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The quasi-Gaussian entropy theory has been applied to reproduce the temperature dependence of the
internal energy, pressure and isochoric heat capacity of a molecular dynamics simulated
Lennard-Jone$LJ) fluid at densityp=1 (reduced units The results show that the gamma state

level of the theory is an excellent approximation, able to predict the behavior of these properties
over a large temperature range. This application of the theory to the simulated LJ fluid confirms
previous results, obtained using experimental fluid data, and shows that the gamma state level of the
theory, in combination with molecular simulation techniques, can be used as a general model to
obtain accurate and physically consistent equations of state for fluid systemE99&®American

Institute of Physicg.S0021-960608)50239-3

I. INTRODUCTION ting range are questionable, and even within that range a
ood quality of the equation of state can be assured only for

fluids and fluid mixtures is important for many possible ap- he properties which were d_irectly used to fit these funct_ior_15.
plications. The usual computational techniques are moleculanr1 ecﬁgﬁiecrglytsenenvatsr}eg;?;‘;?;spgazm bé)‘stidegrn stﬁz';lssncal
dynamics(MD) and Monte CarloMC) simulations. These - q L QG K Y,
methods simulate the fluid system at the microscopic Ievelbeer? derived. It_s appllcatlon_ o the pred|ct|on Of. thermody-
using simplified semiempirical models for the atomic inter-ham'cal properties of real fluids provided results in excellent

actions and a classical approach to describe the thermod"Jlgreement with experimental dei@in this paper we inves-

namics of the particles. In many ways these methods intro{ﬁ-g"’ue the capability of the gamma level of the QGE theory to
duce different oversimplifications also in the case of Simplelreprotduceivthr? ;erzpiet: rza]:curre df Jp(;,\ln%enlzcerf;]f trr:ﬁ trhe\erodty r:jam-
fluids; nevertheless they are able to capture much of the elCS at a given density for a | uid. Furthermore we study
sential physics of these systems. different procedures to obtain the parameters of the gamma

The Lennard-Joned.J) potential is one of the most im- sta_\te model f_or_the predic_tion Of_ the L.‘J thermodynamics,
portant interaction models for exploring the properties ofSINg o_nly a Ilm!ted set of input simulation data. F_rom MD
simple apolar fluids and it has been used for a variety mslmulgtlons at different temperature_s at one density, th_e ex-
theoretical computational studies. However, the model Lj:ess.mternal energy, pressure and isochoric hgat gapqcny are
Hamiltonian is still too complex to allow general theoretical obtained and these properties are used to define in different

derivations of the thermodynamic behavior for fluid condi- V&S the gamma state.

. : _ The paper is organized as follows. In Sec. Il a summary
tions, although perturbation methods have been dSed. of the QGE theory is presented. In Sec. Il we describe the

reconaiuet the behavior o (is system and in géneral sem[Tel10dS used 0 obtan the data; he resuits and discussions
empirical equations of stat&OS are used in order to inter- are repprted in Sec. IV. Finally in Sec. V we give some
polate these data. The most successful of these EOS iscgnclusmns.
modified Benedict-Webb-RubitMBWR) equation with 33
parameter§.’

This EOS, based on pure fitting functions which require
a large amount of input data, is clearly lacking a real physi-  The QGE theory, in th&l VT ensemble, is based on the
cal basis and hence can only reproduce the data within th@formulation of the high-dimensional partition function of
fitting range. This implies that extrapolations outside the fit-the system in terms of the potential energy distribution func-
tion, which is a special projection of the Hamiltonian in one-
aAuthor to whom correspondence should be addressed. Electronic maiflimensional space. For monoatomic fluids the ideal reduced
amadei@monet.chem.uniromal.it entropy of a system$', i.e., the entropy with respect to an

The theoretical study of the behavior of homogeneou

II. QGE THEORY
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ideal reference system with the same temperature and density b (1/b2)b0/b§ ,
but no intermolecular interactions, is given'By p(A%" )= ————(by+b A7/ )Po/P1~1
I'(by/b3)
- bo+b,AZ'
S'=- kInJ ePr” p(A7/")dA 7/ +Kine (1) Xexp — 2 ©)
1

