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Application of the quasi-Gaussian entropy theory to molecular dynamics
simulations of Lennard-Jones fluids
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The quasi-Gaussian entropy theory has been applied to reproduce the temperature dependence of the
internal energy, pressure and isochoric heat capacity of a molecular dynamics simulated
Lennard-Jones~LJ! fluid at densityr51 ~reduced units!. The results show that the gamma state
level of the theory is an excellent approximation, able to predict the behavior of these properties
over a large temperature range. This application of the theory to the simulated LJ fluid confirms
previous results, obtained using experimental fluid data, and shows that the gamma state level of the
theory, in combination with molecular simulation techniques, can be used as a general model to
obtain accurate and physically consistent equations of state for fluid systems. ©1998 American
Institute of Physics.@S0021-9606~98!50239-5#
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I. INTRODUCTION

The theoretical study of the behavior of homogeneo
fluids and fluid mixtures is important for many possible a
plications. The usual computational techniques are molec
dynamics~MD! and Monte Carlo~MC! simulations. These
methods simulate the fluid system at the microscopic le
using simplified semiempirical models for the atomic inte
actions and a classical approach to describe the therm
namics of the particles. In many ways these methods in
duce different oversimplifications also in the case of sim
fluids; nevertheless they are able to capture much of the
sential physics of these systems.

The Lennard-Jones~LJ! potential is one of the most im
portant interaction models for exploring the properties
simple apolar fluids and it has been used for a variety
theoretical computational studies. However, the model
Hamiltonian is still too complex to allow general theoretic
derivations of the thermodynamic behavior for fluid con
tions, although perturbation methods have been used1–5

Only by using a large set of simulation data it is possible
reconstruct the behavior of this system and in general se
empirical equations of state~EOS! are used in order to inter
polate these data. The most successful of these EOS
modified Benedict-Webb-Rubin~MBWR! equation with 33
parameters.6,7

This EOS, based on pure fitting functions which requ
a large amount of input data, is clearly lacking a real phy
cal basis and hence can only reproduce the data within
fitting range. This implies that extrapolations outside the
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ting range are questionable, and even within that rang
good quality of the equation of state can be assured only
the properties which were directly used to fit these functio

Recently a new theoretical approach based on statis
mechanics, the quasi-Gaussian entropy~QGE! theory, has
been derived. Its application to the prediction of thermod
namical properties of real fluids provided results in excell
agreement with experimental data.8,9 In this paper we inves-
tigate the capability of the gamma level of the QGE theory
reproduce the temperature dependence of the thermodyn
ics at a given density for a LJ fluid. Furthermore we stu
different procedures to obtain the parameters of the gam
state model for the prediction of the LJ thermodynami
using only a limited set of input simulation data. From M
simulations at different temperatures at one density, the
cess internal energy, pressure and isochoric heat capacit
obtained and these properties are used to define in diffe
ways the gamma state.

The paper is organized as follows. In Sec. II a summ
of the QGE theory is presented. In Sec. III we describe
methods used to obtain the data; the results and discuss
are reported in Sec. IV. Finally in Sec. V we give som
conclusions.

II. QGE THEORY

The QGE theory, in theNVT ensemble, is based on th
reformulation of the high-dimensional partition function
the system in terms of the potential energy distribution fu
tion, which is a special projection of the Hamiltonian in on
dimensional space. For monoatomic fluids the ideal redu
entropy of a system,S8, i.e., the entropy with respect to a
il:
8 © 1998 American Institute of Physics
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ideal reference system with the same temperature and de
but no intermolecular interactions, is given by10

S852klnE ebDU8r~DU8!dDU81klne ~1!

with

DU85U82^U8&5U82U8, ~2!

whereU8 is the instantaneous potential energy of the s
tem,b51/kT, r(DU8) is the probability distribution of the
energy fluctuationDU8, andklne is an entropic term due to
a possible confinement of the system in configurational sp
associated with hard body excluded volume.10 We showed10

that for macroscopic systems, using the central lim
theorem,11 r(DU8) must be close to a Gaussian~‘‘quasi-
Gaussian’’!. In fact the distributionr(DU8) can be obtained
from the generalized Pearson system for unimodal curves10,12

using specific physical constraints.
The parameters of these~model! distributions can be ex

pressed in terms of central momentsMn5^(DU8)n& of the
potential energy, where these potential energy moments
functions of the isochoric heat capacity (CV8 ) and a limited
number of its temperature derivatives.10 In this way from the
general thermodynamic relation (]S8/]T)V5CV8 /T a closed
differential equation, thethermodynamic master equatio
~TME! can be obtained.9 This is a completely defined differ
ential equation with a unique, always existing solution th
gives the temperature dependence of the ideal reduced
choric heat capacityCV8 , once the values ofCV8 and a limited
number of its derivatives are known at one arbitrary tempe
ture T0.

