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On the use of the quasi-Gaussian entropy theory in noncanonical
ensembles. I. Prediction of temperature dependence
of thermodynamic properties

A. Amadei,a),b) M. E. F. Apol,b) and H. J. C. Berendsen
Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Department of Biophysical
Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

~Received 16 January 1998; accepted 18 May 1998!

In previous articles we derived and tested the quasi-Gaussian entropy theory, a description of the
excess Helmholtz free energy in terms of the potential energy distribution, instead of the
configurational partition function. We obtained in this way the temperature dependence of
thermodynamic functions in the canonical ensemble assuming a Gaussian, Gamma or Inverse
Gaussian distribution. In this article we extend the theory to describe the temperature dependence of
thermodynamic properties in an exact way in the isothermal-isobaric and grand canonical ensemble,
using the distribution of the appropriate heat function. For both ensembles restrictions on and
implications of these distributions are discussed, and the thermodynamics assuming a Gaussian or
~diverging! Gamma distribution is derived. These cases have been tested for water at constant
pressure, and the results for the latter case are satisfactory. Also the distribution of the heat function
of some theoretical model systems is considered. ©1998 American Institute of Physics.
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I. INTRODUCTION

The prediction of the temperature and density behav
of realistic fluidlike molecular systems based on an ex
statistical mechanical approach is both very challenging
important for practical applications and the prediction
equations of state. For molecules in the ideal gas phase
well possible to derive the thermodynamic functions in t
way, see for example Frenkelet al.1 On the contrary, the
evaluation of the partition function for systems with intera
ing molecules is in general extremely difficult, and oft
severe approximations have to be made.

However, for the evaluation of macroscopic thermod
namic properties of realistic systems most of the informat
which is present in the partition function is redundant. It
sufficient to focus on the distribution of the appropriate flu
tuations in the system.

Using this idea we have derived and applied in previo
papers2–4 the quasi-Gaussian entropy~QGE! theory to obtain
the temperature dependence of thermodynamic propertie
constant volume, based on the internal energy fluctuation
the system. It is possible in the canonical ensemble to fo
on excess~‘‘ideal reduced’’! properties with respect to
proper reference. We showed that the ideal reduced He
holtz free energy and entropy can be expressed in an e
way in terms of the excess internal energy distributio
which must be close to a Gaussian for macroscopic syste
Since the type of~model! distribution determines the fre
energy and all other derived thermodynamic functions
hence determines thestatistical stateof the system. To de-
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rive the temperature dependence, an ordinary differen
equation, thethermodynamic master equation~TME! was
formulated. Assuming a Gamma or Inverse Gaussian dis
bution, the resulting solutions of the TME provide the tem
perature dependence of all properties based on the kn
edge of a limited set of data at one initial referen
temperature and agree very well with experimental data~wa-
ter, methane, methanol! for all densities except in the vicinity
of the critical point, that we did not investigate yet, and
multiphasic conditions.

However, the extension of the theory in this form usi
excess properties gives problems in other ensembles. E
cially the definition of a proper general reference turns ou
be difficult. Hence up to now this theory has been used o
in an approximate way to describe temperature depende
in noncanonical ensemble conditions.5,6

In this paper we will describe how to extend the qua
Gaussian entropy theory to obtain the temperature dep
dence of the thermodynamic functions in the isotherm
isobaric and grand canonical ensemble in an exact way. T
is accomplished by using a different reference state and
tributions of full thermodynamic properties~internal energy,
enthalpy! instead of excess ones. Possible drawbacks
arise from the fact that the distributions required to descr
full thermodynamic properties with high accuracy may
more complex than the ones needed for excess propertie
addition we will therefore also describe the use of a pro
excess enthalpy in theNpT ensemble. An advantage of th
new reference states is the fact that we immediately ob
expressions for the thermodynamic functions without exp
itly solving the appropriate TME.

In a similar way we can also obtain the density depe
dence of thermodynamic properties using the distribution
r-
4 © 1998 American Institute of Physics

 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



ry

b
n-

l-
nd

n
a
t
n
ie

c

e
fre
a
is
W

ns
de

l
a
th

ar
y

ca
n

th

-

o
ca

e

d
7

ef-
the
o-

rgy

is

nce

d,

two

op-

-

s
en

ss-
un-
igh
-
d to
or

lete

can
bu-
I E
or
istri-
n

3005J. Chem. Phys., Vol. 109, No. 8, 22 August 1998 Amadei, Apol, and Berendsen
the volume or number of particles within the QGE theo
This will be described in a separate paper.7

This article is organized as follows.
In order to avoid that the general idea gets obscured

‘‘technical’’ details and specific applications in various e
sembles, the basic principles of the QGE theory~both in the
previous form2–6 and the one described in this and the fo
lowing article7! are summarized in Sec. II: The system a
the choice of the reference state~s!, the relation between free
energy and the distribution of an extensive quantity~heat
function, volume, number of particles! via the moment gen-
erating or cumulant generating function of that distributio
the statistical state of a system, the relation between par
eters of the~model! distribution and thermodynamic inpu
data and the derivation of related thermodynamic functio
Moreover, a unified notation for thermodynamic propert
in the NVT, NpT andmVT ensembles is introduced.

In Sec. III we will describe the temperature dependen
of thermodynamic functions at constant pressure~NpT! and
constant chemical potential~mVT!, using the unified nota-
tion. We introduce the definitions of the system and the r
erence state in Sec. III A and derive an expression of the
energy difference in terms of the distribution of the he
function. In Sec. III B we focus on the characteristics of th
distribution and the way the parameters can be obtained.
indicate in Sec. III C how other thermodynamic functio
may be obtained from the free energy function. Next a
scription of some important model distributions~Gaussian,
Gamma and diverging Gamma! and associated statistica
states is presented in Sec. III D. Finally, some remarks
made on the use of the new and the previous form of
QGE theory in theNVTensemble~Sec. III E! and a possible
exact use of excess fluctuations in theNpT ensemble~Sec.
III F !.

Applications to water of the various statistical states
presented in Sec. IV, along with some results on model s
tems~harmonic oscillators, ideal gas!. Finally, in Sec. V we
give some conclusions.

II. BASIC PRINCIPLES

As is well-known, because of the structure of statisti
mechanics and especially of the semiclassical partition fu
tion, various free energy differences may be written in
form

ln^etX &5 ln E etX r~X !dX , ~1!

whereX is some instantaneous extensive property~e.g., the
internal or potential energy, enthalpy, volume, etc.!, t is an
intensive property~e.g.,b51/kT!, ^¯& denotes an expecta
tion value in the appropriate ensemble andr~X ! is the prob-
ability distribution function~‘‘distribution’’ ! of X . As usual
we denote instantaneous properties by calligraphic symb
whereas thermodynamic averages are denoted by usual
tals. The precise nature oft and X depends on~a! the sta-
tistical ensemble~NVT, NpT or mVT!, ~b! the choice of the
reference state and~c! the choice in which state~the actual
system or reference! we evaluate the expectation valu
Downloaded 26 Mar 2008 to 151.100.52.54. Redistribution subject to AIP
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^etX &. This will be briefly illustrated below. A more detaile
treatment can be found in Sec. III A, in Sec. II A of Ref.
and in previous papers.2,4

In the NVT ensemble, for example, we can define a r
erence state at the same temperature and density with
same Hamiltonian except for the classical inter and intram
lecular interactions which are switched off.4 The excess or
confined ideal reducedHelmholtz free energyA* can be
written as

bA* 5b~A2A* ref!5 ln^ebU8&52 ln^e2bU8&* ref , ~2!

whereU8 is the instantaneous ideal reduced internal ene
~basically the classical potential energy!. HereX 5U8 and
t5b or 2b, depending on whether the expectation value
evaluated in the actual system or reference ensemble (* ref).

