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ABSTRACT: In recent years several implementations of molecular dynamics
Ž . Ž .MD codes have been reported on multiple instruction multiple data MIMD
machines. However, very few implementations of MD codes on single instruction

Ž .multiple data SIMD machines have been reported. The difficulty in using pair
lists of nonbonded interactions is the major problem with MD codes for SIMD
machines, such that, generally, the full connectivity computation has been used.

Ž .We present an algorithm, the global cut-off algorithm GCA , which permits the
use of pair lists on SIMD machines. GCA is based on a probabilistic approach
and requires the cut-off condition to be simultaneously verified on all nodes of
the machine. The MD code used was taken from the GROMOS package; only
the routines involved in the pair lists and in the computation of nonbonded
interactions were rewritten for a parallel architecture. The remaining calculations
were performed on the host computer. The algorithm has been tested on
Quadrics computers for configurations of 32, 128, and 512 processors and for
systems of 4000, 8000, 15,000, and 30,000 particles. Quadrics was developed by

Ž .Istituto Nazionale di Fisica Nucleare INFN and marketed by Alenia Spazio.
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Introduction

Ž .lassical molecular dynamics MD is used toC study the properties of liquids, solids, and
molecules.1, 2 The Newton equation of motion for
each particle of the system is solved by numerical
integration and its trajectory is obtained. From this
microscopic point of view, many microscopic and
macroscopic properties can be obtained. The need
for numerical integration limits the time step to
the femtosecond scale and makes MD simulation a
very time consuming task. Therefore, considerable
efforts have been concentrated on optimizing MD
codes on parallel computers of different architec-
tures.

Parallel computers are frequently described as
belonging to one of two types: single instruction

Ž .stream multiple data stream SIMD , or multiple
Ž .instruction stream multiple data stream MIMD .

In general, SIMD machines have a simpler archi-
tecture, but they have hardware limitations be-
cause the same instruction is executed in parallel
on every SIMD processor and, furthermore, some
SIMD machines do not have local addressing; that
is, the processors are not able to access their own
memory using different local addresses. In recent
years, several MD codes have been implemented
on MIMD architectures with a few dozen of
processors3 ] 5 and, more recently, also on 100- to
1000-processor MIMD machines.6 ] 8 Parallel imple-
mentations of biological MD programs such as
CHARMM9 and GROMOS10 on MIMD machines
have been discussed in the literature.8, 11 ] 13

Less work has been done using SIMD
systems.14 ] 17 In general, they make use of the full
connectivity computation; that is, all atom pair
interactions are calculated, and are useful for
long-range force systems. This is due to the diffi-
culty of using pair lists of nonbonded atoms on
SIMD machines with no local addressing.

In the present study we propose an algorithm
that permits the use of pair lists in a MD code for a
SIMD machine with no local addressing. The algo-
rithm requires simultaneous use of multiple time
step18 and geometric decomposition13 methods. In
addition, the systolic loop16 method is used to
further reduce computation time.

The method was tested on Quadrics com-
puters,19 ] 21 a class of SIMD machines developed
by INFN and Alenia Spazio, for configurations of
32, 128, and 512 processors. Quadrics is the only

massive parallel computer developed with fully
European technology. As the Europort2rPACC
project11 has shown, the scalability for a MD
code on MIMD architecture, for complex systems
such as a protein in solution, is generally satisfac-
tory only up to 12]16 nodes.

Moreover, there are interesting projects being
undertaken on mixed architecture MIMDrSIMD
machines that could supply the computational
power of a SIMD machine, together with the flexi-
bility of a MIMD. It is therefore worthwhile to
determine whether these machines are able to per-
form such calculations.

The following molecular systems have been
used as tests:

B ŽSystem 1: Box of 1536 water molecules 4608
.atoms .

B ŽSystem 2: Box with a BPTI bovine pancreatic
.trypsin inhibitor molecule and 2712 water

Ž .molecules 8704 atoms .
B ŽSystem 3: Box with a SOD superoxide dis-

.mutase dimer and 4226 water molecules
Ž .15,360 atoms .

B ŽSystem 4: Box with a SOD superoxide dis-
.mutase dimer and 9346 water molecules

Ž .30,720 atoms .

It should be noted that system 4 is nearly the same
as test case I3, used as the industrial benchmark in
the framework of the Eurosport2rPACC project11

Žsystem 4 has 9346 water molecules whereas test
.case I3 has 9436 water molecules . The results

show that the speed-up of the algorithm is compa-
rable to those obtained with MIMD machines.