The knowledge of the potential energy distribution fun
tion at one temperature fully defines the whole ideal redu
thermodynamics of a system at every temperature at fi
density. Every potential energy distribution function the
fore defines a different statistical state of the system wit
thermodynamic complexity given by the number of heat
pacity temperature derivatives, necessary to define the co
sponding type of potential energy distribution function.

We showed8,9,10 that the first TME solution which satis
fies all the basic mathematical and physical constraints,
gamma state solution, provides an excellent model for fl
systems. In contrast to macroscopic real systems, for si
lated fluids the unimodal shape of the potential energy
tribution functions is not necessarily accomplished, as
number of particles which is used in a simulation is still f
from a real macroscopic condition. However, the model s
tistical states based on unimodal distributions can still
used assuming simply that at least the input molecular p
erties, that are required to define the statistical state, obta
from the simulations, are virtually identical to those whi
would be obtained from a real macroscopic size system.13

The gamma distribution, which defines the gamma st
is given by10
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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r~DU8!5
b1~1/b1

2!b0 /b1
2

G~b0 /b1
2!

~b01b1DU8!b0 /b1
2
21

3expH 2
b01b1DU8

b1
2 J ~3!

with G(•) the gamma function,14 b05M2 and b1

5M3 /(2M2). Here M2 and M3 are the second and thir
moments of the potential energy fluctuation, respective
For this distribution the TME reduces to the simp
expression10

S ]d

]TD
V

52
d~12d!

T
~4!

where

d5
M3

2kTM2

5
T~]CV8 /]T!V

2CV8
11. ~5!

The solution of Eq.~4! providesd(T), which can be
expressed in terms ofCV8 and (]CV8 /]T)V , and hence this
gives rise to a new differential equation inCV8 , the solution
of which yields for a confined gamma state10

d~T!5
T0d0

T~12d0!1T0d0

, ~6!

CV8 ~T!5CV08 S d~T!

d0
D 2

, ~7!

U8~T!5U081~T2T0!CV08
d~T!

d0

, ~8!

A8~T!5U082
T0CV08

d0

2
TCV08

d0
2

ln$12d~T!%2kTlne, ~9!

p8~T!5p081B01B1

T

T~12d0!1T0d0

1B2S T

T0
D lnH T~12d0!

T~12d0!1T0d0
J 1jT, ~10!

where

B05A01T0S ]p08

]T
D

V

1A02T0
2S ]2p08

]T2 D
V

1A03T0j, ~11!

Bi5Ai1T0H S ]p08

]T
D

V

2jJ 1Ai2T0
2S ]2p08

]T2 D
V

, i 51,2

~12!

and
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A0152
2~12d0!ln~12d0!1d0

D
,

A025
1

d0

~12d0!ln~12d0!1d0

D
,

A115
d0

D
, A1252

1

d0

ln~12d0!1d0

D
, ~13!

A215
2~12d0!

D
, A225

1

D
,

D52~12d0!ln~12d0!1d0~22d0!, ~14!

and

A0352
d0~12d0!

D
. ~15!

The zero subscript indicates the input properties eva
ated at the reference temperatureT0 andj5k(dlne/dV).

III. METHODS

The simulations were performed in theNVT ensemble
and every property is expressed in reduced units.15 The sys-
tem consisted of 864 atoms at a densityr51. Ten simula-
tions were performed at temperatures 1.4, 2, 3, 4, 5, 6, 7
9, and 10. The temperature of the system was maintaine
the reference value using the Gaussian isokinetic rescali15

which should provide the correct Gibbs ensemble distri
tion in configurational space.16 Following Johnsonet al.,6 a
cutoff r c54s was used to avoid possible artifacts. Furth
more the potential was shifted to have a zero value at
cutoff distance. No shifting was applied to the force since
large cutoff makes this correction negligible.6 All the simu-
lations were performed using a modified version of t
GROMACS package17 that includes the Gaussian isokinet
rescaling. Note that in this paper we always use the ene
and pressure values as obtained from the simulations, w
out applying the usual correction for the shift and long ran
interactions.

