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In this paper we present the quasi-Gaussian entropy theory in a comprehensive and consistent way,
introducing a new derivation of the theory very suited for applications to molecular systems, and
addressing its use in the case of multi-phase systems. A general derivation of the possible
confinement of the system within a part of phase space is given, and for water it is shown that for
this a hard sphere excluded volume model can be used. To obtain the temperature dependence of the
pressure, a new differential equation is derived, and besides the previously introduced Gaussian and
Gamma states, in this paper we also describe a new statistical state, the Inverse Gaussian state. We
discuss the properties of these different statistical states and for water compare their
thermodynamics with experimental data, finding that both the Gamma and Inverse Gaussian states
are excellent descriptions. ©1997 American Institute of Physics.@S0021-9606~97!50305-9#
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I. INTRODUCTION

The key point in statistical mechanics is the evaluat
of the~configurational! partition function, which is in genera
a high-dimensional integral over all coordinates. For a s
tem not at very low density with a realistic Hamiltonian, it
virtually impossible to derive in this way rigorous but han
able expressions for the various thermodynamic proper
In recent articles1–4 however, we showed that in the canon
cal ensemble it is possible to switch from the hig
dimensional partition function to the one-dimensional pot
tial energy distribution function of the system, which is in
way a special projection of the Hamiltonian. The advanta
of this approach is the fact that, because of the macrosc
character of usual systems, the potential energy distribu
function is almost Gaussian~‘‘quasi-Gaussian’’!. Hence
mathematically already relatively simple distributions can
used to model the real distribution, yielding very compa
expressions for the excess thermodynamic properties~i.e.,
with respect to a proper reference state!.

We also showed that, using this approach, in a very n
ral way a hidden differential equation, thethermodynamic
master equation, arises. For every type of distribution, whic
defines a different statistical state of the system, the solu
of this master equation yields the temperature dependenc
the excess heat capacityCV8 and hence of the excess entro
S8, internal energyU8 and Helmholtz free energyA8. In the
previous articles we derived and tested the temperature
pendence of these excess thermodynamic properties at
stant volume for a Gaussian and Gamma distribution.

In this article we will introduce a new distribution, th
Inverse Gaussian distribution, which is very related to
Gamma distribution, and derive its thermodynamics. We w
also derive a new differential equation, theconjugated pres-
sure equation, the solution of which yields the temperatu
dependence of the excess pressurep8 and hence, combined

a!Author to whom correspondence should be addressed.
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with the previous properties, of the excess enthalpyH8 and
Gibbs free energyG8.

In Ref. 2 we proposed the idea of a phase-space confi
ment, i.e., a division of phase space into a ‘‘stable’’ a
‘‘unstable’’ part, in a somewhat ad hoc way, based on
general double state model. In this article we will derive t
phase-space confinement in a more natural way, and dis
its implications and the behaviour of the confinement
water as a function of the density. Moreover, we will discu
the properties of the statistical states described and we
compare their zero and infinite temperature limits with ge
eral statistical mechanical results.

In section II we will present the general theory in a com
prehensive and consistent way, introducing a new deriva
of the theory very suited for molecular systems, and in s
tion III we summarize the properties of the various statisti
states. In ‘‘Discussion and results’’~section IV! we will ad-
dress aspects of multiphase systems, the temperature l
of the expressions of the thermodynamic properties as
cussed in section III, the phase-space confinement and
relation to hard-sphere excluded volume and present
results of the excess pressure at constant density using
conjugated pressure equation.

II. GENERAL THEORY

A. Definition of the system

The Helmholtz free energy of a system at fixed volum
temperature and number of molecules is

A52kT ln Q, ~1!

whereQ is the overall partition function. For a system ofN
identical molecules in the classical limit

Q>
1

N!
QeQkinQpot, ~2!

with Qe the electronic partition function, a constant for mo
of the systems,Qkin the kinetic energy partition function an
1893893/20/$10.00 © 1997 American Institute of Physics
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1894 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
Qpot the configurational partition function involving the po
tential energy of the system. The most general expressio
Qpot is1

Qpot5(
l
E 8

e2b~F1c1E l !dx, ~3!

