBWR equa-
tion of state [4] (- - - ).

Table 6. Values of c 2
CV

/ Ndata (equation (94)) , using three di� erent datasets, for di� erent equations of
state parametrized in the range T < 6.

Dataset T range dQGE-B QGE-B MBWR-1 MBWR-2

(1) 0.75 < T < 2.0 c 2
CV

/ Ndata 1.2 2.5 11.7 13.6
(2) 1.0 < T < 6.0 c 2

CV
/ Ndata 1.8 2.0 126.7 64.6

(3) 1.0 < T < 12.0 c 2
CV

/ Ndata 97.7 16.9 2538 702.9
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ture ranges. Note that since we had to evaluate CV

numerically from U data, the CV set for 0.75 <
T < 2.0 contains slightly less data than the corre-
sponding energy and pressure sets. Table 6 provides a
comparison between the equations which were parame-
trized in the range T < 6. In all cases and especially for
the extrapolation range both QGE equations are
superior to the MBWR equations, as already clear
from ® gure 4. In accordance with the energy statistics
(table 4), the extrapolation of the CD equation is better
than the DD one. The EOS parametrized roughly in the
range T < 20 are compared in table 7. They all have a
comparable accuracy and in the range 1.0 < T < 20.0
the QGE equations are slightly better than the VDW
equation. Clearly, the QGE equations of state also pro-
vide a good description of higher order free energy deri-
vatives.

To test the simulation procedure, following Rocca-
tano et al. [23], we also evaluated CV via the second
central moment (the variance) of the overall potential
energy from the simulation, using the general statistical
mechanical relation [18, 25, 32, 33]

CV =
h (U0 ­ U )2 i

kT 2 . (96)

As is well known, ¯ uctuations are much more a� ected
by the simulation details (integration algorithm, time-
step, temperature coupling, cut-o� , periodic boundary
conditions, system size etc.) than the usual thermody-
namic averages. Using appropriate values though for
the time-step, runlength, system size and cut-o�
radius, combined with a rigorous temperature coupling,
it is obvious from ® gure 4 that the potential energy
¯ uctuations provide values of CV which are fairly close
to the numerical derivatives of U , in most cases within
2s of CV evaluated by equation (96). This shows that
even up to the level of second order ¯ uctuations, our
NV T molecular dynamics simulations are thermodyna-
mically rather consistent. Moreover, such a result con-
® rms in an independent way the physical correctness of
the QGE equations of state.

We also calculated the coexistence line for the full LJ
potential, by equating the gas and liquid pressures
p = p 0 + q NkT and chemical potentials ¹ = A 0 /N + p 0 /
q N + kT ln ( q N) , including the correction terms (equa-

tions (85) and (86)). The results are given in ® gures 5
and 6 for the QGE-A and B equations, together with
data from simulations and some integral equations.

Both QGE equations of state yield almost identical
coexistence lines, which correspond very well with the
NV T results of Hansen and Verlet [34], ® gure 5, and the
optimized cluster theory (OCT) calculations of Sung and
Chandler [37]. Also the lower temperature results of
Adams [35], using a combination of NV T and ¹VT
MC and EOS, are in good agreement, although his
high temperature results [36], using ¹VT MC, show a
somewhat strange behaviour, see also [39].

In ® gure 6 we compare the two QGE coexistence lines
with the results of Gibbs ensemble (GE) simulations of
Panagiotopoulos [40], Panagiotopoulos et al. [41] and
Smit and Frenkel [42], and the NpT+ test particle results
of Lot® et al. [39]. Clearly, up to T = 1.25 the simula-
tions and QGE predictions agree very well, and only at
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Table 7. Values of c 2
CV

/ Ndata (equation (94)) , using two di� erent datasets, for di� erent
equations of state parametrized in the range T < 20.