Hardware

We tested the method on a Quadrics machine,
Alenia Spazio’s supercomputer derived from the

Ž .APE100 Array Processor Elaborator project, de-
veloped by INFN.19 ] 21 These computers are a fam-
ily of massively parallel SIMD machines with im-
plementations from 8 to 2048 processors. The
biggest implementation allows a peak computing

Žpower of 100 GFlops in single precision 32-bit
.processors .

The processors are arranged in a three-dimen-
Ž .sional 3D cubic mesh and can exchange data

with the six neighboring nodes, with periodic
boundaries. Each processor board contains eight

Ž .processors floating point units with their own
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Ž .memory 4 megabytes . Up to 16 boards can be put
into a crate. Configurations with more than 128
processors are made up connecting crates of 8 =

Ž .4 = 4 128 nodes.
The Quadrics controller board contains one inte-

Ž .ger CPU Z-CPU , which controls the flux of the
program and the integer arithmetic. The language
used is called Tao, a Fortran-like high-level paral-
lel language, which can be modified and extended
through a dynamic ZZ parser. The Quadrics ma-

Žchine is connected to a host computer a Sun
.Sparc-10 or -20 . A host interface based on a HIPPI

standard, which allows an IrO speed between the
host and Quadrics of 20 MBrs, has recently been
developed. The tests on the sequential machine
have been run on a DEC-alpha 3000r500 machine.
Barone et al.22 compared the accuracy of Quadrics
in the field of molecular dynamics with that of a
conventional computer to assess the limits of the
single precision.

Molecular Dynamics

In a molecular dynamics simulation, the classi-
cal equations of motion for the system of interest
are integrated numerically by solving Newton’s
equations of motion:

d2 ri Ž .m s y=V r , r , . . . , ri i 1 2 n2dt

The solution gives the atomic positions and veloci-
ties as a function of time. The knowledge of the
trajectory of each atom permits study of the dy-
namic or statistical properties of the system. The
form of the interaction potential is complex and it
includes energy terms that represent bonded and

Ž .nonbonded van der Waals and Coulombic inter-
actions:

Ž .V r , r , . . . , r1 2 N

1 12 2w x w xs K b y b q K u y uÝ Ýb 0 u 02 2bonds angles

1 2w xq K j y jÝ j 02improper
dihedrals

w Ž .xq K 1 q cos nw y dÝ w
dihedrals

12 6s s q qi j i j i jq 4« y qÝ i j 12 6ž / 4p« rr r i ji j i jŽ .pairs i , j

The first four terms represent the bonded poten-
tial. b, b , and K are the actual bond length, its0 b

reference value, and the bond stretching force con-
stant, respectively. u , u , and K are the actual0 u

bond angle, its reference value, and the angle
bending force constant, respectively, j , j , and K0 j

are the actual improper dihedral angle, its refer-
ence value, and the improper dihedral angle bend-
ing force constant, respectively. w, K , n, and dw

are the actual dihedral angle, its force constant, the
multiplicity, and the phase, respectively. The last
term in the equation includes the nonbonded, van
der Waals, and Coulombic terms. « and s arei j i j

the dispersion well depth and the Lennard]Jones
distance, q and q are the electrostatic atomici j

charges, r is the distance between them, and « isi j
the dielectric constant.

The time step used for the numerical integration
is in the femtosecond scale. The highest frequency
of bond vibrations would require a time step F 0.5
fs; however, if the simulation is performed with
constant bond lengths, the time step can be F 2 fs.
For this reason, many MD codes perform simula-
tions with constant bond lengths.

The most frequently used algorithm to perform
MD simulation at constant bond lengths is the
SHAKE algorithm based on an iterative
procedure.23

Computational Algorithm for
Nonbonded Interactions

In a MD program, the calculation of the non-
bonded forces is the most time-consuming task—in
fact, it takes about 90% of the computational time,
depending on the protocol used.