. with T'(-) the gamma functioh! b,=M, and b,
with =M;/(2M,). Here M, and M5 are the second and third
moments of the potential energy fluctuation, respectively.
For this distribution the TME reduces to the simple

AW =2 —{( 7" y=2'—-U", 2 expressiot?
where 7/’ is the instantaneous potential energy of the sys- (‘9_5) =_ o(1-9) (4)
tem, B=1KT, p(A%") is the probability distribution of the aT/, T

energy fluctuatiol 72’, andklne is an entropic term due to
a possible confinement of the system in configurational spac&here

associated with hard body excluded volutfigVe showedf

that for macroscopic systems, using the central limit M, T(ICy/dT)y
theorem! p(A7/’) must be close to a Gaussidfquasi- oKV oy +1.
Gaussian’). In fact the distributiorp(A72') can be obtained 2 v
from the generalized Pearson system for unimodal ctifés
using specific physical constraints.

®

The solution of Eq.(4) provides §(T), which can be
expressed in terms dfy, and (@C,,/dT)y, and hence this

Thz parametersf of theslmode) d'StrlbUt'A(?;S, %an l]?ehex- gives rise to a new differential equation @, the solution
pressed in terms of centra momemts]—« 7')") of the of which yields for a confined gamma stite
potential energy, where these potential energy moments are

functions of the isochoric heat capacit€\() and a limited

number of its temperature derivativ¥dn this way from the 8(T)= Tod , (6)
general thermodynamic relatio@$'/JT)y=C\/T a closed T(1—=80)+Todo

differential equation, theéhermodynamic master equation

(TME) can be obtaine@This is a completely defined differ- 8(T) 2

ential equation with a unique, always existing solution that ~ Cv(T)=Cyy rk Y
gives the temperature dependence of the ideal reduced iso- 0

choric heat capacitg,,, once the values df,, and a limited

number of its derivatives are known at one arbitrary tempera- U'(T)=U" _ , o(T)

ture To. (T)=Up+(T To)Cv05_1 (8

0
The knowledge of the potential energy distribution func-

tion at one temperature fully defines the whole ideal reduced , ,

thermod i i (Ty—ur— 190GV _ TCvo

ynamics of a system at every temperature at fixed A (T)y=U{— - —2|n{1—5(T)}—kTIne, (9)
density. Every potential energy distribution function there- o 5

fore defines a different statistical state of the system with a

thermodynamic complexity given by the number of heat ca- T

pacity temperature derivatives, necessary to define the corre- P'(T)=po+Bo+ By
sponding type of potential energy distribution function.

We showef®that the first TME solution which satis-
fies all the basic mathematical and physical constraints, the +B,
gamma state solution, provides an excellent model for fluid
systems. In contrast to macroscopic real systems, for simu-
lated fluids the unimodal shape of the potential energy dis‘-"’here
tribution functions is not necessarily accomplished, as the
number of particles which is used in a simulation is still far
from a real macroscopic condition. However, the model sta-
tistical states based on unimodal distributions can still be

used assuming simply that at least the input molecular prop-
i ilt'o

T(1— 6p)+ Todg

T)[ T(1-68) ]
—lInf ——— 4T, (10
To) | T(1—80)+ TS

Bo=A01To

erties, that are required to define the statistical state, obtained

from the simulations, are virtually identical to those which

would be obtained from a real macroscopic size system. (12
The gamma distribution, which defines the gamma state,

is given by° and
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TABLE |. Potential energy, heat capaciti¢salculated from the second
moment and from local interpolatiprand pressure with the corresponding

2(1— 8o)In(1— 8p) + 8,

A= —
01 D estimated errors.
1 (1-80)In(1— 89)+ &, T v’ c cl p
% 5o D ’ 14  -5520:0001 134001 134  11.1050.003
2 —4.776:0.001 119001 123  15.4720.003
o 1 In(1—8y)+ &, 3 ~3.707+0.001  1.060.01 1.00  21.7740.004
Ap=—, Ap=—————, (13 4 —-2.767+0.001  0.96¢:0.01  0.90  27.3440.005
D o D 5 ~1.911+0.001  0.84:0.01  0.83  32.3640.006
6 ~1.105:0.002 074001 078  37.2580.007
Ao 2(1— &) 1 7 ~0.349:0.002  0.6%001 073  41.9950.009
217 ' 227 p 8 0.348-0.002 0.7%#0.01  0.69  45.8660.009
9 1.042:0.002  0.630.01 066  50.3%0.01
D=2(1—8y)In(1— )+ 5o(2— ), (14) 10 1.679:0.002  0.6%0.01 064  54.2580.015
and
9o(1— )
Aoz=— 05 (15 previous articled®'8°Note that the errors foE,, obtained