In this paper~Sec. III A! we will show that in theNVT
ensemble we can write the Helmholtz free energy differe
between two ‘‘temperatures’’b andb0 as

D~bA!5bA2b0A05 ln^eDbU&b52 ln^e2DbU&b0
, ~3!

where X 5U is the instantaneous internal energy an
depending on calculatinĝetX & in the b or b0 ensemble,
t5b2b05Db or 2Db.

In Ref. 7 we demonstrate that in theNpT ensemble we
can define the Gibbs free energy difference between
pressuresp andp0 as

bDG5b~G~p!2G~p0!!5 ln^ebDpV &p

52 ln^e2bDpV &p0, ~4!

where X 5V is the instantaneous volume andt5b(p
2p0)5bDp or 2bDp.

In all cases, the expectation value^etX & and hence
the free energy difference and all other thermodynamic pr
erties can be evaluated once we know the distributionr~X !.
In fact, ^etX &5GX (t)5*etX r(X )dX is themoment gen-
erating function8,9 ~MGF! of the distribution r~X ! and
GDX (t)5^etDX &5e2tXGX (t) is thecentral moment gener
ating functionwhereDX 5X 2X and X5^X &. The loga-
rithm of the MGF is called thecumulant generating
function8–10 ~CGF! of r~X !. Since the precise distribution i
not known exactly for an arbitrary system, the CGF is oft
expanded in a Taylor series int, obtaining a so-calledcumu-
lant expansion. Because the distribution is close to a Gau
ian for macroscopic systems this expansion is usually tr
cated after the second, third or fourth order. Zwanzig’s h
temperature expansion11 is basically such a cumulant expan
sion. Recently, cumulant expansions have also been use
obtain free energy differences by Molecular Dynamics
Monte Carlo simulations.12–18 However, in the QGE theory
we do not use such an expansion, but focus on the comp
distribution.

Based on physical and mathematical principles we
formulate several restrictions on the possible model distri
tionsr~X !, see Ref. 2, Sec. III B of this paper and Secs. I
and II F of Ref. 7. Acceptable model distributions are f
example the Gaussian, Gamma and Inverse Gaussian d
butions. Then unknown parameters of the distribution ca
be obtained by the method of moments,9,19 i.e., equating the
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 26 Ma
TABLE I. Notation of different properties in various ensembles, where in generalx, y, andz are the indepen-
dent variables,l is the appropriate label,F, W, S and C are the thermodynamic potential~free energy!, heat
function, entropy and heat capacity,Y and Z are ‘‘conjugated’’ properties andY is the partition function.
J52pV andD5U2mN are the grand potential and grand canonical heat function, see Eqs.~11! and~13!. For
completeness we also included the canonical ensemble, see also Sec. III E.

Ensemble x y z l F W S C
Y5S]F

]yD
T,z

Z5S]F

]zD
T,y Y

Isothermal-isobaric T p N p G H S Cp V m D
Grand canonical T m V m J D S Cm 2N 2p J
Canonical T V N V A U S CV 2p m Q
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first n theoretical momentsMr@X #5^(DX ) r& expressed in
terms of the parameters and the firstn sample moments
which can be related to thermodynamic input data at
state point via general statistical mechanical relations suc

M2@U#5kT2CV , M2@V #52kT~]V/]p!T ,

etc. The Gaussian distribution, for example, is characteri
by the first two moments, the Gamma and Inverse Gaus
by the first three.

With the appropriate thermodynamic input data at o
state point we can obtain the free energy difference at
state point. However, we can also obtain the tempera
dependence of Eqs.~2! and~3! and the pressure dependen
of Eq. ~4! in the following way.

If we have used the reference state ensemble to eva
the MGF, the distribution and its parameters are fixed at
state point. Hence we immediately obtain the temperatur
pressure dependence of the free energy difference an
other derived thermodynamic functions.

If we have evaluated the MGF in the system ensem
the distribution and hence its parameters are also temper
or pressure dependent, so we do not obtain an explicit
pression. However, it turns out that with the help of gene
thermodynamic relations we can formulate in each case
ordinary differential equation, thethermodynamic maste
equation~TME!, the solution of which provides the explic
temperature or pressure dependence.

The route using the reference state ensemble seem
vantageous, although the thermodynamic input data ma
difficult to obtain in that ensemble, e.g. see Eq.~2!, where
the reference state is rather unphysical. In that case the o
route is more appropriate, at the expense of having to s
explicitly the TME ~see Refs. 2 and 4!.

Since by either one of the two routes we obtain the f
energy difference and derived thermodynamic properties
function of an intensive parameter~e.g., b or p!, and the
relation between distribution and free energy is unique~Eq.
~1! is a Laplace transform of the distribution! the distribution
completely determines the thermodynamics of the sys
and therefore thestatistical state.

In order to facilitate the derivations we introduce a u
fied notation for quantities in various ensembles, see Tab
In this way we can derive the temperature dependence u
Eq. ~3! for all three ensembles simultaneously~Sec. III!.
r 2008 to 151.100.52.54. Redistribution subject to AIP
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III. THEORY

A. Definition of the system and reference state

The Gibbs free energy in the isothermal-isobaric e
semble~NpT! is given by

G52kT ln D ~5!

with

D5E
0

` dV

v
e2bpV Q~N,V ,T!

5
h2dN

vN! E
0

`

dV E8
dpN(

l
E

V

8*
dxNe2bH ~6!

and

H5U1pV , ~7!

the isothermal-isobaric partition function and the instan
neous enthalpy, respectively. As in previous articles2–6 we
will use calligraphic symbols for instantaneous propert
and usual roman symbols for thermodynamic averages.
thermore,

Q~N,V,T!5
h2dN

N!
Qe~N,T!E8

dpN(
l
E

V

8*
dxNe2bU

~8!

is the canonical partition function, whereh is Planck’s con-
stant,dN andQe(N,T) are the number of degrees of freedo
and the electronic partition function forN molecules, as-
sumed to be independent of the volume,U(x,p,l ,N) the
~instantaneous! internal energy andxN and pN the coordi-
nates and conjugated momenta ofN molecules.b51/kT,
with k the Boltzmann constant and the summation runs o
all accessible vibrational states$ l %. The prime and the sta
on the integrals denote the restrictions due to fixed bo
length and bond angle constraints and the restrictions du
a possible confinement of the system within a part of c
figurational space, respectively.4 FurthermoreV is the in-
stantaneous volume andp the pressure. The factorv in Eq.
~6! is in fact a numerical volume differential, which arise
from the definition of the entropy in theNpT ensemble with
continuous volume; it makesD dimensionless and assure
that in the zero temperature limit the entropy correctly ten
to zero.20 In fact, v is a measure of the accuracy with whic
we want to describe our macroscopic properties. Howe
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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from Eqs.~5! and ~6! it follows that free energy difference
are independent ofv. It is worth to note, since this was no
explicitly mentioned in previous papers, that for polyatom
molecules in the canonical partition function the correct
for the phase-space positions which are permutations
identical particles, should not only involve molecular perm
tations (1/N!) but also the possible rotations and intram
lecular displacements which are permutations of identica
oms of single molecules. In fact, the correction factor in
partition function should be (N!(11g)N)21, whereg>0 is
a positive constant characteristic of the molecule, see
Appendix. For sake of simplicity in this paper, as in t
previous ones, we have always included the factor
1g)2N into the electronic partition function.

