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In previous articles we derived and tested the quasi-Gaussian entropy theory, a description of the
excess Helmholtz free energy in terms of the potential energy distribution, instead of the
configurational partition function. We obtained in this way the temperature dependence of
thermodynamic functions in the canonical ensemble assuming a Gaussian, Gamma or Inverse
Gaussian distribution. In this article we extend the theory to describe the temperature dependence of
thermodynamic properties in an exact way in the isothermal-isobaric and grand canonical ensemble,
using the distribution of the appropriate heat function. For both ensembles restrictions on and
implications of these distributions are discussed, and the thermodynamics assuming a Gaussian or
(diverging Gamma distribution is derived. These cases have been tested for water at constant
pressure, and the results for the latter case are satisfactory. Also the distribution of the heat function
of some theoretical model systems is considered1998 American Institute of Physics.
[S0021-960698)50232-2

I. INTRODUCTION rive the temperature dependence, an ordinary differential

equation, thethermodynamic master equatigifiME) was

The prediction of the temperature and density behaviog, o jated. Assuming a Gamma or Inverse Gaussian distri-
of realistic fluidlike molecular systems based on an exac ution, the resulting solutions of the TME provide the tem-

statistical mechanical approach is both very challenging an erature dependence of all properties based on the know-

important for practical applications and the prediction Ofedge of a limited set of data at one initial reference

equations of state. For molecules in the ideal gas phase it B moerature and aaree very well with experimental !
well possible to derive the thermodynamic functions in this P g Y P

way, see for example Frenkek al On the contrary, the ter, methane, methandbr all densities except in the vicinity

evaluation of the partition function for systems with interact-Of the critical point, that we did not investigate yet, and in

ing molecules is in general extremely difficult, and oﬂenmUItli'phV?S:f fot?]d't'oxrlsh ion of the theory in this form usin
severe approximations have to be made. owever, the extension of the theory S form using

However, for the evaluation of macroscopic thermody-e.XCeSS pI’Op-eI’.tI-e S gives problems in other ensembles. Espe-
cially the definition of a proper general reference turns out to

namic properties of realistic systems most of the informatior‘l) difficult. H his th has b d onl
which is present in the partition function is redundant. It is’ e difficult. Hence up to now this theory has been used only

sufficient to focus on the distribution of the appropriate fluc-I" @" @Pproximate way to describe temperature dependence
tuations in the system. in noncanonical ensemble con.d|t|0?1‘§. .
Using this idea we have derived and applied in previous_ ' this paper we will describe how to extend the quasi-
paper*the quasi-Gaussian entrop@GE) theory to obtain Gaussian entropy theory to_ obtain _the t_empera_ture depen-
the temperature dependence of thermodynamic properties 8gnce of the thermodynamic functions in the isothermal-
constant volume, based on the internal energy fluctuations dfoParic and grand canonical ensemble in an exact way. This
the system. It is possible in the canonical ensemble to focul§ @ccomplished by using a different reference state and dis-
on excess(“ideal reduced’) properties with respect to a tributions of full thermodynamic propertigsmternal energy,
proper reference. We showed that the ideal reduced Helnfnthalpy instead of excess ones. Possible drawbacks can
holtz free energy and entropy can be expressed in an exagfise from the fact that the distributions required to describe
way in terms of the excess internal energy distribution full thermodynamic properties with high accuracy may be
which must be close to a Gaussian for macroscopic system8ore complex than the ones needed for excess properties. In
Since the type ofmode) distribution determines the free addition we will therefore also describe the use of a proper
energy and all other derived thermodynamic functions, ittxcess enthalpy in thNpT ensemble. An advantage of the

hence determines thstatistical stateof the system. To de- new reference states is the fact that we immediately obtain
expressions for the thermodynamic functions without explic-

3Author to whom correspondence should be addressed. Itly SO|Vmg the appropriate TME.

Ypresent address: c/o Professor Di Nola, Department of Chemistry, Univer- In a similar way We_ can also_ Obta'_n the der_1$|t_y d(_apen-
sity of Rome,(La Sapienzg p.le A. Moro 5, 00185, Rome, Italy. dence of thermodynamic properties using the distribution of
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the volume or number of particles within the QGE theory.(e"”). This will be briefly illustrated below. A more detailed
This will be described in a separate paper. treatment can be found in Sec. lll A, in Sec. Il A of Ref. 7

This article is organized as follows. and in previous papers'

In order to avoid that the general idea gets obscured by |n the NVT ensemble, for example, we can define a ref-
“technical” details and specific applications in various en- erence state at the same temperature and density with the
sembles, the basic principles of the QGE thedgth in the  same Hamiltonian except for the classical inter and intramo-
previous formi° and the one described in this and the fol- |ecular interactions which are switched fThe excess or

lowing article’) are summarized in Sec. II: The system andconfined ideal reducedHelmholtz free energyA* can be
the choice of the reference st@de the relation between free written as

energy and the distribution of an extensive quanttgat , .
function, volume, number of particlesia the moment gen- BA* =B(A=A, ) =IN(e?” )= ~In(e™ "), or, (2

erating or cumulant generating function of that d|str|but|on,Where%, is the instantaneous ideal reduced internal energy

the statistical state of a system, the relation between para”@basically the classical potential enejgyiere. 2= 7" and
eters of the(mode) distribution and thermodynamic input t=g or — B, depending on whether the expéctatidn value is

data and the derivation of related thermodynamic funchonsevaluated in the actual system or reference ensemipt)(

Moreover, a unified notation for thermodynamic properties In this paper(Sec. 11l A) we will show that in theNVT

in the NVT, NpT and_,uVT en_sembles Is introduced. ensemble we can write the Helmholtz free energy difference
In Sec. Il we will describe the temperature dependencebetween two “temperatures}3 and 8, as
0

of thermodynamic functions at constant pressiNpT) and
constant chemical potentiglVT), using the unified nota- A(BA)=BA— BoAo=In(e*F”) p= —In(e*Aﬁ">BO, (3
tion. We introduce the definitions of the system and the ref- o ] ]

erence state in Sec. Ill A and derive an expression of the fre@here .2’=7 is the Instantaneous internal energy and,
energy difference in terms of the distribution of the heatdepending on calculatinge"”) in the g or B, ensemble,
function. In Sec. Il B we focus on the characteristics of thist=8~Bo=Ap or —AB. .

