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On the use of the quasi-Gaussian entropy theory in noncanonical
ensembles. II. Prediction of density dependence
of thermodynamic properties

M. E. F. Apol,a) A. Amadei,a),b) and H. J. C. Berendsen
Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Department of Biophysical
Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

~Received 16 January 1998; accepted 18 May 1998!

In previous articles we derived and tested the quasi-Gaussian entropy theory, a description of the
excess free energy in terms of the potential or full internal energy or enthalpy probability
distribution, instead of the~configurational! partition function. We obtained in this way the
temperature dependence of thermodynamic functions in theNVT, NpT and mVT ensembles
assuming a Gaussian, Gamma or Inverse Gaussian distribution. In this article we extend the theory
to describe the density dependence of thermodynamic properties, using the distribution of volume
and number of particles in the isothermal-isobaric and grand canonical ensemble, respectively. In
both ensembles pressure-density expressions for a Gaussian and various Gamma distributions are
derived and applied to water. A Gamma description for the volume distribution turns out to be a
good model in the gas range, which is in accordance with the volume distribution of an ideal gas.
A Gamma description for the particle number distribution works well for liquid densities. ©1998
American Institute of Physics.@S0021-9606~98!50332-7#
io
ac
an
o
io
x
b
a

o
t i
on
in
di
a

le.

th
rib
th
s
m

n
or

e

de-
ap-

nd
-

ble
ns

dis-
we
s as

and
III.
re-
ys-
lu-

ies,

ive
I. INTRODUCTION

The prediction of the temperature and density behav
of realistic fluidlike molecular systems based on an ex
statistical mechanical approach is both very challenging
important for practical applications and the prediction
equations of state. The evaluation of the partition funct
for systems with interacting molecules is in general e
tremely difficult, and often severe approximations have to
made, unlike the situation for molecules in the ideal g
phase, see for example Frenkelet al.1

However, as we have shown in previous articles,2–7 for
the evaluation of macroscopic thermodynamic properties
realistic systems most of the information which is presen
the partition function is redundant. It is sufficient to focus
the probability distribution of the appropriate fluctuations
the system, which completely determine the free energy
ference with respect to a proper reference. This is the
proach of the quasi-Gaussian entropy theory~QGE!. Its basic
principles are explained in Sec. II of the preceding artic7

In that article we derived the temperature dependence
thermodynamic properties in various ensembles.

In the present paper we will describe how to extend
quasi-Gaussian entropy theory in an exact way to desc
the density dependence of thermodynamic functions in
isothermal-isobaric and grand canonical ensemble. Thi
accomplished by using distributions of the volume and nu
ber of particles. Just as for the temperature dependence i
previous article,7 we can immediately obtain expressions f
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the thermodynamic functions without explicitly solving th
appropriate thermodynamic master equation~TME!.

The article is organized as follows.
In Sec. II we present the theory concerning density

pendence of thermodynamic properties using the QGE
proach. The definition of the system and reference state~Sec.
II A !, a discussion on the distribution of the volume a
number of particles~Sec. II B!, the derivation of related ther
modynamic functions from the free energy~Sec. II C! and
some important model distributions~Gaussian and Gamma!
and corresponding statistical states~Sec. II D! are described.
As the isothermal-isobaric and the grand canonical ensem
differ in some important aspects, the specific applicatio
and ‘‘special’’ statistical states of these ensembles are
cussed in Secs. II E and II F. To facilitate the derivations,
use a unified notation for properties in various ensemble
introduced before,7 see Table I.

A discussion on the thermodynamic master equation
its implications for phase transitions is presented in Sec.
Applications to water of the various statistical states are p
sented in Sec. IV, along with some results on a model s
tem, the ideal gas. Finally, in Sec. V we give the conc
sions.

II. THEORY

A. Definition of the system and reference state

The density dependence of thermodynamic propert
i.e., the dependence on volume~isothermal-isobaric en-
semble! or particle number~grand canonical ensemble!, can
be obtained in the following way.

In the isothermal-isobaric ensemblethe Gibbs free en-
ergy difference between two different pressures is

r-
7 © 1998 American Institute of Physics
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TABLE I. Notation of different properties in various ensembles, where in generalx, y, andz are the indepen-
dent variables,l is the appropriate label,F, W, S andC are the thermodynamic potential~free energy!, heat
function, entropy and heat capacity,Y and Z are ‘‘conjugated’’ properties andY is the partition function.J
52pV is the grand potential andD5U2mN the corresponding heat function. For completeness we a
included the canonical ensemble.

Ensemble x y z l F W S C
Y5S]F

]yD
T,z

Z5S]F

]zD
T,y Y

Isothermal-isobaric T p N p G H S Cp V m D
Grand canonical T m V m J D S Cm 2N 2p J
Canonical T V N V A U S CV 2p m Q
-

e-
ym
g

-

an
is
e
tic
ly

e

n

n

DG5G~p!2G~p0!

52kT ln
*0

`dV e2bpV Q~N,V ,T!

*0
`dV e2bp0V Q~N,V ,T!

5V0Dp2kT ln^e2bDpDV 0
&p0

5V0Dp2kT ln E e2bDpDV 0
r0~DV 0!dDV 0 ~1!

5VDp1kT ln^ebDpDV &

5VDp1kT ln E ebDpDV r~DV !dDV , ~2!

whereQ(N,V,T) is the canonical partition function at con
stant number of moleculesN, volumeV and temperatureT,
and *0

`dV e2bpV Q(N,V ,T)/v5D(N,p,T) is the
isothermal-isobaric partition function. As usual we will d
note instantaneous extensive properties by calligraphic s
bols, whereas the corresponding thermodynamic avera
are given in Roman capitals. Furthermore,b51/kT, Dp
5p2p0, V05^V &p0, DV 05V 2V0, V5^V &, DV 5V

2V and^¯&p0 and^¯& denote ensemble averages in thep0

andp ensemble.r0(DV 0) andr(DV ) are the distributions
of the volume fluctuations atp0 and p, respectively. Note
that the integral on the right-hand side of Eqs.~1! and~2! is
only a function ofT, N andDp. Taking the pressure deriva
tive, we obtain

S ]DG

]p D
T,N

5V~p! ~3!

and upon inversionp(V).
In the grand canonical ensemblewe have in a similar

way the grand potential differenceDJ between two different
chemical potentials

DJ5J~m!2J~m0!52kT ln
(N 50

` ebmN Q~N ,V,T!