One of the most frequently used techniques to
reduce the number of nonbonded forces is the
cut-off criterion. With this method the interactions
between atoms beyond a cut-off distance are ne-
glected. If the cut-off radius is appropriate the lost
energy contribution to the global potential is small.
During a small number of steps the pairs of inter-
acting atoms are considered to remain the same so
that it is possible to create a list of these interac-
tions, the nonbonded pair list, which will be up-

Ž .dated every n steps n is generally equal to 10 .
ŽThe number of nonbonded interactions is N N y

. Ž .1 r2 N is the number of atoms , so that it is
proportional to N 2. The use of the cut-off criterion

Ž .reduces this number to kN k is a constant .
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Unfortunately, the cut-off criterion is not di-
rectly applicable to SIMD architecture, as the same
instruction is executed at each time on each pro-
cessor and, consequently, it is not possible to have

Ž .a local branch the cut-off condition in the pro-
gram flow. Moreover, on Quadrics it is not possi-
ble to have a local pair list on each node because
local addressing of arrays is not possible. This
explains the lower level of efficiency of a MD code
on a SIMD machine with respect to a MIMD one.
We have recently developed an algorithm, the

Ž .global cut-off algorithm CGA , based on a proba-
bilistic approach, which allows the use of the cut-
off condition on a SIMD machine with no local
addressing.

Because the calculation of bonded interactions
and the integration of the trajectory take a small
amount of the total calculation time, in the present
version we have chosen to carry them out on the
front-end computer and to perform only the calcu-
lations of the pair list and of the nonbonded forces
using the SIMD machine. It is, of course, possible
to perform all force calculations and integration in
the parallel machine using, for instance, the repli-
cated data method.8

GEOMETRIC DECOMPOSITION

The assignment of the atoms to the nodes is
obtained by a dynamically geometric decomposi-
tion13 in such a way that the same number of
atoms is assigned to each node. In what follows,
we discuss a decomposition for a bidimensional
case; the extension to a third dimension is straight-
forward: given the bidimensional box of Figure 1a
and a 2D parallel topology of n s n = n proces-x y
sors, with n s n s 2, the box is first dividedx y
into n boxes along the x-axis, as shown in Figurex
1b, each containing the same number of atoms.
Each box is successively divided into n boxesy
along the y-axis in such a way that each one of the
n = n boxes contains the same number of atomsx y
Ž .Fig. 1c . When, as in a real case, a third dimension
exists, a successive division along the z-axis has to
be performed.

It is obvious that, before performing any divi-
sion along a given axis, it is necessary to sort the
atoms of each box along that axis.

The density of a molecular system, such as a
protein, is not uniform; thus, the boxes do not
have the same axis lengths. However, these differ-
ences do not significantly reduce the efficiency of
the GCA described in what follows.

FIGURE 1. Domain decomposition of the molecular
system in boxes with the same number of atoms, for a
bidimensional case.

SYSTOLIC LOOP METHOD

Quadrics topology makes it possible to use
a systolic loop to calculate the nonbonded inter-
actions between the atoms assigned to the dif-
ferent nodes. The systolic loop method is one of
the most efficient algorithms for calculation of
two-body interactions on MIMD and SIMD
machines.14, 16, 24, 25 The systolic loop algorithm
passes the coordinates of all atoms around a ring
of P processors in Pr2 steps, such that half of the
coordinates passes every processor exactly once
Ž .transient atoms . Each node also stores the coordi-
nates of a group of atoms of the overall system
Ž .resident atoms . During the systolic cycle each
processor evaluates and accumulates the interac-
tions of the resident atoms with the transient ones.
Only half of the atoms have to pass in each com-
putational node as a consequence of the reciprocity
of the interactions.

The systolic loop path for a 32-node Quadrics
machine is shown in Figure 2. This machine has
two nodes along the y and z directions and eight
along the x direction.

The geometric decomposition of the system per-
mits limitation of the search for nonbonded inter-
actions only to the neighboring processors nearer
than the cut-off radius, so that, depending on the
number of nodes and on the system size, it is
generally not necessary to perform the complete
systolic loop. The computed forces are passed back
to the owning processor to accumulate the full
force.