distribution and the way the parameters can be obtained. We N Ref. 7 we demonstrate that in tépT ensemble we
indicate in Sec. Il C how other thermodynamic functions ¢an define the ?'bbs free energy difference between two
may be obtained from the free energy function. Next a dePressure andp” as

scription of some important model distribqtio(@auss_ia_n, ,BAG=B(G(p)—G(p°))=In<eﬁAp7’>p

Gamma and diverging Gammand associated statistical A

states is presented in Sec. Il D. Finally, some remarks are = —In(e A7) o, (4)
made on the use of the new and the previous form of th‘?/vhere P
QGE theory in theNVT ensemblgSec. 11l E) and a possible
exact use of excess fluctuations in tNeT ensembleg(Sec. In all cases, the expectation valye"”) and hence
NF). the free energy difference and all other thermodynamic prop-

Appllcgtlons to water of th_e various statistical states are, tios can be evaluated once we know the distribytio).
presented in Sec. IV, along with some results on model sy

T L2\ — — t.2 G Qi
tgms(harmonic osc_illators, ideal gasFinally, in Sec. V we Sg;?g; <1?un(ztio§"; ((t,\)/lG{:(; O?(;[;fgda?stﬁbtgt?oﬂc;?;?t gr?(;]
give some conclusions. G {(t)=(e™")=e G ,(t) is thecentral moment gener-
ating functionwhereA.Z2'=.2—X and X=(.%). The loga-
rithm of the MGF is called thecumulant generating
Il BASIC PRINCIPLES functiof 1% (CGP of p(.2). Since the precise distribution is
As is well-known, because of the structure of statisticalnot known exactly for an arbitrary system, the CGF is often
mechanics and especially of the semiclassical partition funcexpanded in a Taylor series inobtaining a so-calledumu-
tion, various free energy differences may be written in thelant expansionBecause the distribution is close to a Gauss-
form ian for macroscopic systems this expansion is usually trun-
cated after the second, third or fourth order. Zwanzig's high
In{e"”)=1In f e p(2)d.2, (1)  temperature expansibhis basically such a cumulant expan-
sion. Recently, cumulant expansions have also been used to
where.Z" is some instantaneous extensive propéetg., the obtain free energy differences by Molecular Dynamics or
internal or potential energy, enthalpy, volume, gtt.is an  Monte Carlo simulation?~'8 However, in the QGE theory
intensive propertye.g., 3=1/kT), (---) denotes an expecta- we do not use such an expansion, but focus on the complete
tion value in the appropriate ensemble giic?’) is the prob-  distribution.
ability distribution function(“distribution” ) of .2". As usual Based on physical and mathematical principles we can
we denote instantaneous properties by calligraphic symbol$ormulate several restrictions on the possible model distribu-
whereas thermodynamic averages are denoted by usual cafibns p(.2), see Ref. 2, Sec. Il B of this paper and Secs. Il E
tals. The precise nature ¢fand.#" depends ona) the sta- and Il F of Ref. 7. Acceptable model distributions are for
tistical ensembldNVT, NpT or uVT), (b) the choice of the example the Gaussian, Gamma and Inverse Gaussian distri-
reference state an@) the choice in which statéhe actual butions. Then unknown parameters of the distribution can
system or referengewe evaluate the expectation value be obtained by the method of mome#tS,i.e., equating the

is the instantaneous volume arta= B(p
—p°%)=pAp or —BAp.
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TABLE |. Notation of different properties in various ensembles, where in gemesalandz are the indepen-
dent variables) is the appropriate labeF, W, S andC are the thermodynamic potentidiee energy, heat
function, entropy and heat capacity,and Z are “conjugated” properties andl is the partition function.
J=-pVandD=U- uN are the grand potential and grand canonical heat function, se€¢lBgand(13). For
completeness we also included the canonical ensemble, see also Sec. Il E.

Y_(&F) Z_(aF)
(?y Tz 9z Ty

Ensemble X y z N F W S C Y
Isothermal-isobaric T p N p G H S G \% " A
Grand canonical T m \Y “w J D S G -N -p =1
Canonical T \% N \% A U S G -p " Q

first n theoretical moment®,[.2]=((A.2)") expressed in lll. THEORY

terms of the parameters and the firstsample moments, A. Definition of the system and reference state
which can be related to thermodynamic input data at one

state point via general statistical mechanical relations such as The G|bb_s fr_ee energy in the isothermal-isobaric en-
semble(NpT) is given by

M,[ Z]=kT?Cy, My[7]=—KT(V/dp)t, G=-kTIn A 5
with
etc. The Gaussian distribution, for example, is characterized .
by the ﬁrst two moments, the Gamma and Inverse Gaussian A= fx d7 e B Q(N,7.T)
by the first three. o v
With the appropriate thermodynamic input data at one _d
i btain the free energy difference at that h o N B
state point we can o ay = d7°| dp"> dxNe=B7 (6)
state point. However, we can also obtain the temperature uN! Jo T Jo
dependence of Eg$2) and(3) and the pressure dependence
. . and
of Eqg. (4) in the following way.
If we have used the reference state ensemble to evaluate 7= 7/+p7, 7
the MGF, the distribution and its parameters are fixed at one . ) . ) .
state point. Hence we immediately obtain the temperature dpe isothermal-isobaric partition function and the instanta-

pressure dependence of the free energy difference and &FOUS enthalpy, respectively. As in previous artftisve ,
other derived thermodynamic functions. will use calligraphic symbols for instantaneous properties

If we have evaluated the MGF in the system ensemble",’md usual roman symbols for thermodynamic averages. Fur-
the distribution and hence its parameters are also temperatufecMore,
or pressure dependent, so we do not obtain an explicit ex- h—dn , %
pression. However, it turns out that with the help of general  Q(N,V,T)= Ni Qe(N,T)f dpM>, f dxNe™#”
thermodynamic relations we can formulate in each case an ’ bV 8
ordinary differential equation, thé¢hermodynamic master 8)
equation(TME), the solution of which provides the explicit is the canonical partition function, whekeis Planck’s con-
temperature or pressure dependence. stant,dy, andQ®(N,T) are the number of degrees of freedom