(N 50
` ebm0N Q~N ,V,T!

.

~4!

There is one major difference between this expression
Eq. ~1! N is a discrete variable and the corresponding d
tribution of the number of particles is also discrete. Howev
for a macroscopic system the change due to a single par
can be regarded as a differential. In the case that an ana
cal expression ofQ(N ,V,T) is available, we can rewrite th
grand canonical partition function as
an 2003 to 151.100.52.54. Redistribution subject to A
-
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J~m0!5e2bJ0
5 (

N 50

`

ebm0N Q~N ,V,T!

>11E
0

`

ebm0N̄ Q~N̄ ,V,T!dN̄ ~5!

by separating the first term~an infinitely deluted system
whereN 50! and approximating the remaining sum by a
integral, whereN̄ is a continuous variable andJ05J(m0).
Defining the continuous distribution function atm0 as

r0~N̄ !5
ebm0N̄ Q~N̄ ,V,T!

*0
`ebm0N̄ Q~N̄ ,V,T!dN̄

5
ebm0N̄ Q~N̄ ,V,T!

e2bJ0
21

~6!

we have

ebm0N̄ Q~N̄ ,V,T!5r0~N̄ !~e2bJ0
21!. ~7!

Hence, definingDm5m2m0 we can express Eq.~4! as

e2bDJ5
(N 50

` ebmN Q~N ,V,T!

J~m0!

5ebJ0S 11E
0

`

ebDmN̄ ebm0N̄ Q~N̄ ,V,T!dN̄ D
5ebJ0

1~12ebJ0
!E

0

`

ebDmN̄ r0~N̄ !dN̄ , ~8!

where in the last step we have used Eq.~7!. For macroscopic
systems, not at extremely low pressure and density,ebJ0

'0 ~even for a system of 1mm3 at 0.1 Pa and 300 K we find
ebJ0

;3•10211!. Hence under normal conditions we ca
safely neglect the first term on the right-hand side of Eq.~5!.

J~m0!5e2bJ0
5E

0

`

ebm0N̄ Q~N̄ ,V,T!dN̄ ~9!

and from Eq.~8! simply follows
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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DJ52N0Dm2kT ln^ebDmDN̄ 0
&m0

52N0Dm2kT ln E ebDmDN̄ 0
r0~DN̄ 0!dDN̄ 0

~10!

52NDm1kT ln^e2bDmDN̄ &

52NDm1kT ln E e2bDmDN̄ r~DN̄ !dDN̄ ~11!

with N05^N̄ &m0, DN̄ 05N̄ 2N0, N5^N̄ & and DN̄

5N̄ 2N. ^¯&m0 and ^¯& denote ensemble averages in t
m0 andm ensemble andr0(DN̄ 0) andr(DN̄ ) are the con-
tinuous distributions of the particle number fluctuations atm0

andm, respectively. In this paper we will use these virtua
exact equations. Only in the limit of zero pressure or den
whenDm really tends to2` Eq. ~8! has to be used, see Se
II F. It is important to note that Eq.~9! implies the equality
between the moments of the continuous number of partic
N̄ , and the ones of the discrete number,N . Hence for
systems not in the zero pressure limit, we can really cons
the instantaneous number of particles as the continuous
ableN̄ .

The integral on the right-hand side of Eqs.~10! and~11!
is only depending onT, V and Dm. Taking the derivative
with respect to the chemical potential yields

S ]DJ

]m D
T,V

52N~m! ~12!

and upon inversionm(N).
Hence adopting the general symbols as defined in Ta

I and definingDy5y2y0, Y05^Y &y0, DY 05Y2Y0 with
Y the instantaneousY andr0(DY 0) the probability distri-
bution of DY 0 at y0, we have using they0 ensemble from
Eqs.~1! and ~10!,

DF5F~y!2F~y0!

5Y0Dy2kT ln^e2bDyDY 0
&y0

5Y0Dy2kT ln E e2bDyDY 0
r0~DY 0!dDY 0,

~13!

S ]DF

]y D
T,z

5Y~y!, ~14!

and upon inversiony(Y). Note that we use a zerosuper
script to denote that the property is evaluated aty0, in
order to distinguish this from the zerosubscript as used
in the preceding article,7 meaning ‘‘evaluated at the refer
ence temperatureT0 .’’ The expression ^e2bDyDY 0

&y0

[GDY 0
0 (2bDy) is actually thecentral moment generating

function8,9 ~MGF! of the probability distributionr0(DY 0),
and its natural logarithm is called thecumulant generating
function~CGF!. In general, for a distributionr~j! the central
MGF is GDj(t)5^etDj& with Dj5j2^j& and the MGF is
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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Gj(t)5^etj&. Equation~13! shows that the excess free e
ergy is completely determined by the volume or partic
number distribution via the MGF or CGF.

As mentioned in the previous paper,7 an expression of
the type of Eq.~13!, DF52kT ln^e2bDyY&y0, is often ex-
panded in powers of2bDy and truncated after the secon
third or fourth order term, a so-called cumulant expansi
This has been done mostly for the temperature depend
of thermodynamic properties, especially in combination w
molecular dynamics or Monte Carlo simulations.10–16 In this
paper we will not use a truncated cumulant expansion,
focus on the use of physically acceptable~model! distribu-
tions for r0.