The Gibbs free energy difference between two ‘‘te
peratures’’b andb0 can now be expressed as

D~bG!5bG2b0G0

52 ln
*0

`dV *8dpN( l*V8* dxNe2bH

*0
`dV *8dpN( l*V8* dxNe2b0H

5H0Db2 ln^e2DbDH0&b0
~9!

5HDb1 ln^eDbDH&, ~10!

where H05^H&b0
, H5^H&, DH05H2H0 and DH

5H2H with ^¯&b0
and^¯& ensemble averages in theb0

andb ensemble.
In the grand canonical ensemble~mVT! the ‘‘grand po-

tential’’ J52pV is

J52kT ln J ~11!

with

J5 (
N 50

`

ebmN Q~N ,V,T!

5 (
N 50

`
h2dN

N !
Qe~N ,T!E8

dpN (
l
E

V

8*
dxN e2bD, ~12!

D5U2mN , ~13!

the grand canonical partition function and the instantane
grand canonical heat function~‘‘granthalpy’’!, respectively.
N is the instantaneous number of molecules in the sys
and m the chemical potential. Also in this case we can e
press the free energy difference as

D~bJ!5bJ2b0J0

52 ln
(N 50

` ~h2dN /N ! !*8dpN ( l*V8* dxN e2bD

(N 50
` ~h2dN /N ! !*8dpN ( l*V8* dxN e2b0D

5D0Db2 ln^e2DbDD0&b0
~14!

5DDb1 ln^eDbDD&, ~15!

where D05^D&b0
, D5^D&, DD05D2D0 and DD5D

2D.
Downloaded 26 Mar 2008 to 151.100.52.54. Redistribution subject to AIP
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So, denoting in general the free energy, heat funct
and entropy byF, W andS ~see Table I!, we have using the
b0 ensemble

D~bF !5W0Db2 ln^e2DbDW 0&b0
, ~16!

whence

F~T!5W02TS02kT ln^e2DbDW 0&b0
. ~17!

Other thermodynamic properties follow simply as tempe
ture derivatives:

S~T!52S ]F~T!

]T D
y,z

, ~18!

W~T!5F~T!1TS~T!, ~19!

C~T!5S ]W~T!

]T D
y,z

, ~20!

with C, y andz the appropriate heat capacity and fixed pro
erties, see Table I.

B. Distribution of the heat function

The term ln̂e2DbDW 0&b0
can be written as

ln^e2DbDW 0&b0
5 ln E e2DbDW 0r0~DW 0!dDW 0 ,

~21!

with r0(DW 0) the probability distribution of the fluctua
tions DW 0 in the b0-ensemble. In fact,r0 is a continuous
probability density, since in the quasiclassical limitU, H

andD are continuous. Since we can subdivide a macrosco
system inton identical, independent subsystems, each w
linear dimension L larger than the typical correlation
length21,22 and n→`, we can apply the central limi
theorem8,23,24 to show thatr0(DW 0) is unimodal and close
to a Gaussian distribution~‘‘quasi-Gaussian’’!. Such a con-
dition might not be fulfilled in the critical point region
where the correlation length tends to infinity, and hence
distribution is not necessarily well modeled by a unimod
one. However, the fact that everywhere else in the ph
diagram the system can be described by unimodal distr
tions suggests that even at the critical point the distribut
can be considered at least as a limit condition of a gen
~highly complex! unimodal distribution. The term
^e2DbDW 0&b0

[GDW 0

0 (2Db) is in fact the central momen

generating function8,9 of the distribution r0(DW 0). The
zero superscript onGDW 0

0 denotes the reference state con

tion. The distribution is statistical mechanically defined a

r0~DW 0!5
VDW 0

* e2b0~W01DW 0!

Y0
, ~22!

where Y0 is the appropriate partition function~Table I!
evaluated atb0 , and
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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VDH0
* 5

h2dN

vN!
Qe~N!E

0

`

dV E8
dpN

3(
l
E

V

8*
dxNd~DH0~x,p,l ,V !2DH0!,

~23!

VDD0
* 5 (

N 50

`
h2dN

N !
Qe~N !E8

dpN

3(
l
E

V

8*
dxN d~DD0~x,p,l ,N !2DD0!, ~24!

are the appropriate ‘‘volumes’’ of the hypersurface in pha
space of constantDH0 or DD0 with d~•! the Dirac delta
function. We therefore find4

dr0

dDW 0
52r0Fb02

] ln VDW 0
*

]DW 0
G

52r0

~DW 02DW 0m!Pm~DW 0!

Gn~DW 0!
~25!

by expanding the term between square brackets around
mode~maximum! of r0 in a Pade´ approximant.25,26 DW 0m

is the position of the mode of the distribution and

Pm~DW 0!5(
i 50

m

ai ,0~DW 0! i , ~26!

Gn~DW 0!5(
j 50

n

bj ,0~DW 0! j , ~27!

are polynomials of orderm andn in DW 0 , where without
loss of generality we can setam,051. Note that the zero
subscript on the coefficients$ai ,0% and $bj ,0% reflects that
they are evaluated atb0 and therefore temperature indepe
dent. Equation~25! represents the generalized Pearson s
tem of distributions,2,4,27–30the solutions of which are distri
butions of increasing complexity. At this point sever
remarks have to be made.

First, the parameters$ai ,0% and $bj ,0% can be expressed2

in terms of a set of central momentsMk,05^(DW 0)k&b0
,

which in turn via statistical mechanics2,31,32can be expresse
in terms of some thermodynamic derivatives at tempera
T051/kb0 . In fact, the central moments ofW are related to
the heat capacity and some temperature derivatives in
following way:2

M2,05~kT0!@T0C0#,

M3,05~kT0!2FT0
2S ]C0

]T D
y,z

12T0C0G , ~28!