The route using the reference state ensemble seems aalid the electronic partition function fdd molecules, as-
vantageous, although the thermodynamic input data may beumed to be independent of the volum#&(x,p,l,N) the
difficult to obtain in that ensemble, e.g. see E2), where (instantaneoysinternal energy and and pN the coordi-
the reference state is rather unphysical. In that case the otheates and conjugated momenta Mdfmolecules.8=1/kT,
route is more appropriate, at the expense of having to solvevith k the Boltzmann constant and the summation runs over
explicitly the TME (see Refs. 2 and)4 all accessible vibrational stat¢k}. The prime and the star

Since by either one of the two routes we obtain the freeon the integrals denote the restrictions due to fixed bond
energy difference and derived thermodynamic properties aslangth and bond angle constraints and the restrictions due to
function of an intensive parametée.g., 8 or p), and the a possible confinement of the system within a part of con-
relation between distribution and free energy is uni¢ge.  figurational space, respectivélyFurthermore?” is the in-
(2) is a Laplace transform of the distributipthe distribution  stantaneous volume arpglthe pressure. The facter in Eq.
completely determines the thermodynamics of the systen®) is in fact a numerical volume differential, which arises
and therefore thetatistical state from the definition of the entropy in thdpT ensemble with

In order to facilitate the derivations we introduce a uni- continuous volume; it maked dimensionless and assures
fied notation for quantities in various ensembles, see Table that in the zero temperature limit the entropy correctly tends
In this way we can derive the temperature dependence usirtg zero? In fact, v is a measure of the accuracy with which
Eq. (3) for all three ensembles simultaneousg8ec. IlI). we want to describe our macroscopic properties. However,
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So, denoting in general the free energy, heat function

are independent af. It is worth to note, since this was not and entropy byr, W and S (see Table), we have using the
explicitly mentioned in previous papers, that for polyatomic 8, ensemble
molecules in the canonical partition function the correction

for the phase-space positions which are permutations of A(BF)=WoAB—In(e™2470), |

(16)

identical particles, should not only involve molecular permu-
tations (1N!) but also the possible rotations and intramo- Whence

lecular displacements which are permutations of identical at-
oms of single molecules. In fact, the correction factor in the

partition function should beN!(1+ y)N)~1, wherey=0 is

a positive constant characteristic of the molecule, see th
Appendix. For sake of simplicity in this paper, as in the
previous ones, we have always included the factor (1

+ v) "N into the electronic partition function.

The Gibbs free energy difference between two “tem-

peratures”B and 8y can now be expressed as

A(BG)=BG— BoGo

Jod77f dpNz, [ dxNe A7
: Jod77 [ dpNs, [ o dxNe™ Fo”
=HoAB— In(e*ABA'W*t)}B0 9)

=HAB+In(eF47), (10

where Ho=(7)p,, H=(7), AZy=7-H, and A7
=.7=H with (---) 5 and(:--) ensemble averages in ti
and B ensemble.

In the grand canonical ensemileVT) the “grand po-
tential” J=—pVis

J=—kTIh E (11)
Pl QI V,T)

h=d

J=0 AN

QS(I"T) f 'S L,*dx“"é*W, 12

D= U= p (13

F(T)=Wo—TS—kT In(e*AﬁA%’bmo. (17)

Other thermodynamic properties follow simply as tempera-
fure derivatives:

dF(T)
T>=—( aT) , 18)
Y.z
W(T)=F(T)+TYT), (19
IW(T)
C(T>=( | (20
y,Z

with C, y andz the appropriate heat capacity and fixed prop-
erties, see Table I.

B. Distribution of the heat function

The term Ife™*#*”0) , can be written as

In(e’ABAW'b>ﬁO= In J e AR 0p (AT o) dA T,
(21)

with po(A7%Z,) the probability distribution of the fluctua-
tions A7, in the Bg-ensemble. In factp, is a continuous
probability density, since in the quasiclassical limit, .7
and % are continuous. Since we can subdivide a macroscopic
system inton identical, independent subsystems, each with
linear dimensionL larger than the typical correlation
lengtt*??> and n—w, we can apply the central limit
theoreni?324to show thatp(A %) is unimodal and close

to a Gaussian distributiofi‘quasi-Gaussian). Such a con-
dition might not be fulfilled in the critical point region,
where the correlation length tends to infinity, and hence the

the grand canonical partition function and the instantaneoudistribution is not necessarily well modeled by a unimodal
grand canonical heat functiaffgranthalpy”), respectively. one. However, the fact that everywhere else in the phase
/" is the instantaneous number of molecules in the systerdiagram the system can be described by unimodal distribu-
and u the chemical potential. Also in this case we can ex-tions suggests that even at the critical point the distribution
press the free energy difference as can be considered at least as a limit condition of a general
(highly compley unimodal distribution. The term
A(BI)=BI=Bodo (e74P270)p =G3 - (—Ap) is in fact the central moment
3% _o(h™ 1) ' dp” 3, [ * dx” e A generating fu_nctioahO of the distribution po(A7%). The _
=—In 5% _o(h ) [ dp 3, dx e Po” zero superscript OGM/.O denotes the reference state condi-
=DoAB—In(e”4F470) 5 (14

tion. The distribution is statistical mechanically defined as

—Bo(Wo+AZ
O, W
po(A7 )=

=DAB+In(e*PrY), (15) Y, ; (22

where Do=(Z)g, D=(2), AZy=%=Dq and AY=2
—-D.

where Y, is the appropriate partition functiofiTable |
evaluated ap3,, and
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~dy o ' (9" 72Co/dT""?),,. Hence for a specific distribution via
QX = UWQe(N)L d7/J’ dpM Egs.(17)—(21) the temperature dependenceoiW, SandC
is completely determined by the knowledgeWwf, S; and
A ) ) the heat capacitZ, and a limited set of temperature deriva-
x 2| L dxTS(AAo(x,p,1,7) — A Ho), tives at one temperatufi® . Therefore, each different type of
distribution defines a differergtatistical stateof the system.
(23 Note that since we have used E{®.and(14) to express the
% —d,- , thermodynamic properties in terms of the distribution in the
X = 2 Qe(«”f”/)f dp”” Bo ensemble, we do not explicitly have to solve a “thermo-
7o N dynamic master equation,” like in Refs. 2—6.