Dataset T range dQGE-A QGE-A KN VDW

(1) 0.75 < T < 2.0 c 2
CV

/ Ndata 2.2 2.9 2.2 1.6
(4) 1.0 < T < 20.0 c 2

CV
/ Ndata 2.8 3.2 3.6 5.9
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Figure 5. Liquid± vapour coexistence line of the LJ ¯ uid.
Legend: QGE-A equation of state adding long-range
and shift corrections to ¹ and p (Ð Ð ), QGE-B EOS
(± ± ± ), simulation results from Hansen and Verlet [34]
( ), Adams [35], T < 1.1, and Adams [36], T > 1.15,
( ), and OCT data from Sung and Chandler [37] ( r ).
The critical point of the QGE-A equation is indicated by
j , the one estimated by Verlet [38] by +, and the one
imposed by Nicolas et al. [5] by an asterisk ( ).
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T = 1.3, the highest temperature where simulation data
are available, there is some discrepancy, although the
QGE curves are still within the (rather large) errorbars
of most GE data.

In ® gure 7 we present the equilibrium pressure along
the coexistence line for both QGE equations (which on
the scale of the ® gure are identical), and the values of
Sung and Chandler [37] and Lot® et al. [39]. Clearly, all
values agree very well with the QGE predictions.

The values of the critical point based on the QGE
equations of state are given in table 8, together with a
summary of other estimates, based on various simula-
tions, equations of state and integral equations. Other
estimates based on integral equations can be found in
[43] and [45], and give a similar picture.

Our values are very similar to the OCT results of Sung
and Chandler [37] and to the results of Levesque and
Verlet [44], using two di� erent EOS based on their NV T
MC data. Also the Percus± Yevick II (PY II) results of
Verlet and Levesque [43] are very close, and our values
and the values imposed by Nicolas et al. [5] for their
MBWR equation lay within Verlet’s estimate [38] of
the critical point based on the PY II equation in combi-
nation with NV T MD data. The critical point obtained
from the KN equation [7] is also very close.

The data of the Gibbs ensemble MC or NpT MD
simulations, which are ® tted to a scaling law for the
density with critical exponent b 1/3, either or not in
combination with the law of rectilinear diameters [46],

result in a critical temperature and density that are lower
than estimates based on NV T simulations or integral
equations. This is usually attributed to the fact that
(large) density ¯ uctuations, which are to occur close to
the critical point, are suppressed in both NV T simula-
tions and in integral equations [34, 37, 44], while the
Gibbs ensemble procedure in principle does allow
large ¯ uctuations [47].

However, from ® gure 6 it seems that in the whole
range where GE or NpT data are available there is
hardly any di� erence with our EOS coexistence line.
This suggests that a large e� ect on the critical point
discrepancy is due to the èxtrapolation’ procedure
used by these authors [24, 36, 39]. They actually ® tted
the direct coexistence data (T < 1.30) with a macro-
scopic scaling law usually imposing a value of the critical
exponent b close to 1/3. Interestingly, Adams [36]
remarks that the critical temperature within his simula-
tions should be between 1.30 and 1.35, while the esti-
mate from the scaling law gives T c 1.30. Similarly,
Sung and Chandler found a direct value T c = 1.35,
while ® tting coexistence data for 0.85 < T < 1.15 with
a scaling law a lower T c (1.31) was obtained. We also
performed such an experiment with our EOS coexistence
data for T < 1.15, using critical exponents from the lit-
erature, ranging from b = 0.32 (Smit) to b = 0.355
(Adams), and the critical temperature was in this case
estimated between 1.29 ( b = 0.32) and 1.32 ( b = 0.355).

