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In previous articles we derived and tested the quasi-Gaussian entropy theory, a description of the
excess free energy in terms of the potential or full internal energy or enthalpy probability
distribution, instead of the€configurational partition function. We obtained in this way the
temperature dependence of thermodynamic functions in NRE, NpT and VT ensembles
assuming a Gaussian, Gamma or Inverse Gaussian distribution. In this article we extend the theory
to describe the density dependence of thermodynamic properties, using the distribution of volume
and number of particles in the isothermal-isobaric and grand canonical ensemble, respectively. In
both ensembles pressure-density expressions for a Gaussian and various Gamma distributions are
derived and applied to water. A Gamma description for the volume distribution turns out to be a
good model in the gas range, which is in accordance with the volume distribution of an ideal gas.
A Gamma description for the particle number distribution works well for liquid densities. 998
American Institute of Physic§S0021-96068)50332-7

I. INTRODUCTION the thermodynamic functions without explicitly solving the
appropriate thermodynamic master equatioME).

The prediction of the temperature and density behavior  The article is organized as follows.
of realistic fluidlike molecular systems based on an exact In Sec. Il we present the theory concerning density de-
statistical mechanical approach is both very challenging angendence of thermodynamic properties using the QGE ap-
important for practical applications and the prediction ofproach. The definition of the system and reference $&ee.
equations of state. The evaluation of the partition functionll A), a discussion on the distribution of the volume and
for systems with interacting molecules is in general ex-number of particle¢Sec. Il B), the derivation of related ther-
tremely difficult, and often severe approximations have to bénodynamic functions from the free ener¢gec. 11Q and

made, unlike the situation for molecules in the ideal gassome important model distributiort&aussian and Gamma
phase, see for example Frenleglal! and corresponding statistical stat&ec. Il D) are described.

However, as we have shown in previous arti@d&sfor  As the isothermal-isobaric and the grand canonical ensemble

the evaluation of macroscopic thermodynamic properties ofiiffér in some important aspects, the specific applications
realistic systems most of the information which is present iR"d “special” statistical states of these ensembles are dis-
the partition function is redundant. It is sufficient to focus onCUSSed in Secs. Il E and Il F. To facilitate the derivations, we
the probability distribution of the appropriate fluctuations in US€ @ unified notation for properties in various ensembles as
the system, which completely determine the free energy difintroduced beforé,see Table I. _ _
ference with respect to a proper reference. This is the ap- A discussion on the thermodynamic master equation and

proach of the quasi-Gaussian entropy the@@E). lts basic its implications for phase transitions is presented in Sec. Ill.
principles are explained in Sec. Il of the preceding arficle. Applications to water of the various statistical states are pre-

In that article we derived the temperature dependence o§ented |n.Sec. v, alo'ng W'th some results on a model sys-
. o . tem, the ideal gas. Finally, in Sec. V we give the conclu-
thermodynamic properties in various ensembles.

. . ions.
In the present paper we will describe how to extend the 01>

guasi-Gaussian entropy theory in an exact way to describe
the density dependence of thermodynamic functions in thgg, THEORY
isothermal-isobaric and grand canonical ensemble. This ii _—

. . . . Definition of the system and reference state
accomplished by using distributions of the volume and num-
ber of particles. Just as for the temperature dependence in the The density dependence of thermodynamic properties,
previous articlé, we can immediately obtain expressions fori.e., the dependence on voluniésothermal-isobaric en-

semble or particle numbefgrand canonical ensembjean

dpresent address: c/o Professor Di Nola, Department of Chemistry, Univerl-)e obtained in the foIIowmg way.

sity of Rome(La Sapienza p.le A. Moro 5, 00185, Rome, Italy. In _the isothermal-isobaric e_nsembtdae Gibbs _free en-
B Author to whom correspondence should be addressed. ergy difference between two different pressures is
0021-9606/98/109(8)/3017/11/$15.00 3017 © 1998 American Institute of Physics

Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



3018 J. Chem. Phys., Vol. 109, No. 8, 22 August 1998 Apol, Amadei, and Berendsen

TABLE |. Notation of different properties in various ensembles, where in gemenal andz are the indepen-
dent variables\ is the appropriate labek, W, S andC are the thermodynamic potentidtee energy, heat
function, entropy and heat capacity,and Z are “conjugated” properties andl is the partition functionJ
=-—pV is the grand potential an®=U — uN the corresponding heat function. For completeness we also
included the canonical ensemble.

Y*((yF) _(aF)

Ensemble X y z N F W S C %y Tz 9z Ty Y
Isothermal-isobaric T p N p G H S G \% % A
Grand canonical T " \Y, “w J D S C, —N -p =)
Canonical T \% N \% A U S G -p % Q

AG=G(p)-G(p°) 0~ 50,

. ! E(u0)=e = X e QUIV,T)

Jod7e PP7Q(N,7,T) I=o

=—KkT In —
=1+ | e Q(/V,Td s (5

=VOAP—KT In(e Aara7 0

by separating the first ternfan infinitely deluted system

where./'=0) and approximating the remaining sum by an

_VAPKT In(€f4P37Y integral, where /" is a continuous variable anif=J(u°).
P Defining the continuous distribution function af as

=VoAp—KTIn f e PAPATCLO(A 7O dA 70 (1)

=VAp+KT In f ePAPAT h(A7)AA Y, 2) —
P g %’ QI T)