. Secondly, from all the possible distributions arising from
X 2 f dx” 8(AZy(x,p,|,. 1)~ AT, (24)  the basic differential equation, E@5), we have to select the
rJv ones which are compatible with physical-mathematical

are the appropriate “volumes” of the hypersurface in phaserestrictionsz, like the fact that the distribution is unimodal

space of constamh.7%, or A%, with &) the Dirac delta Zr;d//shoqldthbe f.d gtflnled Onl.thfet '?Ze;\/mz/g%ﬁ'”m> t\’\.'h,? re
function. We therefore firtt 7 0.min 1S the finite lower limit of A7/, is restriction

is not strictly necessary for the granthalpy in some special

dpo d1n QXV/“O cases where.>0 and_ S0po(A Zg) could be_ defined on the
———=—po| Bo— ——— interval (—o,). In this paper we do not discuss these very
dA7% IAT o unusual cases. Possible unimodal distributions already inves-
(AW o= AW o) P™(A T ) tigated are the Gaussian, Gamma and Inverse Gaussian
==po G(A 7o) (25  distribution®>~*® From Egs.(9) and (14) it is clear that the

free energy diverges iB—0, because the volume integral
by expanding the term between square brackets around thnd the summation over the number of particles, as well as
mode (maximum) of p, in a Padeapproximant>? A7,  the kinetic part of the partition function, tend to infinity in
is the position of the mode of the distribution and absence of the Boltzmann factor. For the same regpn

n must be different from zero, too. In fact, the moment gener-

PN IR ating function of the distribution py, G%{(—Ap)
P (AZ/O)_ZO Ao A7 o) (26) =(e"*#”), must be finite for any finited except for
) B=0, i.e.,—AB=B,. Note thatpo(A75) = po( 7).
. - As previously discussedfor all distributionsp(¢) aris-
n ap” ) = . /4 ] . .
G(A7) ,Zo bjo(A 7o), 27 ing from the generalized Pearson systfEgs. (25)—(27)]

with m+1>n, the MGFG(t) = (e') is finite for all values

are polynomials of ordem andn in A%, where without of t=—ApB. For distributions defined on the interval
loss of generality we can set,,=1. Note that the zero [AZ g mins®) Wherem+1<n the MGF always diverges and
subscript on the coefficientsa o} and {bj o} reflects that when m+1=n the MGF is finite only fort=—Ap
they are evaluated @, and therefore temperature indepen- <1, . Therefore if
dent. Equation25) represents the generalized Pearson sys-
tem of distributiong*2"~*the solutions of which are distri-
butions of increasing complexity. At this point several
remarks have to be made. (wherety denotes the value dfat which the MGF diverges

First, the paramete@ivo} and{bj'o} can be expresséd the free energy will fulfil the requirement to be always finite
in terms of a set of central momenmkp:((Ay//b)k)BO, except whens—0. In fact, this eliminates the parametgy,
which in turn via statistical mechanfc®32can be expressed @nd reduces the complexity of the solution. So for all the
in terms of some thermodynamic derivatives at temperaturel®mperature lines” the first possible exact distributions
To=1/kg,. In fact, the central moments ¥ are related to &'€¢ the Gamma distributionn(=0,n=1) and Inverse
the heat capacity and some temperature derivatives in tHgaussian distributioia degeneraten=1, n=2 solutiorf)

following way? with 1/b, o= 8o, defining thediverging Gammanddiverg-
ing Inverse Gaussian states

1/br‘l,O=td= lim _Aﬂzﬁo (29)
B—0

M o= (kTo)[ToCol,

C. Derivation of conjugated properties
0

o| 2 JC
M3 o= (kTo)7| To T

+2T0Co} (28) Using the appropriate distribution from the generalized
z Pearson system we obtain an explicit expression of
F(T;Sg,Wy,Co,9Co/dT,...,d" 2Co/dT" ~2), where the pa-
rameters of the distribution are determined by the moments
where C, and (@Cy/dT),, are the values ofC and uptoM,,(r=2 for a Gaussian or diverging Gamnras 3
(aClaT)y , at Ty. If M, 4 is the highest order moment re- for a Gamma or Inverse Gaussian distributiocBubsequent
quired to express the parametéas o} and{b; o}, this corre-  temperature derivatives of this expression yig{d), W(T)
sponds to the knowledge of, and derivatives up to and C(T), see Eqs.18)—(20). However, further “conju-

Y,
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gated” thermodynamic properties follow from derivatives in where we definedA ¢=£—(¢),

the other two independent variablgsandz, see Table I:

SL 0
/s,
Z:(Z_': (31)
T
Since the paramete,,W,,Cq,dCo/dT,...,d" 2ColdT" 2

are also functions of andz, we can obtairy(T) andZ(T)

via
IF [0S, 2 OOF [of,
Y”*ﬁ(ﬂ;._laf—m(w 2
JF (aso> ' oF (3f|o>
Z(T)= + > 2 @3
(M= S, Ty P71 o\ 9z Ty 33
where we have defined
fo10=Wo; foo=Co; f (‘?Cf’) (34)
—-1,0— Wo; 0,0~ Co; 1,0- | |
oT vz
etc. Using the Maxwell relatiods? we find
(afl O) (?|+1YO> . ((9|+2Y0) (35)
1| ~To| 57z
oT'* vz aT'* vz
&fl &'HZ ‘9|+ZZO
g ==l Zg=z] —To| g7z (36)
Y.z Y.z
aso) (&YO)
— = , (37
5 =%
aso) (azo)
— === (39

where obviously?®Y,/dT°=Y,. HenceY(T) andZ(T) are
simply  expressions of the form Y(T;Yy,0Yq/
aT,...0YldT") andZ(T;Zg,0Zo/dT,...,0"Zyl IT).