We can, therefore, conclude that our values of the
critical point, especially the QGE-B one, are about the
most reliable for the `NV T Lennard-Jones’ ¯ uid, where
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Figure 6. Liquid± vapour equilibrium pressure of the LJ
¯ uid. Legend: QGE-A EOS (Ð Ð ), QGE-B EOS (± ± ± ),
NpT simulations of Lot® et al. [39] ( r ) and Gibbs en-
semble simulation results from Panagiotopoulos [40] ( ),
Panagiotopoulos et al. [41] ( e ) and Smit and Frenkel [42]
( h ). The critical point from the QGE-A equation is indi-
cated by j , the one estimated by Smit [24] by m .
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Figure 7. Liquid± vapour equilibrium pressure of the LJ
¯ uid. Legend: QGE-A EOS with long-range and shift
corrections (Ð Ð ), QGE-B EOS (± ± ± ), OCT data from
Sung and Chandler [37] ( s ) and values from Lot® et al.
[39] ( r ).
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large density ¯ uctuations are suppressed. We can also
illustrate this fact by comparing for example the press-
ure isotherms in the vicinity of the critical point as pre-
dicted by the QGE and MBWR-1 equations, where for
the latter the critical point was imposed to be the one
obtained from GE and NpT data [4], see table 8. In
® gure 8 we see that the QGE-B isotherm (on this scale
identical to the QGE-A prediction) accurately describes
the NV T simulation data of Johnson et al. and Sun and
Teja, while the MBWR-1 predictions around q N 0.4
are systematically too high, as the imposed critical point
does not match the NV T data in the critical point
region.

Finally, we note that the critical point for the trun-
cated and shifted LJ potental (i.e. without the truncation
and shift corrections) is T c = 1.288 and q Nc = 0.348 for
QGE-A and T c = 1.284, q Nc = 0.361 for QGE-B.

7. Conclusions

In this article we showed how to use in a simple way
the QGE theory at the Gamma level for the potential
energy ¯ uctuations to obtain a general equation of state
for ¯ uids. Introducing a simple perturbation term, we
de® ned the perturbed con® ned Gamma state that, in
combination with the knowledge of a set of properties
(the input parameters) along a single isotherm, provided
an accurate equation of state over a wide temperature-

density range, for both the discrete density (DD) and
continuous density (CD) approaches.

It is remarkable that the DD and CD QGE equations
of state, parametrized in the smaller temperature range
(dQGE-B and QGE-B) are very close to the ones para-
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Figure 8. Experimental isotherms (from top to bottom
T = 1.5, 1.4, 1.35 and 1.3) in the vicinity of the critical
point, using data from Johnson et al. ( r ) and Sun and
Teja ( s ), and EOS predictions: QGE-B (Ð Ð ) and
MBWR-1 (± ± ± ).

Table 8. Estimates of the critical point of the Lennard-Jones ¯ uid from di� erent sources, based on molecular dynamics (MD) or
Monte Carlo (MC) simulations in di� erent ensembles [NV T , NpT , ¹V T and Gibbs ensemble (GE)], along with results of
several integral equations (Percus± Yevick (PY, II) and optimized cluster theory (OCT)). The ® rst group (`NV T ’ data) consists
of direct estimates from EOS or Maxwell constructions based on simulation data along isotherms. The values of the second
group (`Scaling law’) were obtained by ® tting the available coexistence points with a scaling law for the density with critical
exponent b .

`NV T ’ data `Scaling law’

Source Reference Method T c q Nc pc Tc q Nc pc b

QGE-A NV T EOS 1.350 0.337 0.149
QGE-B NV T EOS 1.346 0.346 0.147
LV (1969) [44] NV T MC EOS (7) 1.37 0.31 0.14
LV (1969) [44] NV T MC EOS (11) 1.36 0.33 0.16
V (1967) [38] NV T MD+ PYII 1.34(2) 0.34(2) 0.15(2)
VL (1967) [43] PY, II-Vir 1.36(4) 0.36(3) 0.15(1)
VL (1967) [43] PY, II-O.Z. 1.33(3) 0.33(4) 0.15(2)
SC (1974) [37] OCT 1.348 0.349 0.148 1.31(1) . Ð . Ð 0.33
N (1979) [5] imposed 1.35 0.35 0.14
A (1979) [36] ¹V T MC 1.33(2) .Ð . Ð 1.30(2) 0.33(2) 0.13(2) 0.355
KN (1994) [7] NV T EOS 1.340 0.311 0.141
M (1996) [8] imposed 1.328 0.311 0.135
P (1987) [40] GE MC 1.32 0.31(2) .Ð . Ð
S (1992) [24] GE MC 1.316(6) 0.304(6) .Ð 0.32
L (1992) [39] NpT MD+ test 1.310 0.314 .Ð .1/3
J (1993) [4] imposed 1.313 0.310 .Ð
ST (1996) [6] imposed 1.313 0.310 0.1299
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metrized in the whole temperature range (dQGE-A and
QGE-A). Hence the former can be used for extrapola-
tions even much beyond their parametrization range.