...,

where C0 and (]C0 /]T)y,z are the values ofC and
(]C/]T)y,z at T0 . If Mr ,0 is the highest order moment re
quired to express the parameters$ai ,0% and$bj ,0%, this corre-
sponds to the knowledge ofC0 and derivatives up to
Downloaded 26 Mar 2008 to 151.100.52.54. Redistribution subject to AIP
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(] r 22C0 /]Tr 22)y,z . Hence for a specific distribution via
Eqs.~17!–~21! the temperature dependence ofF, W, SandC
is completely determined by the knowledge ofW0 , S0 and
the heat capacityC0 and a limited set of temperature deriv
tives at one temperatureT0 . Therefore, each different type o
distribution defines a differentstatistical stateof the system.
Note that since we have used Eqs.~9! and~14! to express the
thermodynamic properties in terms of the distribution in t
b0 ensemble, we do not explicitly have to solve a ‘‘therm
dynamic master equation,’’ like in Refs. 2–6.

Secondly, from all the possible distributions arising fro
the basic differential equation, Eq.~25!, we have to select the
ones which are compatible with physical-mathemati
restrictions,2 like the fact that the distribution is unimoda
and should be defined on the interval@DW 0,min,`&, where
DW 0,min is the finite lower limit ofDW 0 .33 This restriction
is not strictly necessary for the granthalpy in some spe
cases wherem.0 and sor0(DD0) could be defined on the
interval ^2`,`&. In this paper we do not discuss these ve
unusual cases. Possible unimodal distributions already in
tigated are the Gaussian, Gamma and Inverse Gaus
distribution.2–4,8 From Eqs.~9! and ~14! it is clear that the
free energy diverges ifb→0, because the volume integra
and the summation over the number of particles, as wel
the kinetic part of the partition function, tend to infinity i
absence of the Boltzmann factor. For the same reasonb0

must be different from zero, too. In fact, the moment gen
ating function of the distribution r0 , GW

0 (2Db)
5^e2DbW &b0

must be finite for any finiteb except for
b50, i.e.,2Db5b0 . Note thatr0(DW 0)5r0(W ).

As previously discussed,2 for all distributionsr~j! aris-
ing from the generalized Pearson system@Eqs. ~25!–~27!#
with m11.n, the MGFGj(t)5^etj& is finite for all values
of t52Db. For distributions defined on the interva
@DW 0,min,`& wherem11,n the MGF always diverges an
when m115n the MGF is finite only for t52Db
,1/bn,0 . Therefore if

1/bn,05td5 lim
b→0

2Db5b0 ~29!

~wheretd denotes the value oft at which the MGF diverges!
the free energy will fulfil the requirement to be always fini
except whenb→0. In fact, this eliminates the parameterbn,0

and reduces the complexity of the solution. So for all t
‘‘temperature lines’’ the first possible exact distribution
are the Gamma distribution (m50, n51) and Inverse
Gaussian distribution~a degeneratem51, n52 solution4!
with 1/bn,05b0 , defining thediverging Gammaanddiverg-
ing Inverse Gaussian states.

C. Derivation of conjugated properties

Using the appropriate distribution from the generaliz
Pearson system we obtain an explicit expression
F(T;S0 ,W0 ,C0 ,]C0 /]T,...,] r 22C0 /]Tr 22), where the pa-
rameters of the distribution are determined by the mome
up to Mr ,0 ~r 52 for a Gaussian or diverging Gamma,r 53
for a Gamma or Inverse Gaussian distribution!. Subsequent
temperature derivatives of this expression yieldS(T), W(T)
and C(T), see Eqs.~18!–~20!. However, further ‘‘conju-
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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gated’’ thermodynamic properties follow from derivatives
the other two independent variablesy andz, see Table I:

Y5S ]F

]y D
T,z

, ~30!

Z5S ]F

]z D
T,y

. ~31!

Since the parametersS0 ,W0 ,C0 ,]C0 /]T,...,] r 22C0 /]Tr 22

are also functions ofy andz, we can obtainY(T) andZ(T)
via

Y~T!5
]F

]S0
S ]S0

]y D
T,z

1 (
l 521

r 22
]F

] f l ,0
S ] f l ,0

]y D
T,z

, ~32!

Z~T!5
]F

]S0
S ]S0

]z D
T,y

1 (
l 521

r 22
]F

] f l ,0
S ] f l ,0

]z D
T,y

, ~33!

where we have defined

f 21,05W0 ; f 0,05C0 ; f 1,05S ]C0

]T D
y,z

, ~34!

etc. Using the Maxwell relations4,32 we find

S ] f l ,0

]y D
T,z

52 l S ] l 11Y0

]Tl 11 D
y,z

2T0S ] l 12Y0

]Tl 12 D
y,z

, ~35!

S ] f l ,0

]z D
T,y

52 l S ] l 11Z0

]Tl 11 D
y,z

2T0S ] l 12Z0

]Tl 12 D
y,z

, ~36!

S ]S0

]y D
T,z

52S ]Y0

]T D
y,z

, ~37!

S ]S0

]z D
T,y

52S ]Z0

]T D
y,z

, ~38!

where obviously]0Y0 /]T05Y0 . HenceY(T) andZ(T) are
simply expressions of the form Y(T;Y0 ,]Y0 /
]T,...,] rY0 /]Tr) andZ(T;Z0 ,]Z0 /]T,...,] rZ0 /]Tr).

D. Statistical states

Next we will derive expressions forF(T), W(T), S(T),
C(T), Y(T) andZ(T) for the Gaussian, Gamma and diver
ing Gamma state. The equations of the Inverse Gaussian
diverging Inverse Gaussian states can be obtained stra
forwardly, but we omitted them because in most cases t
behavior is almost indistinguishable from the correspond
Gamma expressions.4 The way to solve Eqs.~17!–~21! for
these distributions is mathematically very similar to the c
previously described in the canonical ensemble using ex
properties. Therefore we will only give here the final expre
sions and refer to Refs. 2 and 4 for further details.

For aGaussian state, we use the fact that in general fo
a Gaussian distribution2,4

r~Dj!5
1

A2pb0

expH 2
~Dj!2

2b0
J , ~39!
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where we definedDj5j2^j&, the cumulant generating
function is

ln GDj~ t !5 ln^etDj&5 1
2b0t2 ~40!

with b05M2 . In this case substitutingt52Db, Dj
5DW 0 , b05b0,05M2,0 andM2,0 given by Eq.~28! we ob-
tain

F~T!5W02TS S01
1

2
C0D1T0C0S 12

T0

2TD , ~41!

W~T!5W01T0C0S 12
T0

T D , ~42!

S~T!5S01
1

2
C02

1

2
C0S T0

T D 2

, ~43!

C~T!5C0S T0

T D 2

, ~44!

whereW0 , S0 and C0 are the values ofW, S and C at the
reference temperatureT051/kb0 . Furthermore, using Eq
~32! we find for the density-related properties~see Table I!

Y~T!5Y01Bl1S T

T0
21D2Bl2S 12

T0

T D , ~45!

where

Bl15T0S ]Y0

]T D
y,z

1
1

2
T0

2S ]2Y0

]T2 D
y,z

, ~46!