B. Volume and particle number distribution

We can use the central limit theorem to show that
macroscopic systems, which may be considered as a
large collection of identical independent subsystem
r0(DY 0) can be described by a unimodal distribution clo
to a Gaussian. Since it is statistical mechanically defined

r0~DY 0!5
Q~DY 01Y0!e2by0~DY 01Y0!

Y0 ~15!

it follows that

dr0

dDY 0 52r0Fby02
] ln Q~DY 01Y0!

]DY 0 G
52r0

~DY 02DY 0
m!Pm~DY 0!

Gn~DY 0!
~16!

by expanding the expression between square brackets
Padéapproximant17,18 around the mode~maximum of prob-
ability! of the distribution. In Eq. ~16! Pm(DY 0)
5( i 50

m ai
0(DY 0) i andGn(DY 0)5( j 50

n bj
0(DY 0) j are arbi-

trary polynomials inDY 0, andDY 0
m is the position of the

mode. Equation~16! represents the generalized Pearson s
tem. Via the method of moments19 the parameters$ai

0% and
$bj

0% can be related to the central moments ofY evaluated at
y0, i.e. Mk

05Mk
0@Y #5^(DY 0)k&y0, which via statistical

mechanics,20,21can be expressed in terms of derivatives ofY
in y at y0:

M2
05~2kT!S ]Y0

]y D
T,z

,

M3
05~2kT!2S ]2Y0

]y2 D
T,z

, ~17!

¯ ,

where (]kY0/]yk)T,z denotes (]kY/]yk)T,z evaluated aty0.
Note that M2k11

0 @2Y #52M2k11
0 @Y #, so in the grand

canonical ensemble we have for exampleM3
0@Y #

52M3
0@N̄ #. Depending on the complexity of the distribu

tion r0, DF and henceY(y) can be expressed in terms of
limited set of parameters$Y0,]Y0/]y,...,] r 21Y0/]yr 21% if
Mr

0 is the highest order moment that is required to define
parameters. Each type of distribution again defines a dif
ent statistical state of the system. Moreover, we can form
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



i

te

rti

f
te
-

nd

ik

d

n

-

e
sian
.

a-
he

res
ing

ear-

3020 J. Chem. Phys., Vol. 109, No. 8, 22 August 1998 Apol, Amadei, and Berendsen
late restrictions on the solutions of Eq.~16!, such as the
distribution being unimodal~see also Ref. 2!. Additional re-
strictions for the two specific ensembles are formulated
Secs. II E and II F.

C. Derivation of conjugated properties

It should be also noted that since the parame
Y0,]Y0/]y,...,] r 21Y0/]yr 21 are implicitly functions ofT
and z, just like in the previous article7 on the temperature
dependence we can obtain further thermodynamic prope
from Eqs.~13! and ~14! via

2S5S ]F

]TD
y,z

5
]F

]F0 S ]F0

]T D
y,z

1(
l 50

r 21
]F

] f l ,0 S ] f l ,0

]T D
y,z

,

~18!

where we have defined

f 0,05Y0; f l ,05S ] lY0

]yl D
T,z

. ~19!

Using

S ]F0

]T D
y,z

52S0 ~20!

and the Maxwell relations

S ] f 0,0

]T D
y,z

5S ]Y0

]T D
y,z

52S ]S0

]y D
T,z

, ~21!

S ] f l ,0

]T D
y,z

5S ]

]T S ] lY0

]yl D
T,z

D
y,z

52S ] l 11S0

]yl 11 D
T,z

, ~22!

we obtain

S~y!5S01(
l 50

r 21
]F

] f l ,0 S ] l 11S0

]yl 11 D
T,z

. ~23!

D. Statistical states

In the following we will describe the solutions o
DF,Y(y) and hencey(Y) for the Gaussian and Gamma sta
with the help of Eqs.~13!–~14!. In the two subsequent sec
tions we will derive for the isothermal-isobaric and gra
canonical ensemble specific Gamma states, according to
specific physical restrictions valid for each ensemble. Unl
for the analogous case in the temperature,7 in this paper we
will not explicitly describe the solutions of the conjugate
equations@Eqs.~18!–~22!# for these statistical states.

For a Gaussian state, defined by the Gaussia
distribution2,6

r~Dj!5
1

A2pb0

expH 2
~Dj!2

2b0
J ~24!

for the variableDj5j2^j&, the cumulant generating func
tion is

ln GDj~ t !5 ln^etDj&5 1
2 b0t2 ~25!

with b05M2 . In this case, witht52bDy, Dj5DY 0, b0

5b0
05M2

0 andM2
0 given by Eq.~17! we obtain
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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DF5Y0Dy1
1

2 S ]Y0

]y D
T,z

Dy2, ~26!

Y~y!5Y01S ]Y0

]y D
T,z

Dy, ~27!

y~Y!5y01S ]y

]Y0D
T,z

~Y2Y0!. ~28!

Clearly,y(Y) is equal to a first order Taylor expansion ofy
in Y around Y0, or equivalently a @1/0# Padé
approximant18,22 of y aroundY0. Note that, because of th
special properties of the Gaussian distribution, the Gaus
state is equivalent to a second order cumulant expansion

For a Gamma state, defined by the Gamma
distribution2,6

r~Dj!5
b1~1/b1

2!b0 /b1
2

G~b0 /b1
2!

~b01b1Dj!b0 /b1
2
21

3expH 2
b01b1Dj

b1
2 J ~29!

with G~•! the Gamma function,23 the cumulant generating
function is

ln GDj~ t !5 ln^etDj&52b0F 1

b1
t1

1

b1
2 ln~12b1t !G ~30!

with b05M2 and b15M3/2M2 . In this case, with
t52bDy, Dj5DY 0, b05b0

05M2
0, b15b1

05M3
0/2M2

0

andM2
0 andM3

0 given by Eq.~17! we find

DF5Y0Dy1S ]Y0

]y D
T,z

F 1

u0 Dy2
1

~u0!2 ln~11u0Dy!G ,
~31!