D. Statistical states

Next we will derive expressions fét(T), W(T), S(T),
C(T), Y(T) andZ(T) for the Gaussian, Gamma and diverg-

Amadei, Apol, and Berendsen 3009

the cumulant generating

function is

In G, (1) =In(e"¢) = Jbot? (40)
with bp=M,. In this case substituting=—ApgB, A¢
=A7"y, bp=Dbgo=M,oandM, g given by Eq.(28) we ob-
tain

1 To
F(T)=Wy—T| Sy+ ECO +ToCo 1—E , (41
To
W(T)=Wy+ TOCO( 1- ?) , (42
B 1 1 (To\?
S(M=Sp+5C0=5C0| 7] (43
To\?
C(T=Co| 7| - (44)

whereW,, S; andC, are the values oW, SandC at the
reference temperatur&€,=1/kpB,. Furthermore, using Eq.
(32) we find for the density-related propertiesee Table)l

T To

Y(T)=Yo+Byi| 7=——1|=By2| 1— =], (45
To T

where
Yo 1_,[8*Y
B)\lzTo ﬁ +§T0 W , (46)
Y.z y
1_,( %Yo
B)\ZZETO W yZa (47)

and with Eqg.(33) we obtain a similar expression fa{(T),
replacingY by Z in Egs. (45—(47). Note that the Gaussian
state, because of the very special properties of the Gaussian
distribution, is equivalent to a second order cumulant expan-
sion of A(BF) in AB.

For aGamma statewe use the fact that in general for a
Gamma distributioh®

by (1/b3)% 5
I'(by/b?)

by+b,A
Xexp{_o_;f]
b3

p(A)= (bo+byAg)Po/oi-1

(48)

ing Gamma state. The equations of the Inverse Gaussian aggth I'(-) the Gamma functiod® the cumulant generating

diverging Inverse Gaussian states can be obtained straigh{inction is
forwardly, but we omitted them because in most cases their
behavior is almost indistinguishable from the corresponding
Gamma expressioffsThe way to solve Eqs(17)—(21) for
these distributions is mathematically very similar to the Case, i

th bop=M, andb;=M
previously described in the canonical ensemble using excess _

1 1
In Gpg(t) In(em§>——bo[ Fln(l—blt)
1

(49

3/2M,. In this case substituting

properties. Therefore we will only give here the final expres-M I\ﬁ Avvge fﬁlg/v?ll,thbé ?gé’)’ b1=by1o, M2=Mao and
sions and refer to Refs. 2 and 4 for further details. 3= V30 4

For aGaussian statewe use the fact that in general for ToCo TG
a Gaussian distributirf F(T)= 5o EN “[Oy0tIN(1=8,0)]

(A= — exp{—mg)z] (39 0 -5 (T 50
P m 2b0 ' Egn( )\( ))1 ( )
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o\(T)
W(T)=Wp+(T-Tp)Cy | (51)
\O
S(M=Sy— 52 [5>\0+|n(1 d%0)]
\O
Co
+ gz—[ﬁk(T)Hn(l— o\(T))], (52
\O
S\(T)\?
C(T)=Co| 35— - (53
A0
where we have defined
b M To(dCo/aT
5}\0 1,0 3,0 _ 0( 0 )y,z , (54)
kT 2kTOM2,0 2C,
Tod
a(T)= 2 (55)

T(1—06y0)+Todvo'

with (9Cq/dT), , the value of ¢C/JT), , at To. Further-
more, from Eq.(32) we find after straightforward algebra

Y(T)=Yo+By; 1]+, (2 —1] 22T
(T)=Yo+By1 T, x| 7 16,
1-6\(T)

ST e
with
I Yo 48,0—3_,[ #*Yo
METOGT ) 268, O aT?
Y,z
1 °Y
_— 32 0
282, 0( &TS) K (57
_28,0-3_,( Y, . 1 43
Mo28y, Ol aT? 282, O]
Y.z Y.z
(58

36,0—3 2<(92Y0> 1 3(33\(0)
By3= T -5 Tod—=5| . (59
Moo TP, & YT,

and using Eq(33) we obtain a similar expression fa@{(T),
replacingY by Z in Egs. (56)—(59).
Finally, for adiverging Gamma statthe restriction due

Amadei, Apol, and Berendsen

T T T
Y(T)=Yo+Bu| 7~ 1| +Bys| 7 T In| — T (64)
with
Yo Y,
BuzTo(ﬁ) _T(%(W) : (65)
Y,z y,z
Y
2 0
B\ To( 7| (66)

Y.z
and using Eq(33) a similar expression faZ(T), replacingY
by Z in Egs.(64)—(66).

E. Canonical ensemble

All derivations up to here are also valid for the canonical
(NVT) ensemble, see also Table I. In that case we have to use
the distribution of the full instantaneous internal energy
Any exact distribution in this ensemble must have a diverg-
ing MGF for p—0 as well, since the kinetic part of the
Helmholtz free energyA tends to infinity forT—c (note,
however, that the ideal reduced Helmholtz free engkgys
finite in this limit*). In previous papefs* we showed that a
formulation of the theory using the excgSgleal reduced”)
internal energy7s’ provides an excellent description of
many systems at constant volume, already using a Gamma
distribution. This already suggests that the description using
the full internal energy”Z must be less successful than the
description using the ideal reduced internal energy for
the same type of distributiofi.e., level of the theory

In fact, there are two general reasons for this: first it is
very difficult to model the distribution of the energy which
contains intramolecular quantum vibrational enefgich
is not present irvz'), and secondly the kinetic energglso
not included in%/") always requires as the simplest exact
statistical state for the full energy a diverging Gamma, while
for the ideal reduced energy a Gamma state of full complex-
ity is the simplest exact solution.

Consider for example the isochoric heat capa€ity.

The first exact expression using the full internal energy is a
diverging Gamma state, where from E@3) we have
Cy(T)=Cyq. Restricting ourselves for simplicity to mon-
atomic molecules, we see that the ideal reduced heat capacity

to the divergence of the MGF @=0 reduces the complexity C,, i.e., with respect to an ideal gas at the same density and
of the solutions. In fact, combining the general expression ofemperature, is simply a constant

b, o for a Gamma staté} by ;=M ,/2M,,, with Eq. (29),
b]_’o: 1/B0, we obtainM 3’0/2kTOM Z,OE 5)\0: 1 and thus via
Eq. (55) also 6,(T)=1. This gives

W(T) =W+ (T—Tp)Cy, (61)
To

S(T)=S,—Co |n(7), (62

C(T)=Co, (63

and, after careful inspectioh

Cy(T)=Cyo— 5Nk (67)

However, using the ideal reduced internal energy distribu-
tion, we obtain for a Gamma staté