o ' . from interpolation, are not reported in Table | as they are
The zero subscript indicates the input properties evalusmaller than the reliable accuracy for the heat capacity ob-

ated at the reference temperatligand {=k(dIne/dV). tained by a quadratic interpolation, and the deviations be-
tween the two heat capacity estimates are in the order of the
. METHODS error values. The fact that both methods yield almost identi-

) ) ) cal values of the heat capacity confirms that the simulations
The simulations were performed in theVT ensemble  ;seq are really statistically mechanically consistent and well

and every property is expressed in reduced Ufiihe sys- converged at least up to the second energy moment.
tem consisted of 864 atoms at a dengity 1. Ten simula-

tions were performed at temperatures 1.4, 2, 3, 4, 5, 6, 7, i?
9, and 10. The temperature of the system was maintained a
the reference value using the Gaussian isokinetic rescaling In order to evaluate the applicability of the gamma state
which should provide the correct Gibbs ensemble distribumodel to LJ fluids, we investigated one high density isochore
tion in configurational spack.Following Johnsoretal.® a  (p=1) in the temperature range 1.4—10. To obtain the best
cutoff r.=40 was used to avoid possible artifacts. Further-estimate of the gamma state we used the full energy data set
more the potential was shifted to have a zero value at than the temperature range studied. We did not use other prop-
cutoff distance. No shifting was applied to the force since theerties since in general they cannot be obtained with the same
large cutoff makes this correction negligitfléll the simu-  accuracy as the energy by simulations. Choosing as a refer-
lations were performed using a modified version of theence temperaturé,=6 we evaluated the gamma state pa-
GROMACS packagé’ that includes the Gaussian isokinetic rametersU;, C\,, and &, by fitting the gamma state energy
rescaling. Note that in this paper we always use the energgxpressionEqg. (8)] to the energy data set. In Fig. 1 we
and pressure values as obtained from the simulations, witteompare the potential energy, the isochoric heat capacity
out applying the usual correction for the shift and long ranggevaluated with the two methods described in Seg, #hd
interactions. the pressure obtained by simulations with the corresponding
Each simulation was performed by equilibrating the sys-properties predicted by this “best” gamma stéteferred to
tem for 5x 10* time steps and making a production run of as “reference gamma state[I',). For the gamma state
1.5x 10° steps. The simulation &i=6 was extended up to pressure expressidiq. (10)] we used ap, the actual pres-
4.5x 10° steps to increase the statistics for the third momensure value af, minus the corresponding ideal gas pressure.
of the potential energy fluctuations. The time step was choThe first and second temperature derivatives of the pressure
sen according to the criteria described by Johretoml® and  at T, required in the same equation, were derived from a
a valuest=0.002 was used for all simulations. cubic fit of the pressure data. Finally tieparameter was
The values of the heat capacit§,,, were obtained in adjusted to provide the best fit of the pressure data. The high

two ways: from the second moment of the potential energyaccuracy of the gamma state in reproducing the energy val-
fluctuation,M,, using ues is evident from Fig.(d). Also the pressure, Fig.(d), is

M, very well reproduced and only the lowest and the highest
=— (16)  temperature data show slight deviations. In the case of the

kT? heat capacity, Fig. (b), the gamma state model can still
and from the first derivative of a quadratic interpolation of provide a good description of the data but again there are
the energy values at three subsequent temperatures. In Taldeviations at both the extremes of the data set; in any case
| values ofU’, p and the two estimates @, together with  the maximum relative errdi12%) which occurs at the high-
the corresponding estimated errors are reported. The esgst temperaturé= 10 is still reasonably small. Note that the
mated standard deviations of the equilibrium properties werdeat capacity data were not involved in the gamma state
calculated using the block averaging method as described iparametrization and usually it is a difficult task to reproduce

. RESULTS AND DISCUSSION

’
\%
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c ] physical model, in the whole temperature range of inteffest.