Bl25
1

2
T0

2S ]2Y0

]T2 D
y,z

, ~47!

and with Eq.~33! we obtain a similar expression forZ(T),
replacingY by Z in Eqs. ~45!–~47!. Note that the Gaussian
state, because of the very special properties of the Gaus
distribution, is equivalent to a second order cumulant exp
sion of D(bF) in Db.

For aGamma state, we use the fact that in general for
Gamma distribution2,4

r~Dj!5
b1~1/b1

2!b0 /b1
2

G~b0 /b1
2!

~b01b1Dj!b0 /b1
2
21

3expH 2
b01b1Dj

b1
2 J ~48!

with G~•! the Gamma function,34 the cumulant generating
function is

ln GDj~ t !5 ln^etDj&52b0F 1

b1
t1

1

b1
2 ln~12b1t !G ~49!

with b05M2 and b15M3/2M2 . In this case substitutingt
52Db, Dj5DW 0 , b05b0,0, b15b1,0, M25M2,0 and
M35M3,0 we find with Eq.~28!

F~T!5W02
T0C0

dl0
2TS01

TC0

dl0
2 @dl01 ln~12dl0!#

2
TC0

dl0
2 ln~12dl~T!!, ~50!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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W~T!5W01~T2T0!C0S dl~T!

dl0
D , ~51!

S~T!5S02
C0

dl0
2 @dl01 ln~12dl0!#

1
C0

dl0
2 @dl~T!1 ln~12dl~T!!#, ~52!

C~T!5C0S dl~T!

dl0
D 2

, ~53!

where we have defined

dl05
b1,0

kT0
5

M3,0

2kT0M2,0
5

T0~]C0 /]T!y,z

2C0
11, ~54!

dl~T!5
T0dl0

T~12dl0!1T0dl0
, ~55!

with (]C0 /]T)y,z the value of (]C/]T)y,z at T0 . Further-
more, from Eq.~32! we find after straightforward algebra

Y~T!5Y01Bl1S T

T0
21D1Bl2S T

T0
21D 12dl~T!

12dl0

1Bl3S T

T0
D lnS 12dl~T!

12dl0
D ~56!

with

Bl15T0S ]Y0

]T D
y,z

2
4dl023

2dl0
2 T0

2S ]2Y0

]T2 D
y,z

1
1

2dl0
2 T0

3S ]3Y0

]T3 D
y,z

, ~57!

Bl252
2dl023

2dl0
2 T0

2S ]2Y0

]T2 D
y,z

1
1

2dl0
2 T0

3S ]3Y0

]T3 D
y,z

,

~58!

Bl35
3dl023

dl0
3 T0

2S ]2Y0

]T2 D
y,z

2
1

dl0
3 T0

3S ]3Y0

]T3 D
y,z

, ~59!

and using Eq.~33! we obtain a similar expression forZ(T),
replacingY by Z in Eqs.~56!–~59!.

Finally, for adiverging Gamma statethe restriction due
to the divergence of the MGF atb50 reduces the complexity
of the solutions. In fact, combining the general expression
b1,0 for a Gamma state,2,4 b1,05M3,0/2M2,0, with Eq. ~29!,
b1,051/b0 , we obtainM3,0/2kT0M2,0[dl051 and thus via
Eq. ~55! alsodl(T)51. This gives

F~T!5W02T0C01T~C02S0!1TC0 lnS T0

T D , ~60!

W~T!5W01~T2T0!C0 , ~61!

S~T!5S02C0 lnS T0

T D , ~62!

C~T!5C0 , ~63!

and, after careful inspection35
Downloaded 26 Mar 2008 to 151.100.52.54. Redistribution subject to AIP
f

Y~T!5Y01Bl1S T

T0
21D1Bl2S T

T0
D lnS T

T0
D ~64!

with

Bl15T0S ]Y0

]T D
y,z

2T0
2S ]2Y0

]T2 D
y,z

, ~65!

Bl25T0
2S ]2Y0

]T2 D
y,z

, ~66!

and using Eq.~33! a similar expression forZ(T), replacingY
by Z in Eqs.~64!–~66!.

E. Canonical ensemble

All derivations up to here are also valid for the canonic
~NVT! ensemble, see also Table I. In that case we have to
the distribution of the full instantaneous internal energyU.
Any exact distribution in this ensemble must have a dive
ing MGF for b→0 as well, since the kinetic part of th
Helmholtz free energyA tends to infinity forT→` ~note,
however, that the ideal reduced Helmholtz free energyA8 is
finite in this limit4!. In previous papers2–4 we showed that a
formulation of the theory using the excess~‘‘ideal reduced’’!
internal energyU8 provides an excellent description o
many systems at constant volume, already using a Gam
distribution. This already suggests that the description us
the full internal energyU must be less successful than th
description using the ideal reduced internal energyU8 for
the same type of distribution~i.e., level of the theory!.

In fact, there are two general reasons for this: first it
very difficult to model the distribution of the energy whic
contains intramolecular quantum vibrational energy~which
is not present inU8!, and secondly the kinetic energy~also
not included inU8! always requires as the simplest exa
statistical state for the full energy a diverging Gamma, wh
for the ideal reduced energy a Gamma state of full compl
ity is the simplest exact solution.

Consider for example the isochoric heat capacityCV .
The first exact expression using the full internal energy i
diverging Gamma state, where from Eq.~63! we have
CV(T)5CV0 . Restricting ourselves for simplicity to mon
atomic molecules, we see that the ideal reduced heat cap
CV8 , i.e., with respect to an ideal gas at the same density
temperature, is simply a constant

CV8 ~T!5CV02 3
2Nk. ~67!

However, using the ideal reduced internal energy distri
tion, we obtain for a Gamma state2–4

CV8 ~T!5CV08 S T0

T~12d0!1T0d0
D 2

~68!

with

d05
T0~]CV08 /]T!

2CV08
11 ~69!

which is clearly different, and moreover proved to be
excellent model of water, methane and methanol. There
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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in the canonical ensemble we use the description in term
the ideal reduced internal energyU8 instead of the full en-
ergy U.

F. Excess properties in the NpT ensemble

Compared to the canonical ensemble, it is much m
difficult to define and use excess properties to set up
theory in the isothermal-isobaric ensemble. So far we w
only able to derive the theory in that ensemble using exc
properties in an approximated way.5 Here we will illustrate
how to define a proper reference state that can be use
derive the theory for fluctuations of an excess instantane
enthalpyH c, where we have removed the intramolecu
quantum vibrational and kinetic parts of the energy. Suc
formally equivalent and exact derivation of the theory cou
be preferable from a practical point of view, since for a giv
level of the theory~defined by the type of statistical state w
want to use to model the system! the excesslike heat func
tions might be described with higher accuracy as for
canonical ensemble, Sec. III E.

We can use the previously introduced general appro
mation for the canonical partition function4

Q>
1

N!
QeQkinQid

v E8*
dxNe2bU8, ~70!

with Qkin the semiclassical kinetic partition function~includ-
ing the factorh2dN!, U85F1C1E02Eid

0 whereF andC
are the inter and intramolecular classical potential energ
E0 is the overall vibrational ground state energy of the s
tem and whereEid

0 andQid
v are the overall vibrational groun

state energy and partition function of the ideal gas~F50!,
respectively.