: : To ?
CV(T)‘CV°<T<1—50>+T050> (©9
with
To(dCy,of dT)
50——20\,/0 +1 (69

which is clearly different, and moreover proved to be an
excellent model of water, methane and methanol. Therefore
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in the canonical ensemble we use the description in terms of 1 ) oNo [
the ideal reduced internal energy’ instead of the full en- Guxrer= —KT In erkaindzirgtT J A (72)
ergy 7. ' <
Sy ref=— ( a(;;;l—ref) ) (73
N
F. Excess properties in the NpT ensemble
Compared to the canonical ensemble, it is much mord e~ Crrer™ TSkrer, 749
difficult to define and use excess properties to set up the M 4 ref
theory in the isothermal-isobaric ensemble. So far we wer& p« ref= (a—T) ; (79
only able to derive the theory in that ensemble using excess PN
properties in an approximated wayere we will illustrate IG, o
how to define a proper reference state that can be used m“ef=( a* ) =0, (76)
derive the theory for fluctuations of an excess instantaneous P /rn

enthalpy.7¢, where we have removed the intramolecularg(c e define theorrectedthermodynamic properties as
guantum vibrational and kinetic parts of the energy. Such a

formally equivalent and exact derivation of the theory could . Jod77e PP7 [ 1% dxNe= B
be preferable from a practical point of view, since for a givenG*=G — Gy rer= —KT In 7% dx 70N, , (77)
level of the theorydefined by the type of statistical state we i = intid
want to use to model the systerhe excesslike heat func- JG¢
tions might be described with higher accuracy as for theS =S—S; o= — T ) (78
canonical ensemble, Sec. IlI E. PN
We can use the previously introduced general approxipje—y_—y _—G¢+ TS, (79
mation for the canonical partition functidn
IH°®
1 . 1% L c_ _ N
QE mQEQkInindf dXNele// , (70) Cp Cp Cp* ref ( oT )p'N ’ (80)

with QX" the semiclassical kinetic partition functigmclud- . 9G
ing the factorh ™), %' = + W + £0—E% whered and¥ v :V:($> : (82)
are the inter and intramolecular classical potential energies, TN
#Y is the overall vibrational ground state energy of the sysDefining the instantaneous corrected enthalgy®= 7/’
tem and wher&2, andQY, are the overall vibrational ground +p?7”, from the definition of the corrected properties we can
state energy and partition function of the ideal gds=0),  write the corrected free energy difference in the same way as
respectively. Egs.(9) and(10):

We define a reference state as an ideal gas with no clas-
sical inter and intramolecular potential enelgy=Y=0, so
#0= E%) where by an infinite attractive potential among the
molecules the centers of mass of the molecules are confined

Jod77f"*dxNe A"

A(BG®)=—In c
(B ) J-oocd]/f/* dXNe_BO}/

within a small volume “differential” v, as well as the full =H8A,8—In(e*ABA'7‘3>ﬁO (82
volume of the system. The corresponding reference
isothermal-isobaric partition function is =HCA B+ In(e2Br7") p (83)
L eon oo (rx ith AZG=7°—HS, AZ°=7°—HS with HS
A. =—QeQkingvzrot Z_~ f dx 71 with A7 =7 0 =T wit 0
wrer =y @R Qiedia =~ [ BXim (7) =(7°) 5, andH=(.7°). From this follows

where the translational configurational volume is given by

oN, ZI9'=(ZMN is the ideal gas rotational configurational
N _ TAN ; : :
volume and/ g dxiy= (fid dxiy)" is the ideal gas configu-  From these equations it is evident that using the distribution

rational volume of the classical intramolecular coordinatesys the instantaneous corrected enthalgs® in the B, en-
X, for a given definition of the internal and rotational co- semble

ordinates of the single molecule. The factdp arises from
the integration over the volume. As ustitiie prime and the e BoZ [Ed 7 [ X dxXNS( 7 (%, 7 — )
star on the integrals denote the possible integration restric-  Po(-7 ©)= 1% qeNe— B ©
tions due to fixed bond lengths and angles and to a confine- Jod77]7dx"e
L . : (85

ment of the system within a part of configurational space,
here in the ideal gas condition. Note that the use of translaalso fully defined by a set of moments.@ ¢ or temperature
tional, rotational and intramolecular coordinates in EgL) derivatives ofH®, in theNpT ensemble all the considerations
implies that also the kinetic partition functio“" is ex- and derivations of Sec. Ill B—IlID can be applied to the
pressed using the conjugated momenta of these coordinaterrected thermodynamic properties by simply exchanging

Hence the reference thermodynamic properties are in every equation the full properties with the corresponding

GC=H§—TS5—KT In(e™4#470) (84)
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corrected ones. For instance, for a diverging Gamma statenge of interest the vibrations are largely confined to the

(the formally exact Gamma state for both the corrected anground state, if the corrected enthalpy fluctuations are prop-

full enthalpy fluctuationswe have

T,
GY(T)=Hg— ToCl+ T(CSy— S5 +TCS4 In( ) (86)

H°(T)=H8+(T—T0)Cgo, (87
SY(T)=S5—Cpo In( ) (88)
(T) CpOl (89)
and
V(T)=V,+B¢ T 1|+BS T | T 90
( )_ 0 ALl TO A2 TO n TO 3 ( )
with
Vo 9V,
B§1=To(a—T) —Té(ﬁz—) : (91
p.N p.N
e Vo
B)\ZZTO W y (92)

p,N

and using Eq(33) a similar expression for°(T), replacing
V by ufin Egs.(90)—(92). It is very useful to link the ref-

erence properties to ideal gas ones. From the ideal gas free

energy

%
ki t N ,— BV
QeQ "Quzigt | dxine ?

id

Gig=—kT In

= d7”
X J 07 sy
o U

=T @@y [ axe e
(93

we obtain after a few steps

Gy rer= Gijg— NKT |n<e'8¢>id_ NKT In(p—> —NKT,

NkT

(94
S* ref— Sd+ Nk |n<eB¢>id_ N<_l|{,>ld + Nk In(% s

(95)
H . rer= Hig— N(#)ig— NKT, (96)

9<¢>id)
Cpsrer=C i_N< —NKk, (97)
pxref™ ~pid aT o

erly modeled by a diverging Gamma state, also the full en-

thalpy fluctuations can be described by a diverging Gamma
state. On the contrary, for any other discussed statistical state
such correspondence is lost.

Finally it must be mentioned that in the grand canonical
ensemble Eq(70) cannot provide any derivation based on an
excesslike granthalpy and so in that ensemble we can only
use the full property.