GLOBAL CUT-OFF ALGORITHM

On a SIMD machine, all nodes simultaneously
evaluate an interaction, but the atom pairs in each
node are different. Figure 3 shows, as an example,
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( )FIGURE 2. Systolic loop path for node 0, 0, 0 of a
32-node Quadrics machine. The transient groups of
atoms visit only four neighboring y ]z planes, based on
Newton’s third law.

the case with four nodes: suppose that each node
is evaluating the interaction a ; in this case, all ai i
interactions fall within the cut-off radius. When
the interactions are of the b type all the distancesi
fall outside the cut-off radius and the interactions
b are skipped. In the case of interactions of type ci i
the interaction is outside the cut-off radius in nodes
1, 2, and 3, but it is inside the cut-off radius in

FIGURE 3. Different types of interactions in a case of
four nodes. a , all the interactions fall within the cut-offi
distance; b , all the interactions fall outside the cut-offi
distance; c , one interaction falls within the cut-off,i
whereas three fall outside the cut-off. P.U.= processor
unit.

node 4, so that all nodes have to calculate this
interaction and only will be saved in the forces
calculation. If the atoms in each node are ordered
randomly, the interactions of type c result ini
being the most frequent.

The basis idea of the global cut-off algorithm
Ž .GCA is to maximize the occurrence of interac-
tions of type a and b and, conversely, reduce thei i
occurrence of interactions of type c . To this end, iti
is necessary that the atoms in all nodes are sorted
with the same criterion. Different types of sorting
give comparable results. We have chosen the one
shown in Figure 4. After this sorting procedure, a
list of the interactions of type a and c is createdi i

Ž .in the integer CPU Z-CPU of the SIMD machine.
This list is equivalent, but not identical, to the
nonbonded pair list used in most MD programs
and will be referred as the nonbonded pair list.

The ordering procedures for the domain decom-
position and the sorting procedure previously de-
scribed are time consuming and have to be per-
formed on the host serial machine; however, as
will be shown, they have to be performed every
100 to 200 steps so that they do not significantly
affect the global computation time.

The global cut-off condition is based on a proba-
bilistic approach, so that the number of pair inter-
actions to be calculated is larger than the actual
number of pairs included within the r distance.cut
Depending on the molecular system and on the
number of nodes, the ratio between the number of
the calculated interactions and the number of in-
teractions actually included within the cut-off dis-

FIGURE 4. Sorting of atoms in each node for a
bidimensional case. The atoms are represented as full
circles.
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tance varies from the three to five. In this sense,
the GCA is not very efficient. However, it must be
noted that almost all pair interactions within a
distance r - r F r q D r, with D r ( 0.2 nm,cut cut
are calculated. As an example, given r s 0.6 nm,cut
94% of the interactions in the range 0.6 - r F 0.8
nm are calculated and only 6% of pairs in this
range are lost. This suggests adoption of a cut-
off value of r , to be used in the global cut-offGCA
condition, somewhat shorter than the actual cut-off,
r , desired for the simulation. In the previouscut
example, with r s 0.6 and r s 0.8 nm, theGCA cut
number of pairs to be calculated is roughly two-
to-threefold larger than the actual number of pairs
within the r distance. The remaining 6% ofcut
interactions in the range 0.6 - r F 0.8 nm have to
be calculated separately.

It is well known that nonbonded forces vary
more slowly than the bonded ones. Moreover, non-
bonded forces at large distances vary slower than
nonbonded forces at short distances. This suggests
updating of the forces at different steps, according

Ž .to their nature bonded and nonbonded and to the
distance of the interaction. The short-range interac-
tions can be evaluated every step, and long-range
interactions every m steps. Accordingly, the few
interactions in the range 0.6 - r F 0.8 nm that
were lost using r s 0.6 nm can be updatedGCA
every m steps. As these interactions are calculated

Žwhile evaluating the nonbonded pair list i.e., up-
.dated every n steps , we have chosen m s n s 10.

It must be noted that there are now two shells:
Ž .an inner shell r F 0.6 nm and an outer shell

Ž .0.6 - r F 0.8 nm . All interactions are evaluated
every m steps, whereas only those interactions
corresponding to the inner shell are evaluated ev-
ery step. It is therefore not necessary to have a skin
distance and to store a list of atom pairs outside
the outer shell.

In the present study it is seen that most interac-
tions in the range 0.6 to 0.8 nm are evaluated every
step and only a few of them are evaluated every m
steps. According to all of the MTS algorithms, this
choice does not affect the numerical accuracy; in
fact, the same accuracy is obtained when an inter-
action, within the outer shell, is evaluated every
short time step or every long time step. However,
as every long time step all interactions within the
outer shell are evaluated, it is possible to perform
the MTS according to the classical procedure; that
is, by collection all the interactions within the
outer shell at every long time step and collecting
only the interactions within the inner shell at every
short time step. Among several algorithms pro-

Ž .1, 18, 26posed for the multiple time step MTS we
have chosen the one developed by Scully and
Hermans.18

It must be noted that all nonbonded interactions
Ž .van der Waals and Coulombic between bonded
and nonbonded atoms are calculated in this step,
but the interactions between bonded atoms are not
saved. This is obtained by attaching to each atom a
list of the atoms bonded to itself. This procedure is
certainly not efficient, but the time required to
perform it is negligible. In the following tests, the
values of r and r are fixed at 0.6 and 0.8 nm,GCA cut
respectively.