] In Fig. 2 we also compare the accuracy of thg; predic-

1 tions for energy and heat capacity, with that of a model
based on a cumulant expansion of the free enEtyf the
same complexity of the gamma stgexpansion of the cu-

b mulant generating function of the energy, @ up to the

] third cumulant. This kind of expansion, usual in models
based on perturbation theory, is in this case equivalent to a
second order Taylor expansion of the energy iff, 1dnd
provides for the energy and heat capacity temperature depen-
* 3 dence:

1.0 b
_ T
= _;3 U’ (T)=U{+(3Cp+ To(dCLe/aT)y)| 1— ?0
-5.0
2
g 3 5 7 9 1 L 2+ Ty aC Ty 1| 2
T 2 VO 0 VO v T )

FIG. 1. Comparison of ideal reduced internal enetay heat capacityb) T 2
and full pressuréc) (filled circles obtained from the simulations, with the ' _ ' ’ Y
gamma state predictiorisolid lines, obtained by the fitting of the complete CuT)=(3Cyo+ TO(aCVO/ﬁT)V)( T )

energy data set, and the two MBWR EOS obtained by Johesah (dotted
line) and Sun and Tejédashed ling In panel(b) the open circles represent

3
X . X T
the heat capacity evaluated from local interpolation. (2Cr +T ’ 0
—(2Cyo+To(dCyo/dTIV| —| -
T

he three parameters of the cumulant expansion model

Ug.Clo.(dCyo/dT)y] were obtained fitting the whole en-
ergy data set, witlT,=6, as for thel',; parameters. From
Fig. 2 it is clear that the expansion model is very unsatisfac-
tory being rather inaccurate and even providing unphysical
epehavior in the low temperature ran@eegative heat capac-
ity). Note that the pressure prediction of the cumulant expan-
sion model(not shown in Fig. 2is also quite inaccuratesee

Table Ill). Such a result in agreement with observations in
1-23;

them accurately. For comparison, also the predictions ar
given for the two MBWR EQOS, which were parametrized in
the temperature range<6, where they have a comparable
accuracy as the gamma state. Howevefl at the gamma
state predictions are better for energy and heat capacity.
Interestingly, using a simple hard sphere model for th
confinement, from thg estimate we could evaluate the cor-
responding hard sphere volume per moleeubnd from this

obtain the hard sphere diametefs (Ref. 10. For the LJ . o i .
previous paper’ is not surprising if we consider that in

fluid we obtained a volume=0.19 and a diameteog h GE th ¢ . del distribut h
=0.71 corresponding to an interaction energy =261. the Q, theory for a given mode |_str| ution the corre-
sponding exact thermodynamics is derived. On the contrary

Note that the LJ potential does not have any exact confine2

ment and hence this estimate must be considered as an .‘etﬂje expansions are by definition local numerical approxima-

fective” hard sphere confinement which is valid, within our EZEZ’V%?;’ hence cannot in general provide physically exact

In order to evaluate the possibility of using a restricted
20 , . simulation data set and assess the most efficient procedure
for the estimation of the gamma state parameters, we tried to
1 use the least information necessary to obtdip, C;,, and
6p. From three energy values at nearby temperatufies (
=5,6,7) usingTo=6 we could estimate the parameters of
the gamma statel(;). Alternatively we used af =6 the
energy and directly the second and third central energy mo-
ments, obtaining the values 6f,, and 5, via Egs.(16) and
(5), to define the gamma statd™{). In Figs. 3 and 4 we
compare the predictions of these two gamma states with
simulation data. From these figures it is clear that these

TABLE Il. Parameters defining the three different gamma states Wjth

=6.
11
I' models Uy Cyo o v
FIG. 2. Comparison of ideal reduced internal enefgyand heat capacity T res —1.084 0.79 0.7717 0.19
(b) (filled circles obtained from simulations with the gamma state predic- I, —-1.105 0.78 0.7960 0.19
tion (solid line) as in Fig. 1 and the cumulant expansion CE model obtained I, —1.105 0.74 0.7622 0.19

from fitting the complete energy data gdashed ling
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FIG. 5. Running average @, calculated from the second and third central

energy moments &f=6.