Y~y!5Y01S ]Y0

]y D
T,z

Dy

11u0Dy
, ~32!

y~Y!5y01
Y2Y0

~]Y0/]y!T,z2u0~Y2Y0!
, ~33!

where we have defined

u05
b1

0

kT
5

M3
0

2kTM2
0 52

~]2Y0/]y2!T,z

2~]Y0/]y!T,z
. ~34!

In this case the functiony(Y) is equal to a@1/1# Padéap-
proximant ofy aroundY0. Note that the Gaussian state equ
tions follow directly from the Gamma state ones using t
limit u0→0.

E. Isothermal-isobaric ensemble

At this point it is useful to address some specific featu
of the isothermal-isobaric ensemble and the correspond
restrictions on the possible solutions of the generalized P
son system.

Clearly, forp50 ~i.e., y50! the Gibbs free energyDG
diverges, see Eq.~1!, as*0

` exp$2bA(V )%dV →` sinceA
is a decreasing function ofV because]A/]V52p,0.
Therefore the distributionr0 must have a MGF̂etj& which
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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diverges at one finite value oft, and since the volume dis
tributions are defined from a finite lower limitVmin to infin-
ity, we must select solutions of the generalized Pearson
tem with m115n @cf. Eq. ~16! and Ref. 7# and

1/bn
05td5 lim

p→0
2bDp5bp0 ~35!

eliminating in this way one parameter and reducing the co
plexity of the solution.

For a diverging Gamma state, which is the first com-
pletely acceptable statistical state in this ensemble, we
Eq. ~35!, yielding bb1

05u051/p0. Combining this with the
previous expressions for a general Gamma state, Eqs.~31!–
~34! we obtain

DG5V0Dp1p0S ]V0

]p D
T,N

FDp2p0 lnS p

p0D G , ~36!

V~p!5V01p0S ]V0

]p D
T,N

F12
p0

p G , ~37!

p~V!52
p02

~]V0/]p!T,N

V2Vmin
, ~38!

with

Vmin5V01p0S ]V0

]p D
T,N

, ~39!

where the functionp(V) is equal to a@0/1# Padéapproxi-
mant ofp aroundV0 andVmin,V0 since for reasons of ther
modynamic stability (]V0/]p)T,N,0.

In the isothermal-isobaric ensemble the limit to the po
of divergence of the MGF,p→0, corresponds toV→` and
clearly to an ideal gas condition. This implies that the pro
description of any gas phase~or fluid phase above the critica
point! must be a diverging state. Since from Eq.~37! it fol-
lows that the expressionp2(]V/]p)5p02

(]V0/]p) is vol-
ume independent, and the input parameters can be obta
at arbitraryV0, the value ofp2(]V/]p) can also be calcu
lated in the ideal gas condition, giving

p02S ]V0

]p D
T,N

52NkT, ~40!

whence from Eqs.~38! and ~39! we obtain the very simple
equations

p~V!5
NkT

V2Vmin
, ~41!

Vmin5V02
NkT

p0 . ~42!

Clearly, Eq.~41! resembles a van der Waals like express
of the pressure, although derived in a completely differ
way. Vmin is the ‘‘minimum’’ volume of the system, which
must be zero or positive and temperature independent f
system described by an exact diverging Gamma state, lik
the van der Waals equation, whereVmin5(2/3)pNsHS

3 ~Ref.
24! can be identified as the hard sphere volume of the m
ecules. When the Gamma state is an approximation to a m
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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complex statistical state,Vmin extracted from experimenta
properties reflects the effect of both repulsive~‘‘hard core’’!
and attractive interactions, in which caseVmin is in general
temperature dependent and can be even negative~if the at-
tractive forces are dominating, i.e.,p0 is smaller than the
ideal gas pressure atV0!. Obviously for an ideal gasVmin

50.
For the construction of equations of state, the most u

ful equations are thep(V) relations. We will therefore sum
marize the properties of thep(V) equations in the
isothermal-isobaric ensemble, i.e., the limits ofV and the
corresponding pressures.

For aGaussian stateG@V # for the volume distribution,
we have from Eq.~28!

p5p01S ]p

]V0D
T,N

~V2V0! ~43!

which corresponds to a second order cumulant expansio
DG in bDp. For apositive Gamma stateG1@V # from Eq.
~33!

p5p02
V2V0

u0~V2Vmin!
,

~44!

Vmin5V01
1

u0 S ]V0

]p D
T,N

,

where for anegative Gamma stateG2@V # we have to inter-
pret Vmin as Vmax.V0, since in that case bothu0 and
(]V0/]p) are negative. Finally, for adiverging (positive)
Gamma statein the volume,G1

d @V #, we have from Eqs.
~41! and ~42! simply

p5
NkT

V2Vmin
,

~45!

Vmin5V02
NkT

p0 .

In Table II we have summarized the limit properties
theseNpT pressure equations. Clearly, of the four expre
sions the diverging Gamma state is the only complet
physically correct solution. A negative Gamma state in
volume is a very unphysical state, even as a local appr
mation, since both limits are incorrect. The positive Gam
state, however, could be used as a local approximation e.
higher density. Note also that a Gaussian state~equivalent to
a second order cumulant expansion! is clearly less ‘‘physi-
cal’’ than the diverging Gamma state, which has even
lower complexity~i.e., number of input data atV0!.

F. Grand canonical ensemble

In this section we will address some specific points
the grand canonical ensemble.