wherex are the atomic coordinates,F is the intermolecular
potential energy,c is the intramolecular potential energ
~excluding bond length and bond angle vibrational energ!,
E l is the overall l th quantum vibrational bond energy~in
general a function of the coordinates!, b51/kT and the sum
runs over all accessible vibrational states$ l % of the system in
the temperature range of interest. The prime on the inte
means that we integrate only over configurations where
the bond lengths and angles are fixed at their equilibri
values, see the Appendix. In a previous article1 we derived
the quasi-Gaussian entropy theory from the completely g
eral expression given in Eq. 3. However, in many cases s
a derivation of the theory is not very suitable for applic
tions. In this paper we will therefore introduce a very gene
approximation ofQpot, valid for many different types of mol-
ecules, from which we will derive a very useful form of th
theory for applications to molecular systems.

In fact we can simplify Eq. 3, considering that in gene
for systems where the vibrational energies have a signific
dependence on the coordinates, such a dependence i
served only up to temperatures where the molecules
largely confined in the vibrational ground state~for water,
see Refs. 5 and 6!. In such systems, as the temperature
increased to values where the first excited states become
nificantly populated, the vibrational energies converge to
ideal gas ones, i.e., bond vibrational energies of the s
molecules in the ideal gas condition which are in gene
independent of the coordinates. For these kind of system
can rewrite Eq. 3 as

Qpot5(
l
E 8

e2b~F1c1E l !dx

5(
l
e2bElE 8

e2b~F1c!e2b~E l2El !dx ~4!

with El the coordinate averaged vibrational energy of thel th
state. The fact that the vibrational energiesEl converge to
the ideal gas ones (Eid

l ) when the temperature allows a re
evant excitation implies, at least for all the terms in Eq
significantly different from zero~i.e.,bEl not too large!, that

E 8
e2b~F1c!e2b~E l2El !dx

>E 8
e2b~F1c!e2b~E02E0!dx. ~5!

Hence

Qpot>S (
l
e2b~El2E0!D E 8e2b~F1c1E0!dx ~6!
J. Chem. Phys., Vol. 106,
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with E0 the overall vibrational ground state energy of t
system. Since the same argument also implies that

(
l
e2b~El2E0!>(

l
e2b~Eid

l
2Eid

0
! ~7!

we finally obtain

Qpot>Qid
v E 8

e2bU8dx ~8!

with U85F1c1E02Eid
0 and whereEid

0 Qid
v are the overall

vibrational ground state energy and partition function of t
ideal gas~with F50!, respectively. It is easy to see that E
8 is always exact if the system is completely confined in
vibrational ground state, or if no vibrations are present~mon-
atomic molecules! or when the vibrational energies can b
considered independent of the coordinates, and there
from the temperature, hence being identical to the ideal
ones.

If moreover, at least in the whole temperature range
interest, only a part of the configurational space is energ
cally accessible~i.e., the system is confined within a part o
the configurational space! we can rewrite Eq. 8 as

Qpot>Qid
v E 8*

e2bU8dx, ~9!

where now the star denotes an integration over the acces
part of the configurational space only. It should be noted t
the unaccessible configurations do not necessarily co
spond only to the ones which are forbidden by a sim
excluded volume concept, where it is assumed that the
potential energy has an infinite barrier as in a hard sph
liquid. In fact, according to thetotal intermolecular potential
energy, even configurations with non-penetrating molecu
might be energetically excluded up to very high tempe
tures. Clearly in the infinite temperature limit every fini
energy configuration will be accessible implying that on
the confinement due to the infinite energy configurations
be considered exact, i.e., really temperature independen

Eq. 9, which reduces to Eq. 8 in case the whole confi
rational space is available, is a very general expression
can be used for many different types of molecules: for all
cases where we applied the theory previously1,2 ~water,
methanol and methane! Eq. 9 is completely valid.

B. Definition of the reference states and excess
properties

For all the systems where Eq. 9 can be used, we
define two reference states~ideal reference and confine
ideal reference! at the same temperature and density, b
without inter ~F! and intramolecular potential energy~c!,
see Fig. 1. For theideal referencewe have

Aref52kT ln Qref , ~10!