Results

Table I shows the number of interactions within
the cut-off radius r compared with the numbercut
of interactions to be evaluated with the GCA. It
can be noted that the number of interactions for
calculation is two to three times the actual number
of interactions within the cut-off radius. The time

TABLE I.
( )Number of Actual Interactions, N, within a Cut-Off Radius r = 0.8 nm Compared with the Number ofcut

Interactions Calculated Using GCA on 32-, 128- and 512-Node Quadrics Machines.

N 32 nodes 128 nodes 512 nodes

System 1
( )4608 atoms 488,847 706,944 840,320 873,984
System 2
( )8704 atoms 891,252 1,612,864 1,810,944 2,070,016
System 3
( )15,360 atoms 1,487,054 3,153,344 3,768,576 4,452,864
System 4
( )30,720 atoms 3,129,972 6,754,240 8,249,216 9,938,944
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required for performing the MD simulation with
the present code is the sum of the following steps:

Ž1. Ordering procedure performed every k
.steps by the host computer .

Ž2. Calculation of the nonbonded pair list per-
.formed every n steps by Quadrics .

Ž3. Calculation of the nonbonded forces per-
.formed every step by Quadrics .

3a. Calculation of the bonded forces by the host
computer while performing step 3.

4. IrO host l Quadrics.
Ž5. SHAKE and integration performed by the

.host .

The ordering procedure is a time-consuming
task and, due to the diffusion of the system, it has
to be periodically repeated every k steps. If no
reordering is performed the nonbonded pair list will
include an increasing number of interactions, thus
increasing the computational time. Figure 5 shows

FIGURE 5. Number of interactions to be calculated
versus the number of steps for system 4 on a 32-node
machine. The atoms are not reordered during the
simulation.

the number of interactions to be evaluated versus
the number of steps when the ordering procedure
is performed at the beginning and not updated, for
system 4 on a 32-node machine.

The loss of performance is nearly linear, being
; 0.08% per step. The optimum k value depends
on the time required for the ordering procedure
and on the time required for items 2 and 3. It
shows that, for all the systems and all the different
numbers of nodes, the optimum k value is in the
range of 100 to 200 steps. The ordering procedure

Ž .for system 4 on a Sun Sparc-20 the host computer
required 20 seconds, so that its cpu time per step is
in the range of 100 to 200 ms.

The nonbonded pair list is evaluated every n
Ž .steps n s 10 in the present case and the non-

bonded interactions are evaluated every step. The
average cpu time required for these tasks is re-
ported in Table II for different systems and differ-
ent numbers of nodes. It should be emphasized
that the parallel machines perform the calculation
on a number of pairs two to three times larger
than the serial one. The almost linear scalability of
these task is also worthy of note.

The data transferred from the host to the
Quadrics and vice versa after each reordering step
Ž .i.e., every k ; 100 steps are reported in Table III
Ž .upper panel ; that is, 23 words per atom.

The data to be transferred every step are re-
Ž .ported in Table III lower panel —9 words per

atom. The average time spent in transmission de-
pends on the speed of information transfer. Taking

Žinto account the speed of the HIPPI interface 20
.MBrs the average IrO times per step required for

systems 1 to 4 are 9, 16, 28, and 55 msrstep,
respectively.

The sums of times for items 1 to 4 with different
numbers of nodes are reported in Table IV. Figure
6 shows the number of steps per second versus the

TABLE II.
( )cpu Times for Nonbonded Interactions Expressed in Milliseconds per Step .

DEC-alpha
3000 / 500 32 nodes 128 nodes 512 nodes

System 1
( )4608 atoms 2943 632 174 68
System 2
( )8704 atoms 6097 1650 386 107
System 3
( )15,360 atoms 10,928 3274 894 214
System 4
( )30,720 atoms 27,610 6208 1624 466
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TABLE III.
Data Transfer Results.