We define a reference state as an ideal gas with no c
sical inter and intramolecular potential energy~F5C50, so
E05Eid

0 ! where by an infinite attractive potential among t
molecules the centers of mass of the molecules are confi
within a small volume ‘‘differential’’ v, as well as the full
volume of the system. The corresponding referen
isothermal-isobaric partition function is

D* ref5
1

N!
QeQkinQid

v Zid
rot vNv

v E
id

8*
dxint

N , ~71!

where the translational configurational volume is given
vN, Zid

rot5(zid
rot)N is the ideal gas rotational configuration

volume and* id8* dxint
N 5(* id8* dxint

1 )N is the ideal gas configu
rational volume of the classical intramolecular coordina
xint

N , for a given definition of the internal and rotational c
ordinates of the single molecule. The factorv/v arises from
the integration over the volume. As usual4 the prime and the
star on the integrals denote the possible integration res
tions due to fixed bond lengths and angles and to a confi
ment of the system within a part of configurational spa
here in the ideal gas condition. Note that the use of tran
tional, rotational and intramolecular coordinates in Eq.~71!
implies that also the kinetic partition functionQkin is ex-
pressed using the conjugated momenta of these coordin

Hence the reference thermodynamic properties are
Downloaded 26 Mar 2008 to 151.100.52.54. Redistribution subject to AIP
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G* ref52kT ln
1

N!
QeQkinQid

v Zid
rot vNv

v E
id

8*
dxint

N , ~72!

S* ref52S ]G* ref

]T D
p,N

, ~73!

H* ref5G* ref1TS* ref , ~74!

Cp* ref5S ]H* ref

]T D
p,N

, ~75!

V* ref5S ]G* ref

]p D
T,N

50, ~76!

etc. We define thecorrectedthermodynamic properties as

Gc5G2G* ref52kT ln
*0

`dV e2bpV *V8* dxNe2bU8

* id8* dxint
N Zid

rotvNv
, ~77!

Sc5S2S* ref52S ]Gc

]T D
p,N

, ~78!

Hc5H2H* ref5Gc1TSc, ~79!

Cp
c5Cp2Cp* ref5S ]Hc

]T D
p,N

, ~80!

Vc5V5S ]G

]p D
T,N

. ~81!

Defining the instantaneous corrected enthalpyH c5U8
1pV , from the definition of the corrected properties we c
write the corrected free energy difference in the same wa
Eqs.~9! and ~10!:

D~bGc!52 ln
*0

`dV *8* dxNe2bH c

*0
`dV *8* dxNe2b0H c

5H0
cDb2 ln^e2DbDH 0

c
&b0

~82!

5HcDb1 ln^eDbDH c
&b ~83!

with DH 0
c5H c2H0

c , DH c5H c2Hc with H0
c

5^H c&b0
andHc5^H c&. From this follows

Gc5H0
c2TS0

c2kT ln^e2DbDH 0
c
&b0

. ~84!

From these equations it is evident that using the distribut
of the instantaneous corrected enthalpyH c in the b0 en-
semble,

r0~H c!5
e2b0H c

*0
`dV *V8* dxNd~H c~x,V !2H c!

*0
`dV *V8* dxNe2b0H c

~85!

also fully defined by a set of moments ofH c or temperature
derivatives ofHc, in theNpTensemble all the consideration
and derivations of Sec. III B–III D can be applied to th
corrected thermodynamic properties by simply exchang
in every equation the full properties with the correspond
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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corrected ones. For instance, for a diverging Gamma s
~the formally exact Gamma state for both the corrected
full enthalpy fluctuations! we have

Gc~T!5H0
c2T0Cp0

c 1T~Cp0
c 2S0

c!1TCp0
c lnS T0

T D , ~86!

Hc~T!5H0
c1~T2T0!Cp0

c , ~87!

Sc~T!5S0
c2Cp0

c lnS T0

T D , ~88!

Cp
c~T!5Cp0

c , ~89!

and

V~T!5V01Bl1
c S T

T0
21D1Bl2

c S T

T0
D lnS T

T0
D , ~90!

with

Bl1
c 5T0S ]V0

]T D
p,N

2T0
2S ]2V0

]T2 D
p,N

, ~91!

Bl2
c 5T0

2S ]2V0

]T2 D
p,N

, ~92!

and using Eq.~33! a similar expression formc(T), replacing
V by mc in Eqs.~90!–~92!. It is very useful to link the ref-
erence properties to ideal gas ones. From the ideal gas
energy

Gid52kT ln
1

N!
QeQkinQid

v Zid
rot E

id

8*
dxint

N e2bC

3E
0

` dV

v
e2bpV V N

52kT ln QeQkinQid
v Qid

rot E
id

8*
dxint

N e2bC
1

v~bp!N11

~93!

we obtain after a few steps

G* ref5Gid2NkT ln^ebc& id2NkT lnS pv
NkTD2NkT,

~94!

S* ref5Sid1Nk ln^ebc& id2
N^c& id

T
1Nk lnS pv

NkTD ,

~95!

H* ref5H id2N^c& id2NkT, ~96!

Cp* ref5Cp id2NS ]^c& id

]T D
p,N

2Nk, ~97!

where c is the molecular intramolecular potential wit
^C& id5N^c& id and ^ebc& id5* id8* dxint

1 /* id8* e2bcdxint
1 is the

moment generating function of the molecular intramolecu
potential energy fluctuation. In the case of small molecu
where c50 ~e.g., water! the previous equations simplif
even further.

It should be noted that for systems where no intram
lecular potential is present and in the whole temperat
Downloaded 26 Mar 2008 to 151.100.52.54. Redistribution subject to AIP
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range of interest the vibrations are largely confined to
ground state, if the corrected enthalpy fluctuations are pr
erly modeled by a diverging Gamma state, also the full
thalpy fluctuations can be described by a diverging Gam
state. On the contrary, for any other discussed statistical s
such correspondence is lost.

Finally it must be mentioned that in the grand canoni
ensemble Eq.~70! cannot provide any derivation based on
excesslike granthalpy and so in that ensemble we can
use the full property.

IV. RESULTS

Before presenting a comparison between the Gam
state expressions and experimental data of water, we
first show that the Gamma distribution is the exact distrib
tion for the heat function of two simple systems, i.e., t
internal, kinetic and potential energy of a set of classi
harmonic oscillators in theNVT ensemble and the enthalp
~internal energy! of an ideal gas in theNpT ~NVT! ensemble.