F5ePH QU v, Td T

whereQ(N,V,T) is the canonical partition function at con- ()=
stant number of moleculds, volumeV and temperaturé&,
and [5d7e PP7Q(N,7 T)lv=A(N,p,T) is the
isothermal-isobaric partition function. As usual we will de- .
note instantaneous extensive properties by calligraphic sym- e -1
bols, whereas the corresponding thermodynamic averages

are given in Roman capitals. Furthermoy@=1/KkT, Ap we have

=p—p° VO=(7)po, A7O=7"-VO, V=(7), A7=7"

—V and(- )0 and(: - denote ensemble averages in ife BT QI IV, T)=p%( 1 ) (e F°—1). )
andp ensemblep®(A 70 andp(A7) are the distributions
of the volume fluctuations g° and p, respectively. Note
that the integral on the right-hand side of E¢.and (2) is
only a function ofT, N andAp. Taking the pressure deriva-

Hence, definingA u=u— u® we can express Eq4) as

5% _ o€ QLT

tive, we obtain e BAI— )
=l
IAG
(T) =V(p) () 0 » — = _
P/rn =ef| 14 f efrrlebr QI T)Yd )
0

and upon inversiomp(V).

In the grand canonical ensemblee have in a similar _ B0 80 [T sanT 0 T T
way the grand potential difference] between two different =e” +(1-e™) 0 e p(A)dT, ®
chemical potentials

. =% _ € QI V,T) where in the last step we have used Ef). For macroscopic
AJ=J(pn) = I(p")=—KT In s7 _ &P QLI v.T)  Systems, not at extremely low pressure and densify.
=0 o (4) ~0 (even for a system of &m?>at 0.1 Pa and 300 K we find

0 _ .
AJ°~3.107 1. Hence under normal conditions we can

There is one major difference between this expression an afely neglect the first term on the right-hand side of @,

Eq. (1) ./ is a discrete variable and the corresponding dis-
tribution of the number of particles is also discrete. However, .
for a macroscopic system the change due to a single particle E(Mo)zefﬁf’: f eﬁMWQ(,/]T-,V’T)dJW (9
can be regarded as a differential. In the case that an analyti- 0

cal expression oQ(./",V,T) is available, we can rewrite the

grand canonical partition function as and from Eq.(8) simply follows
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AJ=—NCAp—KkT |n<eﬁAMA“T°>IuO Gg(t)=(e‘f). Equation(13) shows that the excess free en-
ergy is completely determined by the volume or particle
number distribution via the MGF or CGF.

As mentioned in the previous papean expression of
the type of Eq.(13), AF=—KT In(e #27) 0, is often ex-
panded in powers of- BAy and truncated after the second,
= —NAg+KT |n<efﬁAﬂA,7‘> thir_d or fourth order term, a so-called cumulant expansion.

This has been done mostly for the temperature dependence
of thermodynamic properties, especially in combination with
molecular dynamics or Monte Carlo simulatiofis*®In this
o L o __ paper we will not use a truncated cumulant expansion, but
with N°=(./),0, A1 %=/"=N° N=(J) and A.J" focus on the use of physically acceptalieode) distribu-
=.J"=N. (---),0 and(---) denote ensemble averages in thetions for p°.

1 andu ensemble ang®(A.7 %) andp(A. /) are the con-

tinuous distributions of the particle number fluctuationgdt g volume and particle number distribution

and u, respectively. In this paper we will use these virtually o

exact equations. Only in the limit of zero pressure or density e can use the central limit theorem to show that for
whenA really tends to— Eq. (8) has to be used, see Sec. Macroscopic .systems,.whm.h may be considered as a very
Il F. It is important to note that Eq9) implies the equality large collection of identical independent subsystems,

A o O 9 0 . . . . .
between the moments of the continuous number of particles, (A#") can be described by a unimodal distribution close
7. and the ones of the discrete numbef”. Hence for to a Gaussian. Since it is statistical mechanically defined as

=—N°Ax—KT In f eBAuAT 0N O A1 O

(10

= —NAu+KT In fe‘BA“A'Tp(A./7)dA.A7' (1)

systems not in the zero pressure limit, we can really consider 7 QA+ Y0)e~ A8 70+Y0)
the instantaneous number of particles as the continuous vari- p%(A%°)= : Y0 (15
able./J". )
The integral on the right-hand side of Eq0) and(11) it follows that
is only depending orT, V and Au. Taking the derivative dp® oJ . aInQ(a 79+ Y0)
with respect to the chemical potential yields da /0 =—p - &A?/O
oA A YO~ A YO P™(A YO
( ) — W 12 S . S (16
I )1y G(AZ)
and upon inversion:(N). by expanding the expression between square brackets in a

Hence adopting the general symbols as defined in Tab@a_d_eapproximarﬂt7'1_8 around the modémaximummof pr%b—
| and definingAy=y—y°, Y°=( )0, A%/°= 77— YO with  ability) of the distribution. In Egq. (16 P™(A7")