Quantity transferred
( )words per atom

Data transferred every k steps
From host to Quadrics

Coordinates of the atom 3
Coordinates of the geometric

center of the charge group 3
Electric Charge 1
Sequential atomic number 1
van der Waals parameters 2
Exclusions 1]3 6
Exclusions 1]4 4

From Quadrics to host
Forces 3

Total 23

Data transferred every step
From host to Quadrics

Coordinates of the atom 3
Coordinates of the geometric

center of the charge group 3

From Quadrics to host
Forces 3

Total 9

Ž .number of nodes for Quadrics Fig. 6a and for an
Ž .IBM-SP2 MIMD machine Fig. 6b for the same

Ž .system system 4 . For clarity, the CPU times re-
quired for SHAKE and integration are not in-
cluded. The code used for the MIMD machine was
developed within the Europort2rPACC project.11

Figure 6 also shows that no significant advan-
tage is obtained with the MIMD machine when the
number of nodes is G 12, whereas, a good scala-

TABLE IV.
Total cpu Times Including Nonbonded Interactions,
Ordering Procedure, and I ///// O Host Quadrics
( )Milliseconds per Step .

32 nodes 128 nodes 512 nodes

System 1
( )4608 atoms 680 205 90
System 2
( )8704 atoms 1790 470 175
System 3
( )15,360 atoms 3540 1050 335
System 4
( )30,720 atoms 6660 1910 685

FIGURE 6. Number of steps per second versus the
( ) ( )number of nodes for system 4. a Quadrics; b IBM

SP2. The ideal scalability is expressed as a dashed line.
Single processor DEC-alpha 3000 / 500 timing is shown
for comparison.

bility, up to 512 nodes, is obtained with the SIMD
machine.

To complete the evaluation of the total
timersteps of the present MD code, the times
required on the host for the bonded interactions,
SHAKE, and integration have to be calculated. The
times required for these tasks, with the present
MD code, are reported in Table V. It should be
noted that the calculation of bonded interactions is
performed by the host, whereas Quadrics com-
putes the nonbonded interactions. As the former’s
calculation time is less than the latter, this task
does not require any extra cpu time.

The integration task requires less cpu time than
Žthe nonbonded interaction calculation time see

.Table IV on a 32- or 128-node machine, and a
comparable amount of time on a 512-node ma-
chine. Therefore, this task must be parallelized for
machines with hundreds or thousands of proces-
sors. The integration can be implemented easily on
a SIMD machine by, for example, the replicated
data procedure.

The cpu time required to perform the SHAKE
algorithm on the host is the actual bottleneck. It is
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TABLE V.
( )cpu time on the Host Sun Sparc-20 for Calculation

of Bonded Interactions, SHAKE, and Integration
( )expressed in Milliseconds per Step .

Bonded
Interactions SHAKE Integration

System 1
( )4608 atoms 41 236 57
System 2
( )8704 atoms 96 488 117
System 3
( )15,360 atoms 73 1102 161
System 4
( )30,720 atoms 194 3013 437

very difficult to implement the SHAKE algorithm
on a SIMD machine; therefore, an alternative pro-
cedure must be chosen. The MTS procedure can be
used to evaluate the bond vibrations without re-
ducing the time steps required for the nonbonded
interactions.

Conclusions

The results reported in the present work show
that the GCA permits use of pair lists even on a
SIMD machine with no local addressing, thus
overcoming one of the most severe disadvantages
of SIMD vs. MIMD machines. The penalty to be
paid is the number of interactions per step to be
calculated; that is, two to three times the actual
number of interactions.

The tests performed on Quadrics computers for
configurations of 32, 128, and 512 nodes, for sys-
tems of different sizes, up to 30,000 particles, show
that the scalabilities and performances are satisfac-
tory and comparable to those obtained with MIMD
machines. At the present time, the only routines
for the calculation of the pair lists and nonbonded
interactions have been parallelized. We have
shown that the bonded forces can be calculated by
the host while the parallel machine calculates the
nonbonded ones. Also, the integration task can be
calculated by the host if the parallel machine has
up to tens of processors. With hundreds or thou-
sands of processors this task must also be paral-
lelized.

The SHAKE algorithm, which allows one to
perform MD calculations at constant bond lengths,
is the actual bottleneck of the calculation and its
implementation is difficult with the parallel ma-
chine. We suggest the use of the MTS to evaluate
the bond vibration contributions.
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