First consider a set ofN classical harmonic oscillator
~e.g. normal modes! in the canonical ensemble. It is alway
possible to define a set of generalized coordinatesj i and
momentap i ~not necessarily conjugated! such that the in-
stantaneous internal energy can be written as

U5(
i 51

N
1

2
k ij i

21(
i 51

N
1

2mi
p i

2

5
kT

2 (
i 51

N S j i

sj i
D 2

1
kT

2 (
i 51

N S p i

sp i
D 2

5
kT

2 (
i 51

2N S t i

st i
D 2

5
kT

2
x2 ~98!

with k i and mi force constants and reduced masses
where we used the fact that the variance of the position
sj i

2 5kT/k i and that of the momenta issp i

2 5mikT. Further-

more,t i denotes a general coordinate. SinceU is the sum of
squares of an independent standard normal variablet i /st i

, it
is proportional to a x2 variable,36 which follows a
x2-distribution with in this case 2N degrees of freedom
Hence the distribution ofU5(kT/2)x2 is a x2-distribution
as well,2,8

r~U!5
~1/kT!N

G~N!
UN21e2U/kT ~99!

which is a special subfamily of Gamma distributions. In fa
it is a diverging Gamma distribution sinceb15kT @cf. Eq.
~48!#.

Of course, the same argument can also be applied to
potential energyUpot5( i 51

N (k i /2)j2 or the kinetic energy
K 5( i 51

N (1/2mi)pi
2 only, giving in both cases a

x2-distribution with N degrees of freedom, i.e., a divergin
Gamma distribution of the form
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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r~Upot!5
~1/kT!N/2

G~N/2!
Upot

N/221e2Upot /kT ~100!

r~K !5
~1/kT!N/2

G~N/2!
K N/221e2K /kT. ~101!

The MGF of these distributions follows from Eq.~49!, giv-
ing

GUpot
5GK~ t !5S b

b0
D N/2

5S b

b2t D
N/2

, ~102!

where we definedt5Db. Note that Eq.~100! is also in
general the distribution of the kinetic energy in the canoni
and isothermal-isobaric ensemble.

The second system is an ideal gas ofN particles in the
NpTensemble. For simplicity we first consider a monatom
gas, and discuss polyatomic molecules afterwards.
isothermal-isobaric partition function for a monatomic ide
gas is given by20

D id5
~qe!NL23N

v~bp!N11 , ~103!

whereL5Ah2b/2pm is the thermal wavelength withm the
mass of the atom. SinceD(bG)5 ln(Did,0 /Did), we have
from Eq. ~10!

GH~Db!5^eDbH&5
Did,0

Did

5S b

b0
D ~5/2!N11

5S b

b2t D ~5/2!N11

~104!

defining t5Db. Note that fromD id follows the ideal gas

law37 pV5(N11)kT, so H5( 5
2N11)kT, and using the

general relation9 GDX (t)5e2tXGX (t), we find

GDH~ t !5e2t@~5/2!N11#/bS b

b2t D ~5/2!N11

. ~105!

For a Gamma distributionr~j! we have from Eq.~49! a
similar expression

GDj~ t !5e2t~b0 /b1!S 1/b1

1/b12t D
b0 /b1

2

. ~106!

Using H5( 5
2N11)kT, so Cp5( 5

2N11)k and ]Cp /]T50,
we obtain withb05M2 , b15M3 /(2M2) and Eq.~28!

1

b1
5b;

b0

b1
5S 5

2
N11D /b;

b0

b1
2 5

5

2
N11. ~107!

Since the moment generating function, being a Lapl
transform, is uniquely related to the distribution,9 this proves
that the distribution of the enthalpy fluctuations for an ide
monatomic gas in theNpT ensemble is a diverging Gamm
distribution (b15kT).

When we are dealing with a polyatomic ideal gas,

D id5
~qe!NL23N

v~bp!N11 ~qid
rotqid

int!N ~108!
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with qid
rot and qid

int the ideal gas rotational and internal par
tion function per molecule. The rotational partition functio
is in general given by38

qid
rot5

p1/2

s S T3

QAQBQC
D 1/2

5
1

s S p

k3QAQBQC
D 1/2S 1

b D 3/2

~109!

with QA ,QB ,QC the principal characteristic rotational tem
peratures ands the symmetry number.

If the s internal degrees of freedom can be describ
classically within a harmonic approximation~e.g., harmonic
bond and angle potentials!, the distribution of the total en-
thalpy is still a diverging Gamma distribution, since in th
case

qid
int5S 2p

hb D s

)
i 51

s S m i

k i
D 1/2

~110!

with m i andk i the appropriate reduced mass and force c
stant, and hence

GH~Db!5
Did,0

Did
5S b

b0
D ~5/2!N11S b

b0
D ~3/2!NS b

b0
D sN

5S b

b2t D ~41s!N11

. ~111!

Note that in all these cases also the distribution of the c
rected enthalpy fluctuations~Sec. III F! is exactly a diverging
Gamma distribution. Even when quantum intramolecular
brations are present and if the classical intramolecular in
actions are absent or harmonic the corrected enthalpy fl
tuations are still exactly described by a diverging Gam
state. This moreover suggests that a diverging Gamma s
for the full or corrected enthalpy fluctuations might also be
good description for the temperature dependence of ther
dynamic properties at constant pressure ofreal ~dilute!
gases. Note that the distribution of the internal energyU of
a monatomic ideal gas in theNVT ensemble is a Gamm
distribution too. For polyatomic molecules the same requ
ments as described above for theNpT ensemble are valid.

We tested the validity of the Gamma state description
water, using both full and corrected enthalpy fluctuatio
@Eqs. ~60!–~66! and ~86!–~92#. Experimental data at fixed
pressure were taken from Schmidt39 at 1, 50, 400 and 1000
bar and ideal gas properties from Frenkelet al.1 The critical
pressure is 221.2 bar. For the two lowest pressures a p
transition occurs, so adopting the usual thermodynamic
proach we have in that case on both sides of the singula
two independent solutions, a gas and a liquid branch. At
bar the behavior in the vicinity of the critical temperatu
~647.3 K! is rather complex, so also there we used a ‘‘li
uid’’ and a ‘‘gas’’ branch. At 1000 bar we only used th
‘‘liquid’’ branch. For the liquid solutions we usedT0

5313 K, for the gas branches we usedT05613 K ~1 bar!,
813 K ~50 bar! and 1013 K~400 bar!.

In Figs. 1–4 the predictions of the full enthalpyH and
heat capacityCp are given using the full enthalpy fluctua
tions @Eqs. ~61! and ~63!#. Since for the liquid side there is
no divergence restriction, the parameters were calculated
a general Gamma state, obtaining in all casesdp0>1. We
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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therefore used a diverging Gamma state, which accordin
the figures describes the liquid behavior for the two subc
cal isobars very well up to the phase transition, or for
supercritical isobars roughly up to the critical temperatu
For the gas side a diverging Gamma state is clearly a g
description for temperatures starting somewhat above
phase transition~or ;150 K above the critical temperatur
for p5400 bar!, as already suggested by the fact that
~corrected! enthalpy fluctuations of an ideal gas are exactl
diverging Gamma distribution, see Eq.~104!. Obviously the
complexity of a diverging Gamma state is not high enough
properly describe the behavior in the vicinity of the critic
point at 400 bar, although from Fig. 4 it is clear that at
higher isobar~1000 bar! the behavior is much closer to
single diverging Gamma state in the whole temperat
range. For comparison we also included the predictions
the Gaussian state@Eqs.~41!–~47!#, which is equivalent to a

FIG. 1. EnthalpyH and heat capacityCp along a water isobar atp51.0 bar.
Legend: experimental values~l!, diverging Gamma states@Eqs. ~61! and
~63!# on the liquid and gas side~ !, and corresponding Gaussian stat
@Eqs.~42! and ~44!# ~ !. The critical pressure is 221.2 bar~Ref. 39!.
The values ofT0 for the liquid and gas side are indicated byL.