IV. RESULTS

Before presenting a comparison between the Gamma
state expressions and experimental data of water, we will
first show that the Gamma distribution is the exact distribu-
tion for the heat function of two simple systems, i.e., the
internal, kinetic and potential energy of a set of classical
harmonic oscillators in th&lVT ensemble and the enthalpy
(internal energyof an ideal gas in th&lpT (NVT) ensemble.

First consider a set oN classical harmonic oscillators
(e.g. normal modesn the canonical ensemble. It is always
possible to define a set of generalized coordinateand
momentas; (not necessarily conjugateduch that the in-
stantaneous internal energy can be written as

N N1
e — e 2 —_— 2
w ;1 2K|§|+§1 2mi7T|
KT O [ &\2 KT | 2
= — _ + _
2 iZl(U§i iZl(o-’Ti)

(98)

with «; and m; force constants and reduced masses and
where we used the fact that the variance of the position is
=kT/k; and that of the momenta 'tsf,i=mikT. Further-

more, 7; denotes a general coordinate. Sintas the sum of
squares of an independent standard normal var'rablﬁTi, it
is proportional to ay? variable®® which follows a
x>-distribution with in this case @ degrees of freedom.
Hence the distribution of/=(kT/2)x? is a y2-distribution
as well?®

(1KkT)N
T'(N)

/AN - lef 7IKT

p(7)= (99

where ¢ is the molecular intramolecular potential with which is a special subfamily of Gamma distributions. In fact,

(W) ig=N(g)iq and (e?") 4= [ dxid [{F e PYdx;, is the

it is a diverging Gamma distribution sindg =kT [cf. Eq.

moment generating function of the molecular intramoleculan48)].

potential energy fluctuation. In the case of small molecules
where =0 (e.g., water the previous equations simplify potential energy?/

even further.

Of course, the same argument can also be applied to the
ool =N (xi/2)€? or the kinetic energy
=3N (1U2m)p? only, giving in both cases a

It should be noted that for systems where no intramo-y?-distribution with N degrees of freedom, i.e., a diverging
lecular potential is present and in the whole temperaturé&samma distribution of the form
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, (AKTN?

P(Zo) = gy oot e (100
/ (1KT)N?

p(%')_m Z/N/Z 1 Z//kT. (101)

The MGF of these distributions follows from E9), giv-
ing
B B B N/2_ 18
G ™ G%(t)_(ﬁ_o) “\a=t
where we defined=AB. Note that Eq.(100) is also in

N/2
: (102

Amadei, Apol, and Berendsen 3013
with /3" and g!7' the ideal gas rotational and internal parti-
tion function per molecule. The rotational partition function
is in general given b

7_[_1/2 T3 1/2 1 T 1/2 1 3/2
:_(«)A@B@c) :c‘r(k%A@B@c) (73)

o
(109

with ® 5 ,05,0¢ the principal characteristic rotational tem-
peratures and the symmetry number.

If the s internal degrees of freedom can be described
classically within a harmonic approximatide.g., harmonic
bond and angle potentigJsthe distribution of the total en-
fhalpy is still a diverging Gamma distribution, since in that

rot

Qid

general the distribution of the kinetic energy in the canonicaCas

and isothermal-isobaric ensemble.
The second system is an ideal gash\bparticles in the

NpT ensemble. For simplicity we first consider a monatomic

(110

(31

ol

gas, and discuss polyatomic molecules afterwards. The
isothermal-isobaric partition function for a monatomic idealwith w; and«; the appropriate reduced mass and force con-

gas is given bsP
(qe)NA73N
v(Bp)N T

whereA = \h?B/27m is the thermal wavelength witi the
mass of the atom. SincA(B8G)=In(Ajgo/Aig), we have
from Eq. (10

Aid = (103)

A,
GAAB)=(e*7) =3
I
(5/2N+1 ( B

:(ﬁ B
Bo Bt
definingt=ApB. Note that fromA,; follows the ideal gas
law®” pV=(N+1)kT, so H=(3N+1)kT, and using the
general relationG, ,(t)=e~*G ,(t), we find
J: (5/2N+1
Bt '

For a Gamma distributiop(¢) we have from Eq.(49) a
similar expression

(5/2N+1
) (104

GA7/(t) e t[(5/2N+1]/B( (109

1,

bg /by ?
T

GAg(t)zet(bO’b1)< (106

Using H=(3N+1)kT, soC,=(3N+1)k and 4C,/dT=0,
we obtain withbg=M,, b;=M3/(2M,) and Eq.(28)

Lo Do (SNt 2o_2nig 10
CG T PR T

stant, and hence

A|d0_ B (5/2N+1 i (3/2N i sN
CAB=3 —<%) (ﬁ_) (ﬁ_)
:(i

(4+s)N+1
ﬂ—t)

Note that in all these cases also the distribution of the cor-
rected enthalpy fluctuatior{Sec. Il B is exactly a diverging
Gamma distribution. Even when quantum intramolecular vi-
brations are present and if the classical intramolecular inter-
actions are absent or harmonic the corrected enthalpy fluc-
tuations are still exactly described by a diverging Gamma
state. This moreover suggests that a diverging Gamma state
for the full or corrected enthalpy fluctuations might also be a
good description for the temperature dependence of thermo-
dynamic properties at constant pressure reél (dilute)
gases. Note that the distribution of the internal enezgyf

a monatomic ideal gas in theVT ensemble is a Gamma
distribution too. For polyatomic molecules the same require-
ments as described above for tpT ensemble are valid.