It should be noted that the DD and CD equations can
also reproduce with high accuracy data which were not
used for the parametrization, like the heat capacity and,
for the CD equations, the pressure. This clearly shows
that the perturbed con® ned Gamma state, with the per-
turbation term given by equation (39), is a very good
model for the Lennard-Jones ¯ uid at every density, and
con® rms our previous results that the Gamma statistical
state for the potential energy ¯ uctuations can be used as
a general theoretical model. For the Lennard-Jones ¯ uid
the use of the simple ® rst order perturbation term is
really necessary only if high accuracy over a very large
temperature range is required; for a smaller temperature
range a pure con® ned Gamma state is also accurate.

We compared the DD and CD QGE equations of
state with three of the currently most successful equa-
tions of state for the Lennard-Jones ¯ uid, the modi® ed
Benedict± Webb± Rubin (MBWR), the Kolafa± Nezbeda
(KN) and Mecke et al. (VDW) equations. For the
energy the data showed that the CD equations are
more accurate than the MBWR equations, and compar-
able to the KN and VDW equations inside the parame-
trization range which they have in common. The CD
equations were parametrized only on energy data,
except at the reference isotherm, where pressure data
were also used. Hence for the pressure they are less
accurate than the other equations which were parame-
trized using both energy and pressure data, but still they
can provide a rather accurate description of the press-
ure. The DD equations, which were parametrized using
energy and pressure data, can reproduce both energy
and pressure more accurately than the MBWR equa-
tions, and are at least comparable to the KN and
VDW equations, again inside the parametrization
range which they have in common. Very signi® cantly,
the DD as well as the CD equations provide accurate
extrapolations much beyond their parametrization
range, while the MBWR equations become rather incor-
rect outside their parametrization range.

It is also very interesting that the coexistence line
obtained by the CD QGE equations is very similar to
the one obtained by the MBWR equations, except for
the critical point region, where a small deviation is
observed. As shown in the results section this is prob-
ably due to the fact that in the MBWR equations of
state the critical point was constrained to the critical
temperature and density obtained from NpT and
Gibbs ensemble MC simulations. In the QGE equations,
we did not impose any predetermined critical point and
the critical temperature and density found are in excel-
lent agreement with the estimates obtained by NV T

simulations or integral equations. Also the estimates
from the KN equation are very close. This strongly
suggests that the QGE equations of state, parametrized
using NV T MD data, provide a better estimate of the
true critical point of an NV T LJ ¯ uid. The small dis-
crepancy from the NpT and Gibbs ensemble estimates
could in principle be due to the ® nite size e� ect, which is
likely to in¯ uence the ¯ uctuations of the system in the
critical point region, as already pointed out by other
authors. However, from our results it seems that the
greater part of this di� erence is connected with the use
of the macroscopic scaling law for the density.

It seems clear from all the results that an equation of
state based on a not too simple physical theory can
really provide an improved description of the ¯ uid ther-
modynamics. On the one hand, it is possible to extra-
polate to unknown state points, and on the other hand,
the fact that the EOS describes the behaviour of a
coherent physical model ensures that the detailed knowl-
edge from the EOS is able to give a deeper insight into
the ¯ uid physics.

Future work will concern the application of the theor-
etical model described in this article to obtain equations
of state for real ¯ uids, the development of methods for
the calculation of high order energy moments and
energy-virial correlations from a molecular model
potential, and the derivation of possible simple physical
models to obtain the isotherm input properties with the
use of a more reduced data set, especially for systems
where no reliable model potential is available. We will
also explore other kinds of models based on the QGE
theory to obtain equations of state and possible simpli-
® cations of the present EOS. Finally, attention will be
given to the technical aspects of the parametrization
procedure that can be improved using more physical
information and better numerical procedures (simula-
tions and ® tting algorithms) .
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