First of all, using standard thermodynamic manipu
tions, we can rewrite the derivatives (]Y0/]y)T,z and
(]2Y0/]y2)T,z , i.e., (]N0/]m)T,V and (]2N0/]m2)T,V occur-
ring in Eqs. ~26!–~34! in a more convenient form, sinc
(]m/]N0)T,V5V(]m/]rN

0 )T and
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE II. Summary of properties of thep(V) equations in the isothermal-isobaric ensemble, for the Gaus
G@V # @Eq. ~43!#, positive GammaG1@V # @Eq. ~44!#, diverging GammaG1

d @V # @Eq. ~45!# and negative
Gamma stateG2@V # @Eq. ~44!# of the volume distributionr~V !.

State u0 Vmin

lim
V→Vmin

p
Vmax

lim
V→Vmax

p

G@V # 0 2` ` ` 2`
G1@V # .0

V01S]V0

]p D
T

Yu 0
` ` p021/u0

G1
d @V # 1/p0 V02NkT/p0 ` ` 0

G2@V # ,0 2` p021/u0

V01S]V0

]p D
T

Yu 0
2`
ts

on

, i
al

-

he

r
g

ure,
ed

he
a
is

n of
S ]m

]rN
0 D

T

5
1

rN
0 S ]p

]rN
0 D

T

, ~46!

S ]2m

]rN
0 2D

T

52
1

rN
0 2 S ]p

]rN
0 D

T

1
1

rN
0 S ]2p

]rN
0 2D

T

, ~47!

whence

u052
M3

0@N̄ #

2kTM2
0@N̄ #

52
~]2N0/]m2!T,V

2~]N0/]m!T,V

52
~]2rN

0 /]m2!T

2~]rN
0 /]m!T

5
~]2m/]rN

0 2!T

2~]m/]rN
0 !T

2

5
1

2~]p/]rN
0 !T

F rN
0 ~]2p/]rN

0 2!T

~]p/]rN
0 !T

21G , ~48!

where for reasons of thermodynamic stability (]p/]rN
0 )T

.0. Also note thatu0, expressed in terms of momen
of N̄ , has an extra minus sign, sinceY52N̄ and
M3

0@2N̄ #52M3
0@N̄ #. Hence apositivevalue ofu0 means

a negativeGamma state for the particle number distributi
and vice versa.

Secondly, unlike in the isothermal-isobaric ensemble
the grand canonical ensemble there is no general finite v
of t for which the moment generating function^etj& will
diverge. In fact, since]A(N)/]N5m, convergence or diver
gence of the MGF depends on the specific behavior ofm as a
function of N. However, for a general Gamma state in t
grand canonical ensemble we can rewrite Eq.~33! as

m~N!5m02
N2N0

u0~N2Nlim!
~49!

with

Nlim5N02
1

u0 S ]N0

]m D
T,V

. ~50!

For any physically exact solutionNlim5Nmin50, and
hence we can still eliminate one of the parameters, thus
ducing the complexity of the solution just like the divergin
Gamma state for the volume distribution in theNpT en-
an 2003 to 151.100.52.54. Redistribution subject to A
n
ue

e-

semble~see the previous section!. Eliminating u0 from Eq.
~50! asu052(1/N0)(]N0/]m)T,V , we find from Eqs.~31!–
~33! the zero limit Gamma stateexpressions

DJ5N02S ]m

]N0D
T,V

lnS N0

N D , ~51!

N~m!52
N02

~]m/]N0!T,V

m2mmax
, ~52!

m~N!5m01N0S ]m

]N0D
T,V

F12
N0

N G , ~53!

with

mmax5m01N0S ]m

]N0D
T,V

, ~54!

where mmax.m0 since (]m/]N0).0. This formally exact
Gamma state could be applicable at every nonzero press
and only in the extremely dilute case should be combin
with Eq. ~8!.

Also in this case the most interesting property is t
pressure as a function of the density, and we will give
summary of the different statistical states. As the volume
fixed, we can directly find the expressions forDp, since
DJ(Dm)52VDp and Dm is a unique and known function
of the density for every statistical state.

From Eq.~26! we obtain for theGaussian stateG@N̄ #,
using Eq.~46!

p5p01
1

2
rN

0 S ]p

]rN
0 D

T
F S rN

rN
0 D 2

21G ~55!

which is equivalent to a second order cumulant expansio
DJ in bDm. For anegative Gamma statein the number of
particles,G2@N̄ #, whereu0.0 we find from Eq.~31!

p5p01
1

u0 FrN max~rN2rN
0 !

rN max2rN

2~rN max2rN
0 !lnS rN max2rN

0

rN max2rN
D G ,

~56!

rN max5rN
0 S 11

1

u0~]p/]rN
0 !T

D .
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TABLE III. Summary of properties of thep(rN) equations in the grand canonical ensemble, for the Gaus

G@N̄ # @Eq. ~55!#, positive GammaG1@N̄ # @Eq. ~56!#, zero limit GammaG1
0 @N̄ # @Eq. ~57!# and negative

Gamma stateG2@N̄ # @Eq. ~56!# of the particle number distributionr(N̄ ).

State u0 rN min

lim
rN→rN min

p
rN max

lim
rN→rN max

p

G@N̄ # 0 2` ` ` `

G1@N̄ # ,0
rN

0S11
1

u0~]p/]rN
0 !T

D 2`a @0a# ` `

G1
0 @N̄ #

2
1

~]p/]rN
0 !T

0 2` @0# ` `

G2@N̄ # .0 2` `
rN

0S11
1

u 0~]p/]rN
0 !T

D `b

aFor rN min.0.
bFor rN max.0. Values between square brackets indicate the zero density limits using the exact expres
DJ, Eq. ~8!.
u
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For apositive Gamma statein the particle number,G1@N̄ #,
where u0,0 we have the same expressions, but we m
interpret rN max as rN min,rN

0 . Finally, for the zero limit

Gamma stateG1
0 @N̄ # we find from Eq.~51!

p5p01rN
0 S ]p

]rN
0 D

T

lnS rN

rN
0 D . ~57!