We tested the validity of the Gamma state description on
water, using both full and corrected enthalpy fluctuations
[Egs. (60)—(66) and (86)—(92]. Experimental data at fixed
pressure were taken from Schriftlat 1, 50, 400 and 1000
bar and ideal gas properties from Frenkehl! The critical
pressure is 221.2 bar. For the two lowest pressures a phase
transition occurs, so adopting the usual thermodynamic ap-
proach we have in that case on both sides of the singularity
two independent solutions, a gas and a liquid branch. At 400
bar the behavior in the vicinity of the critical temperature
(647.3 K is rather complex, so also there we used a “lig-

(11D

Since the moment generating function, being a Laplac#lid” and a “gas” branch. At 1000 bar we only used the

transform, is uniquely related to the distributidthis proves

“liquid” branch. For the liquid solutions we used

that the distribution of the enthalpy fluctuations for an ideal=313 K, for the gas branches we usgg=613 K (1 bay,
monatomic gas in th&lpT ensemble is a diverging Gamma 813 K (50 baj and 1013 K(400 bay.

distribution (o;=kT).
When we are dealing with a polyatomic ideal gas,

(qE)NA73N

Aid:W( rot |nt)N

id Jid (108)

In Figs. 1—-4 the predictions of the full enthalpy and
heat capacityC, are given using the full enthalpy fluctua-
tions[Egs.(61) and (63)]. Since for the liquid side there is
no divergence restriction, the parameters were calculated for
a general Gamma state, obtaining in all casgs=1. We
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FIG. 1. EnthalpyH and heat capacit¢, along a water isobar gt=1.0 bar. FIG. 3. EnthalpyH and heat capacityC, along a water isobar ap
Legend: experimental valué# ), diverging Gamma statd&qgs. (61) and =400.0 bar. Legend: see Fig. 1.
(63)] on the liquid and gas side—), and corresponding Gaussian states
[Egs.(42) and(44)] (— — —). The critical pressure is 221.2 béref. 39.

The values ofT, for the liquid and gas side are indicated by.

second order cumulant expansionXfB8G) in AB (see Sec.
therefore used a diverging Gamma state, which according th), using the same input data as the diverging Gamma state.
the figures describes the liquid behavior for the two subcriti-From the figures it is clear that the Gaussian state, which has
cal isobars very well up to the phase transition, or for thethe same complexity as a diverging Gamma state, the
supercritical isobars roughly up to the critical temperaturesame number of input data &), is much worse, especially
For the gas side a diverging Gamma state is clearly a gooevident from the heat capacity. The use of a physically ac-
description for temperatures starting somewhat above theeptable Gamma distribution function hence gives a signifi-
phase transitiorfor ~150 K above the critical temperature cant improvement, and the second order cumulant expansion
for p=400 baj, as already suggested by the fact that thecan only be used for very local extrapolations.
(correctedl enthalpy fluctuations of an ideal gas are exactly a ~ The predictions of the enthalpy and heat capacity using
diverging Gamma distribution, see Eq.04). Obviously the the corrected enthalpy fluctuatiofisot shown and the full
complexity of a diverging Gamma state is not high enough teenthalpy fluctuations are of comparable quality. However,
properly describe the behavior in the vicinity of the critical the accuracy of the Gamma states for the excess heat func-
point at 400 bar, although from Fig. 4 it is clear that at ation in the NVT ensemble is clearly highdsee Refs. 3 and
higher isobar(1000 bay the behavior is much closer to a 4), especially for a sensitive property like the heat capacity,
single diverging Gamma state in the whole temperatureénd in contrast to the canonical ensemble the use of excess
range. For comparison we also included the predictions ofluctuations in theNpT ensemble does not really improve the
the Gaussian staf&gs.(41)—(47)], which is equivalent to a accuracy.

80 . . . ‘ 80 — T T T T
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\ N
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FIG. 2. EnthalpyH _and heat capacitf, along a water isobar gi=>50.0 FIG. 4. EnthalpyH and hegt capacityC,, along a water isobar ap
bar. Legend: see Fig. 1. =1000.0 bar. Legend: see Fig. 1.
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tistical state. In the subsequent paper we will present a dis-
cussion on the implications of the existence of thermody-
namic master equations and phase transitions.

It is interesting to note that in the canonical ensefifle
the use of fluctuations of the excess heat functideal re-

< 0.10 1 duced internal energyrovides a more accurate description
% of the thermodynamics. In fact, the Gamma state solutions
Py provide in that case a model along the isochores which can

0.05 . be used over a very large temperature range, even in the

critical point region. On the contrary the Gamma state solu-
tions in theNpT and uVT ensembles cannot be used as a
i general model for the temperature dependence of fluid ther-
. , . . , modynamics, as they are too simple to describe the fluid
300 500 700 900 1100 behavior at phase transitions or close to the critical tempera-
Temperature () ture. However, when compared to a usual second order cu-
FIG. 5. EntropyS of water along different isobars. Legend: experimental Mulant expansion, equivalent to a Gaussian state, these di-
values(#), diverging Gamma statd&q. (62)] on the liquid(p=400 bay ~ verging Gamma states clearly show that the use of a
?22 %ﬁ;:;?esss)u?:?chglenggé?9335‘#?123\/”3'5:3?2#4?&(t_he_" :i)d physically acceptable Gamma distribution function improves
and gas Sidz are indicated KE/ U 0 q the quality of the model conS|derany_. In fact, the Gggssmn
state has the same problems concerning phase transitions and
the critical point region, but in addition can be used only for
Finally, in Fig. 5 the predictions for the entropy using very local extrapolations. The diverging Gamma state on the
full enthalpy fluctuations show the same trend as the enether hand seems to describe the fluid behavior properly in
thalpy and heat capacity predictioffer clarity only the first  the “stable” regions, as shown by the fact that in the “lig-
three isobars are showrAlso here the predictions using the uid” and the “gas” ranges of the solution a very sensitive
corrected enthalpy fluctuatiorfaot shown and the full en-  property like the heat capacity is rather constant, as predicted

0.00

thalpy fluctuations have the same accuracy. by the diverging Gamma state.
Finally, it should be noted that limitation to the semiclas-
V. CONCLUSION sical limit is not necessary: this theory could be derived from

In this article we showed how to extend the quasi-a full quantum description of the partition function as well.

Gaussian entropy theory in an exact way to noncanonici‘owev?r’ in the case of an exgct quantum description no
ensembles. We derived general expressions for the solutio yictuations of excess hegt functlon§ can be used.

of thermodynamic master equations for the temperature de- In the subsquent article we will show hO.W to use the
pendence in different ensembles, and described specific aQGE theory to den_ve the density depender_we wNpé’and_ .
pects of theNpT, xVT and NVT conditions. Gaussian and ,uVT ensembles using the volume and particle number distri-
Gamma statistical states were derived in detail in the nevputlons.

ensemblegNpT and uVT) and were applied to describe the

thermodynamics of water in gas and liquid conditions. ACKNOWLEDGMENTS
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