7/ the instantaneou¥ ande(Ag/O)S the probability distri- :Einloaio(A%_O)' a}ndGV”O(A;//O)erLQb?(Ag/O)_J are arbi-
bution of A %0 aty®, we have using thg° ensemble from trary polynomials il 7%, andA 7/", is the position of the
Egs. (1) and(10), mode. Equatior{16) represents the generalized Pearson sys-
tem. Via the method of momerfsthe parameterga’} and
AF=F(y)—F(y% {b?} can b% relaged to the central moments/oevaluated at
o yo, i.e. MP=MY Z]={((A 7% )0, which via statistical
=YPAy—kT In(e™PAY477) o mechanic§k,°'21c;n/ge e<xpre/sseol> in terms of derivative/of

iny aty®:
=YAy—kT In f e AMYAYZC 0N /0 dA /0, 2y0
M2=(—kT>(—) ,

T,z

(13 ay
(&AF) 3 Moz(—kT)2<‘92Y°) an
Tyl 1 ; A

and upon inversiory(Y). Note that we use a zersuper T

script to denote that the property is evaluatedy8t in  where @Y% dy¥);, denotes ¢<Y/dy")r , evaluated ay°.
order to distinguish this from the zersutscript as used Note that M9, ,[— #]=—M3.[#], so in the grand

in the preceding articlé,meaning “evaluated at the refer- canonical ensemble we have for examplldlg[j?/]
ence temperatureTy.” The expression (e 427" 0 —_MY.77]. Depending on the complexity of the distribu-
EGZ%O(—ﬁAy) is actually thecentral moment generating tion p°, AF and hencer(y) can be expressed in terms of a
functior?® (MGF) of the probability distributiorp®(A /%),  limited set of parameter§Y®,aY%ay,...,d" " 1Y% ay" 1} if

and its natural logarithm is called thmimulant generating M? is the highest order moment that is required to define all
function(CGF). In general, for a distributiop(£) the central  parameters. Each type of distribution again defines a differ-
MGF is G, (t) =(e'"¢) with Aé=¢—(¢) and the MGF is  ent statistical state of the system. Moreover, we can formu-
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late restrictions on the solutions of E(L6), such as the
distribution being unimodalsee also Ref.)2 Additional re-
strictions for the two specific ensembles are formulated in

Secs. IlE and Il F.

C. Derivation of conjugated properties

It should be also noted that since the parameters

Y0, 0Y% ay,...,0" 1Y% gy" "1 are implicitly functions of T

Apol, Amadei, and Berendsen

AF=Y°Ay+E(a—YO) Ay?, (26)

219y /s,

Y(y)=Y%+ a—w) Ay, (27
N lq,

y(Y)=y’+ % TZ(Y—Y")- (28)

andz, just like in the previous articleon the temperature Clearly, y(Y) is equal to a first order Taylor expansionyof

dependence we can obtain further thermodynamic propertie§ v~ around Y°

from Eqgs.(13) and (14) via

o [FF| _F 9F° g oF [ of'0
“\oT) T\ T A& sl oT)
Y.z y.z Y.z
(18
where we have defined
AN
fO0=y9, f"°=(—ray> : (19
T,z
Using
(aFO) =-g (20)
oT vz
and the Maxwell relations
(afovo) _(aYO B (580) 2
oT vz oT vz ay T‘Z’

(af'vo) ( J (0'Y°) ) (a‘“s") 22
T Tl aT T e J
aT vz aT \ ay T2y, ay Tz

we obtain

or equivalently a [1/0] Pade
approximant®?2 of y aroundY®. Note that, because of the
special properties of the Gaussian distribution, the Gaussian
state is equivalent to a second order cumulant expansion.

For a Gamma state defined by the Gamma
distributiorf-®

by(1/b?)Po’":
I'(by/b?)

b0+b1Ag)
xXexp — —bz—
1

p(AE)= (bo+byAg)bo/i-1

(29

with T'(-) the Gamma functio”® the cumulant generating
function is

1

In G, g(t)=In(e"¢)= —bo[—

by

with bg=M, and b;=M3/2M,. In this case, with

t=—pBAy, Aé=A%° by=bJ=MI, b,=bI=M3y2MJ
andM$ and M3 given by Eq.(17) we find

1
t+2In(1-byt)| (30
1

aY°
AF=Y°Ay+(—)
N /t,

1A —1 In(1+ 6°A
E y_(00)2 n( +6 y)r

1 5 (g *tigO (31
Sy)=8"+2 —o| Somr| - (23 0
o TNy, Y(y)=Y+ N Ay (32)
y ay |, 1+6°Ay’
D. Statistical states ' 0
o Y=Y
In the following we will describe the solutions of y(Y)=y + (Y ay) 7 0°(Y—YO)" (33
AF,Y(y) and henceg/(Y) for the Gaussian and Gamma state _ Tz
with the help of Eqs(13)—(14). In the two subsequent sec- where we have defined
tions we will derive for the isothermal-isobaric and grand 0 MO (2Y% ay?)
canonical ensemble specific Gamma states, according to the 0=~ 3 Tz (34)

= 0~ 0 .
specific physical restrictions valid for each ensemble. Unlike KT 2kTM; 2(9Y719Y)1 2

for the analogous case in the temperatuire this paper we

In this case the functiog(Y) is equal to g 1/1] Padeap-

will not explicitly describe the solutions of the conjugated proximant ofy aroundY®. Note that the Gaussian state equa-

equationg Eqgs. (18)—(22)] for these statistical states.

For a Gaussian state defined by the Gaussian

distributiorf'®

2
(A¢) ] (24)

1
A& = _
p(&8) V2mbg exp{ 2bg

for the variableA £é= ¢—(¢), the cumulant generating func-

tion is
In Gy e(t)=In(e'™é)= 3 b,t? (25)

with bo=M,. In this case, witht=—BAy, Aé=A%/°, by
=h3=MJ andMJ given by Eq.(17) we obtain

tions follow directly from the Gamma state ones using the
limit 6°—0.