In Table III we have summarized the limit properties
thesemVT pressure equations. Clearly, the zero limit Gam
state is the only completely physically correct solution. No
that in all cases where there exist a finite minimum dens
i.e., for theG1@N̄ # andG1

0 @N̄ # states, we have to use th
complete expression forDJ, Eq. ~8!, in order to obtain the
correct zero density pressure limit. Also note that the conc
of infinite potential barriers, i.e., hard-sphere-like intera
tions, is not compatible with positive Gamma states for
number of particles, since for those states the density
reach infinity. In fact, for a system with hard-sphere-li
contacts, any exact distributionr(N̄ ) must be defined on the
finite interval @0, N̄ max#, which gives rise to extra restric
tions on the possible polynomialsPm(DN̄ 0) andGn(DN̄ 0)
in the generalized Pearson system, Eq.~16!, and so requires
more complex solutions than a Gamma distribution. Ho
ever, for such systems we can use at least as a local h
density approximation aG2@N̄ # state, which has a finite
maximum density.

III. THERMODYNAMIC MASTER EQUATIONS AND
PHASE TRANSITIONS

In the previous sections of this article and in the prec
ing article,7 we derived expressions for various thermod
namic properties as a function of temperature or dens
always using the moment generating function evaluated
the reference condition. Expressing the free energy dif
ences in terms of the moment generating function in
actual condition@Eqs. ~10!, ~15! and ~83! of the previous
article,7 and Eqs.~2! and ~11! of this article# and now com-
bining these with the corresponding thermodynamic relat
@Eqs. ~18! and ~78! of the previous article and Eqs.~3! and
an 2003 to 151.100.52.54. Redistribution subject to A
st

a
e
,

pt
-
e
an

-
h-

-
-
y,
at
r-
e

n

~12! of this article# results in a set of closed differential equ
tions ~thermodynamic master equations analogous to the
described for the canonical ensemble in previous papers2,3,6!
with solutions that provide the temperature or the dens
dependence of the thermodynamic properties. In fact, fo
given type of distribution the derivation of the previous se
tions, where we used the reference moment generating f
tions, provides such solutions without explicitly solving th
corresponding thermodynamic master equation~TME!. We
can illustrate this using as an example the volume fluctua
distribution in the isothermal-isobaric ensemble. In this ca
combining Eq.~2! with Eq. ~3! we have:

V5V1DpS ]V

]p D
T,N

1kTS ] ln^ebDpDV &
]p D

T,N

, ~58!

whence

DpS ]V

]p D
T,N

52kTS ] ln^ebDpDV &
]p D

T,N

, ~59!

where, as we showed, the central moment generating fu
tion GDV (bDp)5^ebDpDV & can be expressed in terms of
set of volume derivatives with respect to the pressure. He
Eq. ~59! is a closed ordinary differential equation and mu
have a unique solution providingV(p) at a given tempera-
ture and number of particles. Moreover, since the type
differential equation in Eq.~59! is fully defined by the type
of volume distribution at one arbitrary pressurep, it follows
that the type of distribution must be conserved at every ot
pressure. It should then be clear that the expression ofV(p)
obtained in the previous sections, directly differentiating t
logarithm of the central moment generating function at
reference condition with respect top @using Eq.~1! in Eq.
~3!#, must be the solution of Eq.~59!, as it follows from the
fact that Eq.~59! has a unique solution defined by one ty
of distribution or moment generating function. The same
gument can be easily applied to any possible fluctuati
ensemble combination, leading exactly to the same resu

As previously noted for the potential energy fluctuati
in the canonical ensemble, this fact has very important c
sequences, implying, for instance, that the knowledge at
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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arbitrary pressure of the exact volume distribution conta
complete information on the volume fluctuations at eve
other pressure and hence the knowledge at this single p
provides the full thermodynamics at every other possi
pressure for a given temperature and number of partic
Only the presence of a singularity in a TME can restrict
range of applicability of its solution, implying in general th
existence of two independent branches of the solution at
two sides of the singularity. From a general thermodynam
point of view this seems to be the case when a system
dergoes a phase transition where many of its properties
considered to have a singularity. However, with the use
statistical mechanics we can understand that this com
thermodynamic consideration on phase transitions mus
regarded only as a very useful approximation, but never
ally exact.25 In fact, in order to have real singularities at th
phase transition we should assume that the system is ex
confined in one region of the available phase space and t
at the phase transition, moves into another exactly confi
part corresponding to the new condition. In this case
moments of the distribution and hence the thermodyna
properties can have a real singularity. It is easy to see
this is impossible because any exact confinement can onl
produced by infinite energy barriers in phase space, wh
are of course noncompatible with any transition~the system
would remain trapped in the initial region at every tempe
ture and density!. More in general, if a set of moments a
diverging at a certain temperature they will still diverge
any higher temperature, implying that a real singularity
the moments at a single finite temperature should be imp
sible. In a real system even when it is in a stable monoph
condition there is always a nonzero probability, although
merically virtually zero, that the system is in the multipha
phase-space region, hence having a phase separation o
versa when the system is in a stable multiphase condit
The definition of a stable monophasic or multiphasic con
tion can only be based on probability. Hence the informat
which is in principle available at one state point could
really enough to rebuild the thermodynamic behavior at a
other state point and therefore for each TME a single so
tion with no singularities should be always expected.