Qref5
1

N!
QeQkinQref

pot, ~11!
No. 5, 1 February 1997

to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



ne
sta

t c

o
.

ca-

en-

the
-
efer-
ondi-

-
tion

or
du
st

1895Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
Qref
pot5Qid

v E 8
dx, ~12!

and for theconfined ideal reference

A* ref52kT ln Q* ref , ~13!

Q* ref5
1

N!
QeQkinQ

* ref
pot , ~14!

Q
* ref
pot 5Qid

v E 8*
dx. ~15!

Therefore the excess Helmholtz free energy of the confi
ideal reference state with respect to the ideal reference
is

Aref8 5A* ref2Aref52kT ln e ~16!

with

e5
*8* dx
*8dx

~17!

the fraction of available configurational space~phase-space
fraction! previously introduced in a different way.2 Hence
the corresponding excess entropy, internal energy, hea
pacity and pressure are7

Sref8 52S ]Aref8

]T D
V

5k ln e, ~18!

U ref8 5Aref8 1TSref8 50, ~19!

CVref8 5S ]U ref8

]T D
V

50, ~20!

pref8 52S ]Aref8

]V D
T

5kT
d ln e

dV
5jT, ~21!

wheree andj, at least within the whole temperature range
interest, are by definition independent of the temperature

We define theconfined ideal reducedfree energy as

A*5A2A* ref52kT ln
Qpot

Q
* ref
pot

5kT ln^ebU8&5^U8&1kT ln^ebDU8&, ~22!

where

FIG. 1. Definition of the~reference! states and of the various differences f
a propertyX. The prime and the star on the integral denote restrictions
to fixed bondlengths and angles and a possible confinement of the sy
within a part of phase space, respectively.
J. Chem. Phys., Vol. 106,
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DU85U82^U8&, ~23!

^ebU8&5
*8* dx

*8* e2bU8dx
5

*8* e2bU8ebU8dx

*8* e2bU8dx
. ~24!

Hence the confined ideal reduced internal energy, heat
pacity, entropy and pressure are

U*52S ]

]b
ln

Qpot

Q
* ref
pot D

V

5^U8&, ~25!

CV*5S ]U*

]T D
V

5S ]^U8&
]T D

V

, ~26!

S*52
~A*2U* !

T
52k ln^ebDU8&, ~27!

p*52S ]A*

]V D
T

. ~28!

We also define theideal reducedfree energy as

A85A2Aref5A*1Aref8 5A*2kT ln e ~29!

and so the ideal reduced internal energy, heat capacity,
tropy and pressure are

U852S ]

]b
ln
Qpot

Qref
potD

V

5^U8&5U* , ~30!

CV85S ]U8

]T D
V

5S ]^U8&
]T D

V

5CV* , ~31!

S852
~A82U8!

T
5S*1k ln e, ~32!

p852S ]A8

]V D
T

5p*1Tj. ~33!

Finally, from these equations follow the~confined! ideal
reduced8 enthalpy and Gibbs free energy

H85U*1~p*1Tj!V5H*1TVj, ~34!

G85A*2kT ln e1~p*1Tj!V5G*2kT ln e1TVj.
~35!

It should be noted that the ideal reduced properties of
systems previously investigated1,2 can be considered as dif
ferent cases of Eqs. 29–35 since for those systems the r
ence conditions chosen can be considered as special c
tions of Eq. 12.

C. The potential energy distribution

Eq. 27 can be explicitly expressed as

S*52k ln GDU8~b!

52k ln E ebDU8r~DU8!dDU8, ~36!

whereGDU8(b) is the moment generating function
9,10 of the

potential energy distribution functionr~DU8! ~note thatr is
in general temperature dependent!. From the fact that a mac
roscopic system can be considered as a very large collec

e
em
No. 5, 1 February 1997
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1896 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
of identical, independent subsystems~elementary systems!,
we can conclude that because of the central limit theorem9,11

the corresponding potential energy distribution function c
be regarded as uninormal. In fact the possible deviati
from the uninormal shape in the far tail of the distribution a
in general negligible because of the very sharply peaked
haviour of the curve around its mode~maximum of probabil-
ity!, also due to the macroscopic nature of the system,12,13

and therefore the integrand in Eq. 36 can be modeled c
sideringr an exact uninormal distribution. In general we c
express the potential energy distribution as12,14

r~DU8!5
V~DU8!