E. Isothermal-isobaric ensemble

At this point it is useful to address some specific features
of the isothermal-isobaric ensemble and the corresponding
restrictions on the possible solutions of the generalized Pear-
son system.

Clearly, forp=0 (i.e.,y=0) the Gibbs free energgG
diverges, see Eql), as [ exp{—BA(?)}d7 —x sinceA
is a decreasing function oY becausedA/dV=—p<O0.
Therefore the distributiop® must have a MGRe'¢) which
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diverges at one finite value a@f and since the volume dis- complex statistical statey,,, extracted from experimental

tributions are defined from a finite lower lim\t,;, to infin-

properties reflects the effect of both repulsi¥bard core”)

ity, we must select solutions of the generalized Pearson sysmd attractive interactions, in which casg,, is in general

tem withm+1=n [cf. Eqg. (16) and Ref. 7 and

1/8=t4= lim — BAp=Bp° (35)
p—0

temperature dependent and can be even negéfiviee at-
tractive forces are dominating, i.ga° is smaller than the
ideal gas pressure at®). Obviously for an ideal ga¥ i,

eliminating in this way one parameter and reducing the com- oy the construction of equations of state, the most use-

plexity of the solution.
For adiverging Gamma statewhich is the first com-

ful equations are thp(V) relations. We will therefore sum-
marize the properties of the(V) equations in the

pletely acceptable statistical state in this ensemble, we US€othermal-isobaric ensemble, i.e., the limits \bfand the

Eq. (35), yielding 8b9= 6°=1/p°. Combining this with the
previous expressions for a general Gamma state, Bdjs-
(34) we obtain

VO p
AG=VCAp+p° —) [Ap—pO In(—O”, (36)
YN p
avo pO
V(p)=V°+ po(—) 1- —}, (37)
TSN
02/ 1 /0
P~ (aV-1dp) TN
V)= — N 38
p(V) VvV (38
with
\Y —v°+p°(wo) (39
min 0’)p TN'

where the functiorp(V) is equal to a 0/1] Padeapproxi-

mant ofp aroundV® andV,,,,<\° since for reasons of ther-

modynamic stability ¢V°/dp) 1 n<O.

corresponding pressures.
For aGaussian stat&[ 7] for the volume distribution,
we have from Eq(28)

Jp

p=p°+ (9—\,5) (V-VO) (43
T,N

which corresponds to a second order cumulant expansion of
AG in BAp. For apositive Gamma statE [ 7] from Eq.
(33

\VERVA
DZDO_O—,
0 (V_Vmin) (44)
Voot aV°
min— 00 &p T’N'

where for anegative Gamma stafe_[ 7] we have to inter-
pret Vimin as Vmae>VP, since in that case boti° and
(aV% op) are negative. Finally, for aliverging (positive)
Gamma stateén the volume,l“‘i[’i/], we have from Egs.

In the isothermal-isobaric ensemble the limit to the point(41) and (42) simply

of divergence of the MGFp— 0, corresponds t& —cc and

clearly to an ideal gas condition. This implies that the proper
description of any gas phager fluid phase above the critical

point) must be a diverging state. Since from E87) it fol-
lows that the expressiop2(aV/ap)=p® (V% ap) is vol-

NkT
V_Vmin’
0 NKT
Vimin=V"— —5-.

p

p=
(45)

ume independent, and the input parameters can be obtained

at arbitraryV°, the value ofp?(dV/ap) can also be calcu-
lated in the ideal gas condition, giving

02( av°> = —NKT (40)
whence from Eqgs(38) and (39) we obtain the very simple

equations

NKT
pV)=g—~— (41)
V_Vmin
NKkT
Vmin=V"— T (42)

Clearly, Eq.(41) resembles a van der Waals like expression
of the pressure, although derived in a completely different

In Table Il we have summarized the limit properties of
theseNpT pressure equations. Clearly, of the four expres-
sions the diverging Gamma state is the only completely
physically correct solution. A negative Gamma state in the
volume is a very unphysical state, even as a local approxi-
mation, since both limits are incorrect. The positive Gamma
state, however, could be used as a local approximation e.g. at
higher density. Note also that a Gaussian statgiivalent to
a second order cumulant expansias clearly less “physi-
cal” than the diverging Gamma state, which has even a
lower complexity(i.e., number of input data at°).

F. Grand canonical ensemble

In this section we will address some specific points of

way. V,n is the “minimum” volume of the system, which the grand canonical ensemble.
must be zero or positive and temperature independent for a First of all, using standard thermodynamic manipula-
system described by an exact diverging Gamma state, like itions, we can rewrite the derivativessY%/ dy)r, and

the van der Waals equation, Whéf@,in=(2/3)1TN0'aS (Ref.