Clearly in usual monophasic conditions a system can
described virtually exactly as really confined in the sing
phase phase-space region, since the probability for any t
sition outside this region is almost zero, and therefore
corresponding distributions~for the energy, volume and
number of particles! are virtually indistinguishable from
those obtained for an exactly confined system. Howe
such usually negligible ‘‘hidden’’ information will becom
essential, influencing the whole shape of the distributio
and not only the very far tails, when the system is close
the critical point where large microscopic fluctuations a
possible, and at the coexistence line where a system beco
macroscopically multiphasic. In the latter case the transit
is very sharp in temperature or density and corresponds
catastrophic exchange of probability between the monop
sic and multiphasic phase-space regions. Phase transi
can therefore be usefully modelled as thermodynamic
continuities although no mathematical singularities really
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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cur. In practice the exact TME solutions although existin
are extremely difficult to be properly modeled. We showe6

that the statistical states necessary to describe a multiph
system are much more complex than the ones which ca
used successfully for single phase conditions. Hence, s
any exact solution of a TME should describe both t
monophasic as well the multiphasic condition,
complexity6 should be at least the same as that of the s
plest statistical state needed to model the multiphase sys
Such highly complex unimodal distributions~defined by a
large number of moments or derivatives! are really necessary
to reproduce the very irregular behavior of a system at ph
transitions or at the critical point. In the latter case the ex
complication of the correlation length which tends to infini
could even imply that locally the distribution is not necess
ily properly modeled by an exact unimodal curve. It is cle
then that statistical states which can reproduce with high
curacy only the thermodynamics of monophasic syste
must be always regarded as excellent approximations
monophasic range of the exact statistical state, unable to
scribe directly any multiphase condition.

IV. RESULTS

First we derive for an ideal gas the volume distributi
in the NpT ensemble and the particle number distribution
the mVT ensemble. For simplicity we will give a descriptio
for monatomic molecules, since the generalization to po
atomic molecules is straightforward and does not alter
results.

In the isothermal-isobaric ensemblewe obtain from the
monatomic ideal gas partition function25

D id5
~qe!NL23N

v~bp!N11 ~60!

and Eq.~2!

DG5kT ln GV ~bDp!5kT ln
D id

0

D id
5kT lnS bp

bp0D N11

.

~61!

Hence, witht5bDp we have

GV ~ t !5S bp

bp2t D
N11

~62!

and using the general relationGDX (t)5e2tXGX (t), we find

GDV ~ t !5e2tVS bp

bp2t D
N11

. ~63!

For a Gamma distributionr~j! the MGF @see Eq.~30!# is a
similar expression

GDj~ t !5e2t~b0 /b1!S 1/b1

1/b12t D
b0 /b1

2

~64!

and moreover, since for an ideal gas26 V5(N11)kT/p,
]V/]p52(N11)kT/p2 and]2V/]p252(N11)kT/p3, we
obtain withb05M2 , b15M3 /(2M2) and Eq.~17!

1

b1
5bp;

b0

b1
5V;

b0

b1
2 5N11, ~65!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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which proves that the volume distribution of an ideal gas
the isothermal-isobaric ensemble is a diverging Gamma
tribution (b151/bp), and also suggests that it might be
good description for real gases as well.

Note that since for an ideal gas the volume and the
ternal energy are uncorrelated,21 the MGF of the instanta-
neous enthalpy distribution function in theNpT ensemble is
the product ofGU(t) and GpV (t), where GU(t)5(b/b
2t)3N/2 follows from the distribution of the kinetic energy o
a monatomic gas with 3N degrees of freedom7 andGpV (t)
5GV (pt), so

GH~ t !5GU1pV ~ t !

5GU~ t !•GpV ~ t !

5S b

b2t D ~3/2!NS pb

pb2ptD
N11

5S b

b2t D ~5/2!N11

~66!

which is in agreement with Eq.~103! of the preceding
article.7

For a monatomic ideal gas in thegrand canonical en-
semblethe partition function is given by25

J id5 (
N 50

`
1

N !
~ebmqeqkinV!N 5exp$ebmqeqkinV%.

~67!

Hence the discrete probability distribution is

r~N !5
~ebmqeqkinV!N

N !J id
5

aN e2a

N !
, ~68!

which is a Poisson distribution8,9 with a5ebmqeqkinV
5^N &5N. Rearranging this expression gives the usual
pression for the chemical potential of a classical ideal ga25

m id52kT ln(qeqkinV/N). Obviously, sinceV is fixed also
r(rN) is a Poisson distribution. Using the fact that the m
ment generating function of this Poisson distribution is giv
by8

GN ~ t !5^etN &5exp$a~et21!% ~69!

and combined with Eq.~4!,

2DJ5VDp5kT ln^ebDmN &m05kT ln GN
0 ~bDm!

~70!

we correctly find

rN~m!5rN
0 ebDm, ~71!

m5m01kT lnS rN

rN
0 D , ~72!

p~rN!5p~rN
0 !1kT~rN2rN

0 !. ~73!

While in the isothermal-isobaric ensemble the Gam
state for the volume is the exact statistical state of an id
gas, a Gamma state for the density in the grand canon
ensemble is not, and can only be an approximation to
ideal gas Poisson state. Or, in other words, a diverg
Gamma state for the volumeG1

d @V # might in general be a
good description at least of the gas phase, whereas a z
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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limit Gamma state for the number of particlesG1
0 @N̄ #, al-

though physically acceptable, will never be a good desc
tion, as not even the ideal gas behavior is properly describ

Based on this we tried to model thep-V relation of
gaseous water using a diverging Gamma state in the volu
G1

d @V #, Eq. ~45!. Experimental data were again taken fro
Schmidt.27 For various isotherms~433, 573, 673, 773 and
1073 K! we obtained input data ofp0 andV0 at low pressure
(p052.0 bar!, giving slightly negative values ofVmin ~Vmin

520.27, 20.11, 20.07, 20.05 and20.01 dm3/mol with
increasing temperature!. Of course, at high temperatur
Vmin→0 as should be for an ideal gas. Results are given
Fig. 1. For isotherms below the critical temperature (Tc

5647.3 K) the predictions are correct almost up to the
existence line, and the highest isotherm~1073 K! shows cor-
rect predictions up to the critical volume (0.0571 dm3/mol),
see also Fig. 3. For smaller volume~larger density! a simple
diverging Gamma state is not able to accurately describe
pressure any more. For comparison we also present a se
order cumulant expansion of the free energy difference
bDp, equivalent to a Gaussian state, Eq.~43!. Results for
one isotherm~573 K! are given in the insert of Fig. 1~the
other isotherms give similar results!. Although a Gaussian
state uses more input data than a diverging Gamma state
behavior of the former is clearly wrong. Just as for the te
perature dependence,7 the use of a physically acceptab
Gamma distribution increases the quality of the model c
siderably, compared to a simple cumulant expansion.