FIG. 2. EnthalpyH and heat capacityCp along a water isobar atp550.0
bar. Legend: see Fig. 1.
Downloaded 26 Mar 2008 to 151.100.52.54. Redistribution subject to AIP
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second order cumulant expansion ofD(bG) in Db ~see Sec.
II !, using the same input data as the diverging Gamma s
From the figures it is clear that the Gaussian state, which
the same complexity as a diverging Gamma state~i.e., the
same number of input data atT0!, is much worse, especially
evident from the heat capacity. The use of a physically
ceptable Gamma distribution function hence gives a sign
cant improvement, and the second order cumulant expan
can only be used for very local extrapolations.

The predictions of the enthalpy and heat capacity us
the corrected enthalpy fluctuations~not shown! and the full
enthalpy fluctuations are of comparable quality. Howev
the accuracy of the Gamma states for the excess heat f
tion in theNVT ensemble is clearly higher~see Refs. 3 and
4!, especially for a sensitive property like the heat capac
and in contrast to the canonical ensemble the use of ex
fluctuations in theNpTensemble does not really improve th
accuracy.

FIG. 3. EnthalpyH and heat capacityCp along a water isobar atp
5400.0 bar. Legend: see Fig. 1.

FIG. 4. EnthalpyH and heat capacityCp along a water isobar atp
51000.0 bar. Legend: see Fig. 1.
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Finally, in Fig. 5 the predictions for the entropy usin
full enthalpy fluctuations show the same trend as the
thalpy and heat capacity predictions~for clarity only the first
three isobars are shown!. Also here the predictions using th
corrected enthalpy fluctuations~not shown! and the full en-
thalpy fluctuations have the same accuracy.

V. CONCLUSION

In this article we showed how to extend the qua
Gaussian entropy theory in an exact way to noncanon
ensembles. We derived general expressions for the solu
of thermodynamic master equations for the temperature
pendence in different ensembles, and described specific
pects of theNpT, mVT and NVT conditions. Gaussian an
Gamma statistical states were derived in detail in the n
ensembles~NpT andmVT! and were applied to describe th
thermodynamics of water in gas and liquid conditions.

We first showed that in theNpT ensemble an ideal ga
can be described in general by a diverging Gamma state
the corrected and full enthalpy fluctuations, suggesting th
diverging Gamma state could be a good description at l
of the gas behavior. In contrast to the situation in the cano
cal ensemble using the energy fluctuations in theNpT and
mVT ensembles we encounter phase transitions. Follow
the usual thermodynamic approach~i.e., regarding the phas
transitions as singularities! we have for the subcritical iso
bars two distinct solutions: a gas and a liquid one.

Applying Gaussian and Gamma states, the results cle
show that we can describe a considerable part of the ther
dynamics of water using two Gamma state solutions, a lo
density~gas! diverging Gamma state, and a high-density~liq-
uid! one, but no single Gamma state can be used as a un
statistical state of the system for all densities, even at su
critical isobars. This implies that for a real system its uniq
exact solution, able to describe both gas and liquid con
tions including phase transitions and the critical point regi
is in theNpT andmVT ensembles beyond the Gamma lev
of the theory and hence requires a more complex model

FIG. 5. EntropyS of water along different isobars. Legend: experimen
values~l!, diverging Gamma states@Eq. ~62!# on the liquid~p5400 bar!
and gas side~ ! and corresponding Gaussian states@Eq. ~43!# ~ !.
The critical pressure is 221.2 bar~Ref. 39!. The values ofT0 for the liquid
and gas side are indicated byL.
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tistical state. In the subsequent paper we will present a
cussion on the implications of the existence of thermo
namic master equations and phase transitions.

It is interesting to note that in the canonical ensemble2–4

the use of fluctuations of the excess heat function~ideal re-
duced internal energy! provides a more accurate descriptio
of the thermodynamics. In fact, the Gamma state soluti
provide in that case a model along the isochores which
be used over a very large temperature range, even in
critical point region. On the contrary the Gamma state so
tions in theNpT and mVT ensembles cannot be used as
general model for the temperature dependence of fluid t
modynamics, as they are too simple to describe the fl
behavior at phase transitions or close to the critical temp
ture. However, when compared to a usual second order
mulant expansion, equivalent to a Gaussian state, thes
verging Gamma states clearly show that the use o
physically acceptable Gamma distribution function improv
the quality of the model considerably. In fact, the Gauss
state has the same problems concerning phase transition
the critical point region, but in addition can be used only f
very local extrapolations. The diverging Gamma state on
other hand seems to describe the fluid behavior properl
the ‘‘stable’’ regions, as shown by the fact that in the ‘‘liq
uid’’ and the ‘‘gas’’ ranges of the solution a very sensitiv
property like the heat capacity is rather constant, as predi
by the diverging Gamma state.

Finally, it should be noted that limitation to the semicla
sical limit is not necessary: this theory could be derived fro
a full quantum description of the partition function as we
However, in the case of an exact quantum description
fluctuations of excess heat functions can be used.

In the subsequent article we will show how to use t
QGE theory to derive the density dependence in theNpTand
mVT ensembles using the volume and particle number dis
butions.
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APPENDIX

From quantum mechanics we know that any set
phase-space positions which are permutations of iden
particles should be considered as a unique physical state
so counted as a single phase-space position in the part
function. Since for a system in the classical limit the cano
cal partition function can be expressed as the product of
independent integrals, one only on the classical momenta
the other on the classical coordinates,4 we can obtain a cor-
rect evaluation of the partition function by counting any s
of configurations which are permutations of identical p
ticles ~indistinguishable configurations! as a single configu-
ration. To accomplish this correction in the configuration
integral we can decompose the classical degrees of free

l
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of the molecule~excluding bond lengths and angles whi
are considered completely constrained4! into translational,
rotational and intramolecular ones. Hence for any given c
figuration of the system we can evaluate the correspond
total number of translations, rotations and intramolecular d
placements which are permutations of identical particles

n~xint!5N!)
i 51

N

~11g i~xi , int!! g i50,1,2,..., ~A1!

wherexint are the classical intramolecular coordinates,xi , int

the ones of thei th molecule and 11g i the total number of
indistinguishable configurations only due to rotations and
tramolecular displacements of the molecule. For mac
scopic systems we can safely assume that although eachg i is
in principle a function of the corresponding intramolecu
coordinates the product of all the factors 11g i is virtually
identical for every configuration of the system, so

)
i 51

N

~11g i !>~11g!N g>0, ~A2!

whereg can be considered a density and temperature in
pendent constant, characteristic of the molecules. Hence
viding the configurational integral byN!(11g)N provides
the required correction. For sake of simplicity we alwa
include the factor (11g)2N into the electronic partition
function.
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