(9*Y%1ay?) 5, i.e., (IN% du)1y and @*N%Ju?)+y occur-

24) can be identified as the hard sphere volume of the molfing in Egs. (26)—(34) in a more convenient form, since
ecules. When the Gamma state is an approximation to a mo(@,u/aNO)T,Vsz,u/&pﬂ)T and
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TABLE Il. Summary of properties of thp(V) equations in the isothermal-isobaric ensemble, for the Gaussian
G[7] [Eq. (43)], positive Gammal' [ 7] [Eq. (44)], diverging Gammal“‘i[i/] [Eq. (45)] and negative
Gamma staté' _[ 7] [Eq. (44)] of the volume distributiorp(7).

lim p lim p
State 00 Vmin V—=Vmin Vmax V—Vmax
Gl7] 0 o % oo o
r.[7 >0 % £ 0—1/6°
B p
»/,
ri[ 7 1/p° VO—NkT/p° % w 0
r_[7 <0 —o 0—1/6° —w
< o
n,
,9,“ ap semble(see the previous sectiprEliminating ° from Eq.
= (46)  (50) as@°=— (1/N®)(IN®/au) 1, we find from Eqs(31)—
ap%) . p%\ 9Pl i
Nir PNATENT g (33) the zero limit Gamma statexpressions
7 1(’”) abed (], ol
L) ==l =5+ =5 a7 AJ=NO In| —|, 51
(ﬁpﬁz T I AT aN® N =1
whence NO* (&MMNO)T v
N(u)=— 7 (52
—, max
oo MLTT_ (PNUopiry 0
- _ - = u N
2kTMYL 7] 2(N%dp)ry m(N)=u®+N° N) l—ﬂ, (53)
T,V
(@A) (Pl apid)r with
2(0p% o)t 2(9ulapl)? o of n
) 02 Mmax=p- TN (W) ) (54)
B 1 PN (9%pl IpRP) T 1 49 T
2(aplapd)r|  (aplapd)t ’ where uma,>u’ since @u/dN®)>0. This formally exact

Gamma state could be applicable at every nonzero pressure,
where for reasons of thermodynamic stabilityp(dpy)r  and only in the extremely dilute case should be combined
>0. Also note that#®, expressed in terms of moments ith Eq. (8).
of ./, has an extra minus sign, since/=— " and Also in this case the most interesting property is the
Mg[—JW]:—Mg[/T]_ Hence gpositivevalue of 0° means pressure as a function of the density, and we will give a
a negativeGamma state for the particle number distributionsummary of the different statistical states. As the volume is
and vice versa. fixed, we can directly find the expressions fap, since

Secondly, unlike in the isothermal-isobaric ensemble, inAJ(Au)=—VAp andAu is a unique and known function
the grand canonical ensemble there is no general finite valu@f the density for every statistical state. o
of t for which the moment generating functic(mzt§> will From Eq.(26) we obtain for theGaussian staté&[./ ],
diverge. In fact, sincéA(N)/dN= u, convergence or diver- using Eq.(46)
gence of the MGF depends on the specific behaviqr aé a

function of N. However, for a general Gamma state in the  p=p04 1PN< P ) (_) _1} (55)
grand canonical ensemble we can rewrite &) as 2 PN
N—N° which is equivalent to a second order cumulant expansion of
pw(N)=pul— PN—N) (49 AJin BAu. For anegative Gamma stat@ the number of
m

particles,I'_[./], where#°>0 we find from Eq.(31)

with
0 p0+ 1pn max(PN_P%)
0 = — (I madPR PN
=N°%— L[N ¢° PN max— PN
N“m—N 0l 5 (50)

6"\ o)1y, 0
PN max— PN
{228
For any physically exact solutioN;,,=N,,=0, and N max IV oy max— PN

hence we can still eliminate one of the parameters, thus re- 1 (56)

ducing the complexity of the solution just like the diverging - 0( + )
A . PN p 20, 0700V |-

Gamma state for the volume distribution in thpT en- e TN 0°(aplapR) T
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TABLE Ill. Summary of properties of the(py) equations in the grand canonical ensemble, for the Gaussian
G[./] [Eq. (55)], positive Gammd™_[./] [Eq. (56)], zero limit Gammal'%[./] [Eq. (57)] and negative
Gamma staté’ _[./] [Eq. (56)] of the particle number distributiop(./").

lim p lim p
State &° PN min PN PN min PN max PN—PN max
GL./ ] 0 - * * *
T[] <0 0(1 1 ) —?[07] % %
+ S —
PN Peapland)e
o7 1 0 —x [0] o o
(apldpy)T
L[] >0 — w 1 wob
Pl?l(:H' 0 0 )
6™(apldpn)t
&For pN min>0.
PFor py max>0. Values between square brackets indicate the zero density limits using the exact expression of
AJ, Eq.(8).

For apositive Gamma statie the particle numbeﬂ,‘+[,/f7], (12) of this articlg results in a set of closed differential equa-
where #°<0 we have the same expressions, but we mustions (thermodynamic master equations analogous to the one
interpret py max @s pn mn<p". Finally, for the zero limit  described for the canonical ensemble in previous papérs

Gamma statd“i[./?] we find from Eq.(51) with solutions that provide the temperature or the density
dependence of the thermodynamic properties. In fact, for a

p=p°+ 0 07_P) In(p—N (57) given type of distribution the derivation of the previous sec-
N\ opi T on) tions, where we used the reference moment generating func-