Each simulation was performed by equilibrating the s
tem for 53104 time steps and making a production run
1.53106 steps. The simulation atT56 was extended up to
4.53106 steps to increase the statistics for the third mom
of the potential energy fluctuations. The time step was c
sen according to the criteria described by Johnsonet al.6 and
a valuedt50.002 was used for all simulations.

The values of the heat capacity,CV8 , were obtained in
two ways: from the second moment of the potential ene
fluctuation,M2, using

CV85
M2

kT2
~16!

and from the first derivative of a quadratic interpolation
the energy values at three subsequent temperatures. In T
I values ofU8, p and the two estimates ofCV8 together with
the corresponding estimated errors are reported. The
mated standard deviations of the equilibrium properties w
calculated using the block averaging method as describe
Downloaded 13 Jan 2003 to 151.100.52.54. Redistribution subject to A
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previous articles.15,18,19Note that the errors forCV8 , obtained
from interpolation, are not reported in Table I as they a
smaller than the reliable accuracy for the heat capacity
tained by a quadratic interpolation, and the deviations
tween the two heat capacity estimates are in the order of
error values. The fact that both methods yield almost ide
cal values of the heat capacity confirms that the simulati
used are really statistically mechanically consistent and w
converged at least up to the second energy moment.

IV. RESULTS AND DISCUSSION

In order to evaluate the applicability of the gamma st
model to LJ fluids, we investigated one high density isoch
(r51) in the temperature range 1.4–10. To obtain the b
estimate of the gamma state we used the full energy data
in the temperature range studied. We did not use other p
erties since in general they cannot be obtained with the s
accuracy as the energy by simulations. Choosing as a re
ence temperatureT056 we evaluated the gamma state p
rametersU08 , CV08 andd0 by fitting the gamma state energ
expression@Eq. ~8!# to the energy data set. In Fig. 1 w
compare the potential energy, the isochoric heat capa
~evaluated with the two methods described in Sec. III!, and
the pressure obtained by simulations with the correspond
properties predicted by this ‘‘best’’ gamma state~referred to
as ‘‘reference gamma state,’’G ref). For the gamma state
pressure expression@Eq. ~10!# we used asp08 the actual pres-
sure value atT0 minus the corresponding ideal gas pressu
The first and second temperature derivatives of the pres
at T0, required in the same equation, were derived from
cubic fit of the pressure data. Finally thej parameter was
adjusted to provide the best fit of the pressure data. The h
accuracy of the gamma state in reproducing the energy
ues is evident from Fig. 1~a!. Also the pressure, Fig. 1~c!, is
very well reproduced and only the lowest and the high
temperature data show slight deviations. In the case of
heat capacity, Fig. 1~b!, the gamma state model can st
provide a good description of the data but again there
deviations at both the extremes of the data set; in any c
the maximum relative error~12%! which occurs at the high-
est temperatureT510 is still reasonably small. Note that th
heat capacity data were not involved in the gamma s
parametrization and usually it is a difficult task to reprodu

TABLE I. Potential energy, heat capacities~calculated from the second
moment and from local interpolation! and pressure with the correspondin
estimated errors.

T U8 CV8 CV8 p

1.4 25.52060.001 1.3460.01 1.34 11.10560.003
2 24.77660.001 1.1960.01 1.23 15.47260.003
3 23.70760.001 1.0060.01 1.00 21.77160.004
4 22.76760.001 0.9060.01 0.90 27.34460.005
5 21.91160.001 0.8460.01 0.83 32.36460.006
6 21.10560.002 0.7460.01 0.78 37.25060.007
7 20.34960.002 0.6960.01 0.73 41.99560.009
8 0.34860.002 0.7160.01 0.69 45.86060.009
9 1.04260.002 0.6360.01 0.66 50.3560.01

10 1.67960.002 0.6560.01 0.64 54.25060.015
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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them accurately. For comparison, also the predictions
given for the two MBWR EOS, which were parametrized
the temperature rangeT<6, where they have a comparab
accuracy as the gamma state. However, atT>5 the gamma
state predictions are better for energy and heat capacity

Interestingly, using a simple hard sphere model for
confinement, from thej estimate we could evaluate the co
responding hard sphere volume per moleculev and from this
obtain the hard sphere diametersHS ~Ref. 10!. For the LJ
fluid we obtained a volumev>0.19 and a diametersHS

>0.71 corresponding to an interaction energyU8>261.
Note that the LJ potential does not have any exact confi
ment and hence this estimate must be considered as an
fective’’ hard sphere confinement which is valid, within o

FIG. 2. Comparison of ideal reduced internal energy~a! and heat capacity
~b! ~filled circles! obtained from simulations with the gamma state pred
tion ~solid line! as in Fig. 1 and the cumulant expansion CE model obtai
from fitting the complete energy data set~dashed line!.