0 2000

FIG. 3. Comparison of ideal reduced internal enefgy heat capacityb)
and full pressuréc) (filled circles obtained from the simulations, with the
gamma state predictior{solid lineg obtained from three energy values. In

panel(b) the open circles represent the heat capacity evaluated from local

interpolation.

summarize the results for the three gamma states, the two
MBWR EQOS, and the cumulant expansi@@E) model giv-
ing different overall measures of their accuracy. We use the

gamma states, based on the minimum amount of simulatioroot mean square deviatioinms) and the average relative
data necessary, are good estimates of the “best” gammarror (%AAD) for energy, pressure and heat capacity, the
state obtained from a large data set, and still reproduce welhtter obtained from local interpolation. The rms and %AAD
the LJ fluid behavior within the temperature range investi-for C,, obtained byM, are very similar to those obtained by
gated. Obviously the heat capacity is now less accurate bubcal interpolation of the energy.

the errors are still not large. In Fig 5 the running average of

From the values of Table Ill it is evident that the gamma

Sy at To=6, calculated from Eq(5), shows that a direct state obtained from the whole energy data d&ts| is the
measure of this property from the energy moments requiremost accurate, and the CE model is clearly the worst, con-
at least 4.5 1(° steps and a full convergence is still not firming the previous results. The comparison of the other two
reached.
In Table 1l we show the parameters of the three gammanoments from a single simulation results in a less accurate
states. As expected, the estimates of the parameters obtainestimate of the gamma state parameters as expected from the
by the three different methods are very close, confirming théact that the full convergence of the second and especially
validity of the gamma state model. Finally in Table Il we the third central moment requires very long simulations. In-

gamma statedl{;, I',) shows that the use of the three energy

terestingly the gamma state based on three energy values
(I"y) is almost comparable to the “reference” gamma state

56 o *C (T'\e), and has even a smaller %AAD for the energy. In the
46 e case of pressure data the three gamma states are completely
a. 36 ‘/A/ equivalent for the given accuracy, as expected from the simi-
26 | . .
16 /./'/ larity of the gamma state parameters in Table Il. Note that
6 ‘ 1 the accuracy of the gamma state mobg}; for the isochore
13 [ o e b 1 used is basically comparable to that of the MBWR EOS
.11 reported in the literatufe in the fitting range(1.4—6 of the
3 09 e latter, although in the temperature range that we cover the
0.7 \.\Q\Q\ . P accuracy of the three gamma state models is considerably
0.5 | o higher.
1.0 _e—% 4 Finally it should be noted that, although the gamma state
. -10 // model, as shown, provides an accurate description of the LJ
= 30l // fluid behavior in the full temperature range, the small devia-
50 [ g% tions between the model and the data obtained from simula-
-1.0 ‘ : tions are still significant when compared to the extremely
! 5 T 9 1 small error estimates. These remarkably small errors imply

that LJ fluid simulations in the order of a few million time

FIG. 4. Comparison of ideal reduced internal enetgy heat capacityb) steps can provide virtually exact thermodynamic averages of
and full pressuréc) (filled circles obtained from the simulations, with the

gamma state predictionsolid lines obtained from the first three energy energy and pressure, and hence the comparison of the simu-

moments aff =6. In panel(b) the open circles represent the heat capacity [ation data with a m_0d3| simply gives a measure of the ac-
evaluated from local interpolation. curacy of the model itself with respect to the “exact” system
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TABLE IIl. Average relative errors (%AADand root mean square deviatioftss) of the different gamma

states estimated from simulation data, of the MBWR EOS obtained by Joketsdn(1) and Sun and Tej&2)

and of the cumulant expansion CE model. Note that for the first five models the 1.4—10 temperature range was
used while for the last CE model we used the 2—10 temperature range as the CE model at 1.4 has a negative
heat capacity.

I' Models %AAD U’ rmsU’ %AAD Cy, rms Cy, %AAD p rmsp
et 2.6 0.038 4.0 0.058 0.8 0.25
r, 13 0.073 4.3 0.082 0.8 0.25
r, 7.3 0.134 7.7 0.087 0.8 0.25
MBWR EOS 1 34.1 0.406 18.1 0.158 0.3 0.16
MBWR EOS 2 26.4 0.292 11.8 0.102 1.9 0.78
CE 24.4 0.411 315 0.299 3.0 1.03
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