) o ] tions, provides such solutions without explicitly solving the
In Table Ill we have summarized the limit properties of ¢orresponding thermodynamic master equatiohE). We
thesep VT pressure equations. Clearly, the zero limit Gammacan jllustrate this using as an example the volume fluctuation
state is the only completely physically correct solution. Noteyjstripution in the isothermal-isobaric ensemble. In this case
that in all cases where there exist a finite minimum density compining Eq.(2) with Eq. (3) we have:
i.e., for thel' . [.7] and F?r[/l/] states, we have to use the )
: : : Y 9 In(ePAPATY

complete expression fakJ, Eqg. (8), in order to obtain the V=V+Ap —) +kT( —) (58
correct zero density pressure limit. Also note that the concept P/ ;N Ip N
of infinite potential barriers, i.e., hard-sphere-like interac-
tions, is not compatible with positive Gamma states for theVhence
number of particles, since for those states the density can oV J In(ePLpa7)
reach infinity. In fact, for a system with hard-sphere-like Apl—| = S — ,

etrih o . P/t p TN
contacts, any exact distributigr{. /") must be defined on the '
finite interval [0, ./ mad, Which gives rise to extra restric- where, as we ShOWEAd,A t;le central moment generating func-
tions on the possible polynomial"(A.7 %) andG"(A.7 %)  tion Gy, (BAp)=(ef*P27) can be expressed in terms of a
in the generalized Pearson system, Ed), and so requires set of volume derivatives with respect to the pressure. Hence
more complex solutions than a Gamma distribution. How-EQ: (59) is a closed ordinary differential equation and must
ever, for such systems we can use at least as a local highaVe @ unique solution providing(p) at a given tempera-

. S - . ... ture and number of particles. Moreover, since the type of
density approximation &' _[./] state, which has a finite . L . ;
maximum density. differential equation in Eq(59) is fully defined by the type

of volume distribution at one arbitrary pressyreit follows
that the type of distribution must be conserved at every other
pressure. It should then be clear that the expression(pj
obtained in the previous sections, directly differentiating the
In the previous sections of this article and in the precedlogarithm of the central moment generating function at the
ing article/ we derived expressions for various thermody-reference condition with respect [using Eq.(1) in Eq.
namic properties as a function of temperature or density(3)], must be the solution of E459), as it follows from the
always using the moment generating function evaluated dact that Eq.(59) has a unique solution defined by one type
the reference condition. Expressing the free energy differof distribution or moment generating function. The same ar-
ences in terms of the moment generating function in thegument can be easily applied to any possible fluctuation-
actual condition[Egs. (10), (15 and (83) of the previous ensemble combination, leading exactly to the same result.
article,” and Eqgs.(2) and(11) of this articlg and now com- As previously noted for the potential energy fluctuation
bining these with the corresponding thermodynamic relatiorin the canonical ensemble, this fact has very important con-
[Egs.(18) and (78) of the previous article and Eq&3) and  sequences, implying, for instance, that the knowledge at one

(59

Ill. THERMODYNAMIC MASTER EQUATIONS AND
PHASE TRANSITIONS
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arbitrary pressure of the exact volume distribution containgur. In practice the exact TME solutions although existing,
complete information on the volume fluctuations at everyare extremely difficult to be properly modeled. We shofved
other pressure and hence the knowledge at this single poititat the statistical states necessary to describe a multiphasic
provides the full thermodynamics at every other possiblesystem are much more complex than the ones which can be
pressure for a given temperature and number of particlesised successfully for single phase conditions. Hence, since
Only the presence of a singularity in a TME can restrict theany exact solution of a TME should describe both the
range of applicability of its solution, implying in general the monophasic as well the multiphasic condition, its
existence of two independent branches of the solution at theomplexity’ should be at least the same as that of the sim-
two sides of the singularity. From a general thermodynamiglest statistical state needed to model the multiphase system.
point of view this seems to be the case when a system urSuch highly complex unimodal distributiorislefined by a
dergoes a phase transition where many of its properties atarge number of moments or derivatiyese really necessary
considered to have a singularity. However, with the use ofo reproduce the very irregular behavior of a system at phase
statistical mechanics we can understand that this commoftiansitions or at the critical point. In the latter case the extra
thermodynamic consideration on phase transitions must beomplication of the correlation length which tends to infinity
regarded only as a very useful approximation, but never recould even imply that locally the distribution is not necessar-
ally exact?® In fact, in order to have real singularities at the ily properly modeled by an exact unimodal curve. It is clear
phase transition we should assume that the system is exactijen that statistical states which can reproduce with high ac-
confined in one region of the available phase space and the@iiracy only the thermodynamics of monophasic systems
at the phase transition, moves into another exactly confinethust be always regarded as excellent approximations in a
part corresponding to the new condition. In this case thénonophasic range of the exact statistical state, unable to de-
moments of the distribution and hence the thermodynami&cribe directly any multiphase condition.

properties can have a real singularity. It is easy to see that

this is impossible because any exact confinement can only e, RESULTS

produced by infinite energy barriers in phase space, which

are of course noncompatible with any transitihe system
would remain trapped in the initial region at every tempera
ture and density More in general, if a set of moments are

First we derive for an ideal gas the volume distribution
in the NpT ensemble and the particle number distribution in
the wVT ensemble. For simplicity we will give a description
for monatomic molecules, since the generalization to poly-

diverging at a certain temperature they will still diverge atatom'c molecules is straiahtforward and does not alter the
any higher temperature, implying that a real singularity for esultls uies | '9 w

the moments at a single finite temperature should be imposr— . . . .

sible. In a real system even when it is in a stable monophasic In thellspthermal—lsobapc ensembi&e obtain from the
. ; . monatomic ideal gas partition functith

condition there is always a nonzero probability, although nu-

merically virtually zero, that the system is in the multiphase _(gNATN

phase-space region, hence having a phase separation or vice =id™ ", (gp)N+T (60)
versa when the system is in a stable multiphase condition.