FIG. 1. Comparison of ideal reduced internal energy~a!, heat capacity~b!
and full pressure~c! ~filled circles! obtained from the simulations, with th
gamma state predictions~solid lines!, obtained by the fitting of the complet
energy data set, and the two MBWR EOS obtained by Johnsonet al. ~dotted
line! and Sun and Teja~dashed line!. In panel~b! the open circles represen
the heat capacity evaluated from local interpolation.
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In Fig. 2 we also compare the accuracy of theG ref predic-
tions for energy and heat capacity, with that of a mod
based on a cumulant expansion of the free energy3,20 of the
same complexity of the gamma state~expansion of the cu-
mulant generating function of the energy, inb, up to the
third cumulant!. This kind of expansion, usual in mode
based on perturbation theory, is in this case equivalent
second order Taylor expansion of the energy in 1/T, and
provides for the energy and heat capacity temperature de
dence:

U8~T!5U081~3CV08 1T0~]CV08 /]T!V!F12
T0

T
G

2
1

2
~2CV08 1T0~]CV08 /]T!V!F12S T0

T
D 2G ,

CV8 ~T!5~3CV08 1T0~]CV08 /]T!V!S T0

T
D 2

2~2CV08 1T0~]CV08 /]T!V!S T0

T
D 3

.

The three parameters of the cumulant expansion mo
@U08 ,CV08 ,(]CV08 /]T)V# were obtained fitting the whole en
ergy data set, withT056, as for theG ref parameters. From
Fig. 2 it is clear that the expansion model is very unsatisf
tory being rather inaccurate and even providing unphys
behavior in the low temperature range~negative heat capac
ity!. Note that the pressure prediction of the cumulant exp
sion model~not shown in Fig. 2! is also quite inaccurate~see
Table III!. Such a result in agreement with observations
previous papers9,21–23is not surprising if we consider that in
the QGE theory for a given model distribution the corr
sponding exact thermodynamics is derived. On the contr
the expansions are by definition local numerical approxim
tions, and hence cannot in general provide physically ex
behaviors.

In order to evaluate the possibility of using a restrict
simulation data set and assess the most efficient proce
for the estimation of the gamma state parameters, we trie
use the least information necessary to obtainU08 , CV08 and
d0. From three energy values at nearby temperaturesT
55,6,7) usingT056 we could estimate the parameters
the gamma state (G1). Alternatively we used atT056 the
energy and directly the second and third central energy
ments, obtaining the values ofCV08 andd0 via Eqs.~16! and
~5!, to define the gamma state (G2). In Figs. 3 and 4 we
compare the predictions of these two gamma states w
simulation data. From these figures it is clear that th

-
d

TABLE II. Parameters defining the three different gamma states withT0

56.

G models U08 CV08 d0 v

G ref 21.084 0.79 0.7717 0.19
G1 21.105 0.78 0.7960 0.19
G2 21.105 0.74 0.7622 0.19
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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gamma states, based on the minimum amount of simula
data necessary, are good estimates of the ‘‘best’’ gam
state obtained from a large data set, and still reproduce
the LJ fluid behavior within the temperature range inve
gated. Obviously the heat capacity is now less accurate
the errors are still not large. In Fig 5 the running average
d0 at T056, calculated from Eq.~5!, shows that a direc
measure of this property from the energy moments requ
at least 4.53106 steps and a full convergence is still n
reached.

In Table II we show the parameters of the three gam
states. As expected, the estimates of the parameters obt
by the three different methods are very close, confirming
validity of the gamma state model. Finally in Table III w

FIG. 3. Comparison of ideal reduced internal energy~a!, heat capacity~b!
and full pressure~c! ~filled circles! obtained from the simulations, with th
gamma state predictions~solid lines! obtained from three energy values. I
panel~b! the open circles represent the heat capacity evaluated from
interpolation.