For the dense part of the phase diagram we tried a
local approximation a negative Gamma state in the num
of particles,G2@N̄ #, Eq. ~56!, for the different isotherms
see Fig. 2. Although it is a local approximation, we expec
to be better at high density than the physically accepta
zero limit Gamma state, since the former has a maxim
densityrN max, where a singularity occurs in accordance
the usual simple ‘‘hard sphere’’ model of liquids. For ea

FIG. 1. Pressurep of water along different isotherms. Legend: experimen
values~l! and diverging Gamma stateG1

d @V #, Eq. ~45! ~ !. The co-
existence line is indicated by a long dashed line. Note the double loga
mic scale. The critical temperature is 647.3 K~Ref. 27!. Insert: comparison
of Gaussian, Eq.~43! ~ ! and diverging Gamma~ ! at 573 K.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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isotherm initial values were obtained in a single point with
the range 1200,p0,3400 bar, 30.4,rN

0 ,57.5 mol/dm3,
0.03,u0,0.08 ~kJ/mol!21 and 72,rN max,88 mol/dm3.
The latter corresponds to a hard-sphere radius 1.49,r HS

,1.60 Å, which is clearly larger than the valuer HS

>1.35 Å previously obtained from the phase-space confi
ment e along isochores.6 From Fig. 2 it is clear that a
G2@N̄ # state is perfectly able to describe the pressure o
dense liquid like water; up to the coexistence line for is
therms belowTc ~see also Fig. 3! and for the highest iso
therm up to the critical density (17.51 mol/dm3). Note that
also in this case a second order cumulant expansion~equiva-
lent to a Gaussian state! is much worse than the used Gamm
state~data not shown!.

In Fig. 3 we present predictions from both theG1
d @V #

and theG2@N̄ # states in the vicinity of the critical point. Fo
isotherms belowTc the gas side is properly described by
G1

d @V # state and the liquid side by aG2@N̄ # state. At 1073
K we see that both solutions meet at about the critical v

FIG. 2. Pressurep of water along different isotherms. Legend: experimen

values~l! and negative Gamma stateG2@N̄ #, Eq. ~56! ~ !.

FIG. 3. Pressurep of water along different isotherms, focusing on the cri
cal point area. Legend: experimental values~l!, diverging volume Gamma
state of Fig. 1~ ! and negative particle number Gamma state of Fig
~ !.
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ume. For intermediate temperatures there is a region aro
the critical point which cannot be accurately described
either one of the statistical states: the complexity of
model distributions are too low in this part of the pha
diagram.

V. CONCLUSION

In this article we showed how to extend the qua
Gaussian entropy theory in an exact way to describe den
dependence of thermodynamic properties in noncanon
ensembles using the probability distribution of the volum
and number of particles. We derived general expressions
the solutions of thermodynamic master equations for
density dependence in theNpT andmVT ensemble, and de
scribed specific aspects of these conditions. General Ga
ian and Gamma statistical states were derived, as wel
special Gamma states, such as the diverging Gamma~NpT!
and zero limit Gamma state~mVT!, according to the specific
physical constraints of each ensemble. These Gaussian
Gamma states were used to reproduce the thermodyna
of water in gas and liquid conditions. In contrast to the si
ation in the canonical ensemble using the energy fluct
tions, in these noncanonical ensembles we encounter p
transitions. Following the usual thermodynamic approa
~i.e., regarding the phase transitions as singularities!, we
have two distinct solutions for the subcritical isotherms
gas and a liquid one.

In this article we first showed that in theNpT ensemble
an ideal gas is described by a diverging Gamma state for
volume fluctuations, suggesting that in general such a dive
ing Gamma state could be a good description, at least of
gas behavior. In the case of the grand canonical ensemble
the contrary, the ideal gas statistical state for the part
number fluctuations is given by a~discrete! Poisson distribu-
tion, implying that even the physically acceptable zero lim
Gamma state is not able to reproduce exactly the ideal
behavior. This suggests that Gamma states for the par
number fluctuations are likely to be useful especially as hi
density local descriptions~negative Gamma states with
maximum density! but are not accurate in describing the g
range density dependence.

Secondly, as previously obtained for the temperat
dependence,7 also for the density dependence a considera
part of the~fluid! phase diagram can be described by Gam
states and only at the phase transitions or in the vicinity
the critical point more sophisticated statistical states are
quired. The results clearly show that we can describe
thermodynamics of water using two Gamma state solutio
a low-density~gas! diverging Gamma state for the volum
fluctuations, and a high-density~liquid! diverging Gamma
state for the particle number fluctuations, but no sin
Gamma state can be used as a unique statistical state o
system for all densities, even at supercritical isotherms. T
implies that for a real system its unique exact solution, a
to describe both gas and liquid conditions including pha
transitions and the critical point region, is beyond t
Gamma level of the theory inNpT andmVT ensembles.

Interestingly, while for the temperature dependence7 at
least for water both the liquid and the gas side can be ac

l
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rately modeled by gamma states for the enthalpy fluctuat
in the NpT ensemble, in the case of the density depende
we can only describe the liquid and gas behavior using
gamma states from different ensembles: a volumeNpT di-
verging gamma state on the gas side and a particle num
mVT negative gamma state for the liquid side. As obtain
for the temperature dependence in the previous paper,
for the density dependence a second order cumulant ex
sion is much worse than the used gamma states.
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