The definition of a stable monophasic or multiphasic condi-2nd Eq.(2

tion can only be based on probability. Hence the information A% Bp \N "t
which is in principle available at one state point could be ~ AG=KTIn G;(BAp)=kT In ==kT |n(m

really enough to rebuild the thermodynamic behavior at any d (61)

other state point and therefore for each TME a single solu- ,
tion with no singularities should be always expected. Hence, witht=8Ap we have

Clearly in usual monophasic conditions a system can be Bp \Nt1
described virtually exactly as really confined in the single Gz/(t)z(m) (62)
phase phase-space region, since the probability for any tran- ) _ _
sition outside this region is almost zero, and therefore thé@nd using the general relati@ , (t) =e~ G ,(t), we find
corresponding distributiongfor the energy, volume and gp \N*1
number of particles are virtually indistinguishable from GM/(t)=etv(ﬁ
those obtained for an exactly confined system. However, P
such usually negligible “hidden” information will become For a Gamma distributiop(¢) the MGF[see Eq(30)] is a
essential, influencing the whole shape of the distributiongimilar expression
and not only the very far tails, when the system is close to b /b2

" . : . ) B 1/b; |01

the critical point where large microscopic fluctuations are Gadt)=e t<bo/b1>(_)
possible, and at the coexistence line where a system becomes b, —t
macroscopically multiphasic. In the latter case the transitiotand moreover, since for an ideal §&8/=(N+1)kT/p,
is very sharp in temperature or density and corresponds to @&//gp= — (N+1)kT/p? and d>V/dp?>=2(N+1)kT/p%, we

catastrophic exchange of probability between the monophasbtain withby=M,, b;=M3/(2M,) and Eq.(17)
sic and multiphasic phase-space regions. Phase transitions

can 'the.r.efore be usefully modellgd as'therm.o.dynamic dis- — =Bp: @:V; b—02:N+1, (65)
continuities although no mathematical singularities really oc- b1 by by

(63

(64)
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which proves that the volume distribution of an ideal gas in 107 107 10" 10
the isothermal-isobaric ensemble is a diverging Gamma dis- ; ' '
tribution (b;=1/8p), and also suggests that it might be a
good description for real gases as well.

Note that since for an ideal gas the volume and the in-
ternal energy are uncorrelatédthe MGF of the instanta-
neous enthalpy distribution function in tiNpT ensemble is
the product ofG,(t) and G,,(t), where G (t)=(B8/8
—1)¥N2 follows from the distribution of the kinetic energy of
a monatomic gas with 8 degrees of freedofrand GprAt)
=G, Apt), so

GoAt) =G pr(t)

=G A1) Gps(1) 107 . . . .
10? 107 10" 10’ 10°

_( 8 )(3/2)N( pB )N+1_( B )(5/2)’\‘*1 Volume (dm®/mol)
Bt pB—pt

Pressure p (bar)

Bt FIG. 1. Pressure of water along different isotherms. Legend: experimental
(66) values(4) and diverging Gamma stalé‘i[i/], Eq. (45 (—). The co-
existence line is indicated by a long dashed line. Note the double logarith-

which is in agreement with Eq(103) of the preceding mic scale. The critical temperature is 647.3Ref. 27. Insert: comparison

article” of Gaussian, Eq43) (— — —) and diverging Gamm&——) at 573 K.
For a monatomic ideal gas in tlgrand canonical en-
semblethe partition function is given By
1 _ ' _ limit Gamma state for the number of particle§[./ ], al-
= W(eﬁ“qeqk'”V)“" =exp{ef*q°q "V}. though physically acceptable, will never be a good descrip-
=0 67) tion, as not even the ideal gas behavior is properly described.
Based on this we tried to model thaV relation of
Hence the discrete probability distribution is gaseous water using a diverging Gamma state in the volume,

F‘i[%], Eq. (45). Experimental data were again taken from
(68  Schmidt?” For various isotherm$433, 573, 673, 773 and

1073 K) we obtained input data qf° andV° at low pressure
which is a Poisson distributiél with a=ef#qegkinv  (p°=2.0 bay, giving slightly negative values o yin (Vi
=(./')=N. Rearranging this expression gives the usual ex=—0-27, —0.11, —=0.07, —0.05 and—0.01 dn¥/mol with
pression for the chemical potential of a classical ideal’das, increasing temperature Of course, at high temperature
wig=—KT In(g°q“"V/N). Obviously, sinceV is fixed also Vmin—0 as should be for an ideal gas. Results are given in
p(pn) is a Poisson distribution. Using the fact that the mo-Fig. 1. For isotherms below the critical temperatuf®; (
ment generating function of this Poisson distribution is given=647.3 K) the predictions are correct almost up to the co-

( 7/): (e,e,uqeqkinv),// ': a'"’ 'efa
P\ ///.I Eid !/11 ’

by? existence line, and the highest isothei®73 K) shows cor-
. rect predictions up to the critical volume (0.0571%mol),
G ()=(e"")=expla(e'-1)} (69 see also Fig. 3. For smaller voluniarger density a simple
and combined with Eq4), diverging Gamma state is not able to accurately describe the
_ pressure any more. For comparison we also present a second
—AJ=VAp=KT In(eP*") o=KT In G’ -(BAw) order cumulant expansion of the free energy difference in

(700 BAp, equivalent to a Gaussian state, E43). Results for
one isotherm(573 K) are given in the insert of Fig. lthe

we correctly find ! ! <L :
other isotherms give similar resyltsAlthough a Gaussian

pn( )= pReltr, (7D state uses more input data than a diverging Gamma state, the
behavior of the former is clearly wrong. Just as for the tem-
w=ul+kT In p_,g), (72)  perature er_end_enélethe use of a ph_ysically acceptable
PN Gamma distribution increases the quality of the model con-

siderably, compared to a simple cumulant expansion.