FIG. 4. Comparison of ideal reduced internal energy~a!, heat capacity~b!
and full pressure~c! ~filled circles! obtained from the simulations, with th
gamma state predictions~solid lines! obtained from the first three energ
moments atT56. In panel~b! the open circles represent the heat capac
evaluated from local interpolation.
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summarize the results for the three gamma states, the
MBWR EOS, and the cumulant expansion~CE! model giv-
ing different overall measures of their accuracy. We use
root mean square deviation~rms! and the average relativ
error (%AAD! for energy, pressure and heat capacity,
latter obtained from local interpolation. The rms and %AA
for CV8 obtained byM2 are very similar to those obtained b
local interpolation of the energy.

From the values of Table III it is evident that the gamm
state obtained from the whole energy data set (G ref) is the
most accurate, and the CE model is clearly the worst, c
firming the previous results. The comparison of the other t
gamma states (G1, G2) shows that the use of the three ener
moments from a single simulation results in a less accu
estimate of the gamma state parameters as expected from
fact that the full convergence of the second and especi
the third central moment requires very long simulations.
terestingly the gamma state based on three energy va
(G1) is almost comparable to the ‘‘reference’’ gamma sta
(G ref), and has even a smaller %AAD for the energy. In t
case of pressure data the three gamma states are comp
equivalent for the given accuracy, as expected from the s
larity of the gamma state parameters in Table II. Note t
the accuracy of the gamma state modelG ref for the isochore
used is basically comparable to that of the MBWR EO
reported in the literature6,7 in the fitting range~1.4–6! of the
latter, although in the temperature range that we cover
accuracy of the three gamma state models is consider
higher.

Finally it should be noted that, although the gamma st
model, as shown, provides an accurate description of the
fluid behavior in the full temperature range, the small dev
tions between the model and the data obtained from sim
tions are still significant when compared to the extrem
small error estimates. These remarkably small errors im
that LJ fluid simulations in the order of a few million tim
steps can provide virtually exact thermodynamic average
energy and pressure, and hence the comparison of the s
lation data with a model simply gives a measure of the
curacy of the model itself with respect to the ‘‘exact’’ syste

al

FIG. 5. Running average ofd0 calculated from the second and third centr
energy moments atT56.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 13 J
TABLE III. Average relative errors (%AAD! and root mean square deviations~rms! of the different gamma
states estimated from simulation data, of the MBWR EOS obtained by Johnsonet al. ~1! and Sun and Teja~2!
and of the cumulant expansion CE model. Note that for the first five models the 1.4–10 temperature ran
used while for the last CE model we used the 2–10 temperature range as the CE model at 1.4 has a
heat capacity.

G Models %AAD U8 rms U8 %AAD CV8 rms CV8 %AAD p rms p

G ref 2.6 0.038 4.0 0.058 0.8 0.25
G1 1.3 0.073 4.3 0.082 0.8 0.25
G2 7.3 0.134 7.7 0.087 0.8 0.25
MBWR EOS 1 34.1 0.406 18.1 0.158 0.3 0.16
MBWR EOS 2 26.4 0.292 11.8 0.102 1.9 0.78
CE 24.4 0.411 31.5 0.299 3.0 1.03
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behavior. However it is still not fully clear if these erro
could be partly underestimated because of very slow re
ation modes present in the simulations.

V. CONCLUSIONS

In this paper we assessed the use of the quasi-Gau
entropy theory to model the thermodynamic properties o
LJ fluid as a function of temperature. The results showed
the gamma state level of the theory gives an excellent
proximation of the thermodynamic properties over a la
temperature range.

The comparison of the gamma state, obtained from
fitting procedure on all simulated energy data, with t
gamma states obtained from three energy points and from
first three energy moments of a simulation at one temp
ture, shows only small differences. This result indicates t
it is possible to obtain a good estimate of the gamma s
parameters using a restricted amount of data. The first t
energy moments at one temperature can be sufficient to
rive a reliable gamma state; however, the faster converge
of the first potential energy moment implies that it is mo
accurate and convenient to reconstruct the gamma state u
a limited set of energy data at different temperatures.

Finally the small deviations present at the extremes
the temperature range investigated, for the heat capacity
dicate that in order to describe the LJ fluid behavior ove
larger temperature interval than the one used in this pa
some form of correction must be applied to the gamma s
level of the theory. It is expected that only a small perturb
tion in the basic gamma state will suffice to construct a v
accurate equation of state over a very large temperature
density range.
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