P(pn) =P(pR) T KT(py—pR)- (73 For the dense part of the phase diagram we tried as a

While in the isothermal-isobaric ensemble the Gammdocal approximation a negative Gamma state in the number
state for the volume is the exact statistical state of an ideadf particles,I' _[./], Eq. (56), for the different isotherms,
gas, a Gamma state for the density in the grand canonicake Fig. 2. Although it is a local approximation, we expect it
ensemble is not, and can only be an approximation to thiso be better at high density than the physically acceptable
ideal gas Poisson state. Or, in other words, a divergingero limit Gamma state, since the former has a maximum
Gamma state for the volunié‘i[W] might in general be a density py max, Where a singularity occurs in accordance to
good description at least of the gas phase, whereas a zertiie usual simple “hard sphere” model of liquids. For each
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10.0 ' ' ' ' P ume. For intermediate temperatures there is a region around
the critical point which cannot be accurately described by
433K either one of the statistical states: the complexity of the
75 8 model distributions are too low in this part of the phase
S73K diagram.

673 K

5.0 J V. CONCLUSION
773K

Pressure p (kbar)

In this article we showed how to extend the quasi-
1073 K Gaussian entropy theory in an exact way to describe density
25 - . dependence of thermodynamic properties in noncanonical
ensembles using the probability distribution of the volume
. and number of particles. We derived general expressions for
La24 r gy . . .
008 20 = = - 4 = the spluﬂons of ther.modynamlc master equations for the
Density (mol/dm®) density dependence in thépT and VT ensemble, and de-
scribed specific aspects of these conditions. General Gauss-
FIG. 2. Pressure of water along different isotherms. Legend: experimental jan and Gamma statistical states were derived, as well as
values(#) and negative Gamma stalfe [./ ], Eq. (56) (—). special Gamma states, such as the diverging GaiiiNpa)
and zero limit Gamma staigvVT), according to the specific
_ o ) _ ) ) ~ physical constraints of each ensemble. These Gaussian and
isotherm initial values were obtained in a single point within 53 mma states were used to reproduce the thermodynamics
the range 1200.p°<3400 bar, 30.4py<57.5 molidnt,  of water in gas and liquid conditions. In contrast to the situ-
0.03<#°<0.08(kJ/mo) ™! and 72<py max<88 _mOl/dn?- ation in the canonical ensemble using the energy fluctua-
The latter corresponds to a hard-sphere radius <1148 ions, in these noncanonical ensembles we encounter phase
<160 A, which is clearly larger than the valueis  transitions. Following the usual thermodynamic approach
=135A previc_)usly obtained fron_1 the pha_tse-space confine(i.e” regarding the phase transitions as singulajities
ment e along isochoreS. From Fig. 2 it is clear that @ haye two distinct solutions for the subcritical isotherms: a
I _[.7] state is perfectly able to describe the pressure of gas and a liquid one.
dense liquid like water; up to the coexistence line for iso-  |n this article we first showed that in thépT ensemble
therms belowT, (see also Fig. Band for the highest iso- an ideal gas is described by a diverging Gamma state for the
therm up to the critical density (17.51 mol/@m Note that  volume fluctuations, suggesting that in general such a diverg-
also in this case a second order cumulant expar{giquiva-  ing Gamma state could be a good description, at least of the
lent to a Gaussian stats much worse than the used Gammagas behavior. In the case of the grand canonical ensemble, on
state(data not shown the contrary, the ideal gas statistical state for the particle
In Fig. 3 we present predictions from both thd[7]  number fluctuations is given by(giscret¢ Poisson distribu-
and thel' _[./] states in the vicinity of the critical point. For tion, implying that even the physically acceptable zero limit
isotherms belowT . the gas side is properly described by a Gamma state is not able to reproduce exactly the ideal gas
I'4[ 7] state and the liquid side by[a_[./ ] state. At 1073 behavior. This suggests that Gamma states for the particle

K we see that both solutions meet at about the critical volnumber fluctuations are likely to be useful especially as high-
density local descriptiongnegative Gamma states with a

maximum densitybut are not accurate in describing the gas
range density dependence.

Secondly, as previously obtained for the temperature
dependencéalso for the density dependence a considerable
part of the(fluid) phase diagram can be described by Gamma
states and only at the phase transitions or in the vicinity of
the critical point more sophisticated statistical states are re-
quired. The results clearly show that we can describe the
thermodynamics of water using two Gamma state solutions,
a low-density(gag diverging Gamma state for the volume
fluctuations, and a high-densit§iquid) diverging Gamma
state for the particle number fluctuations, but no single
Gamma state can be used as a unique statistical state of the
system for all densities, even at supercritical isotherms. This
implies that for a real system its unique exact solution, able

Volume (dm®mol) to describe both gas and liquid conditions including phase
_ _ _ ~ transitions and the critical point region, is beyond the
FIG. 3_. Pressure of Wz.ater an_ng different |sothe_3rms,_ focusing on the criti- Gamma level of the theory iNpT and wVT ensembles.
cal point area. Legend: experimental val(ds), diverging volume Gamma

state of Fig. 1(——) and negative particle number Gamma state of Fig. 2 Interestingly, while fc_)r the temperature Fjependérme
- least for water both the liquid and the gas side can be accu-

10

10

Pressure p (bar)

10
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