Qpot e2b~DU81U8! ~37!

with

V~DU8!5E 8*
d~DU8~x!2DU8!dx ~38!

the confined configurational microcanonical partition fun
tion, and hence

dr

dDU8
52r~DU8!Fb2

d ln V

dDU8 G . ~39!

Using a Pade´ approximant,15,16 instead of a usual Taylor se
ries, to expand the function between brackets in Eq.
around the mode of the distribution, we finally obtain a ge
eral differential equation, equivalent to the one of the gen
alized Pearson system of curves,1,17,18which can be used to
obtain the possible potential energy distribution functions

dr

dDU8
52~DU82DUm8 !r

Pm~DU8!

Gn~DU8!
, ~40!

whereDUm8 is the value ofDU8 wherer has its mode and
Pm~DU8! andGn~DU8! are some arbitrary polynomials o
orderm andn:

Pm~DU8!5(
i50

m

ai~DU8! i , ~41!

Gn~DU8!5(
j50

n

bj~DU8! j , ~42!

where without loss of generalityam51. The solutions of Eq.
40 are therefore fully defined by the parametersDUm8 , $ai%
and $bj% which can be expressed1 in terms of the centra
potential energy momentsMn . Hence with the use o
physical-mathematical restrictions1 we can select the physi
cally acceptable distributions, fully defined by a limited s
of central moments, and then order them according to t
increasing complexity. We also showed that these poten
energy moments can be expressed as a function of the
choric heat capacity and a limited number of its temperat
derivatives1

M2~T!5kT2CV8 , ~43!
J. Chem. Phys., Vol. 106,
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M3~T!5~kT2!2S ]CV8

]T D
V

12~kT!2CV8 , ~44!

•••

Mk~T!

5MkS T,CV8 ,S ]CV8

]T D
V

,S ]2CV8

]T2 D
V

,•••,S ]k22CV8

]Tk22 D
V

D ,
~45!

whereMk5^~DU8!k& is thekth central potential energy mo
ment and we used the fact thatCV* 5 CV8 . If the functional
shape ofr is defined by the firstn central moments, from
Eqs. 36 and 45 it follows that

S*5S* S T,CV8 ,S ]CV8

]T D
V

,S ]2CV8

]T2 D
V

,••• ,S ]n22CV8

]Tn22 D
V

D .
~46!

D. The thermodynamic master equation

We define theintrinsic entropy functionas1

a5
S8

CV8
5
S*

CV8
1
k ln e

CV8

5a* S T,CV8 ,S ]CV8

]T D
V

,S ]2CV8

]T2 D
V

,••• ,S ]n22CV8

]Tn22 D
V

D
1
k ln e

CV8
~47!

with a* 5 S* /CV8 theconfinedintrinsic entropy function, and
using the general thermodynamic relation (]S8/]T)V
5 (]S* /]T)V 5 CV8 /T, we obtain thethermodynamic maste
equation1 ~TME!

CV8

T
5CV8 S ]a*

]T D
V

1a* S ]CV8

]T D
V

. ~48!

This is a completely defined differential equation where
unique, always existing solution gives the temperature
pendence of the ideal reduced isochoric heat capacityCV8 ,
once the values ofCV8 ,...,(]

n22CV8 /]T
n22)V at one arbitrary

temperatureT0 are known. Note that in Eqs. 47 and 48 w
used a generalized expression of the intrinsic entropy fu
tion, treating explicitly the possible confinement of the sy
tem, which reduces to the usual one whene51 and therefore
a5a* . From the solution of the master equation we c
obtain the confined ideal reduced entropy via Eq. 46, a
then the confined ideal reduced internal energy and free
ergy at fixed density via

U* ~T!5U8~T!5U8~T0!1E
T0

T

CV8 ~T!dT, ~49!

A* ~T!5U8~T!2TS* ~T!. ~50!

It is interesting to note that, since
No. 5, 1 February 1997
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1897Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
a*5
S*

CV8
52

S* /b

~]S* /]b!V
~51!

the confined intrinsic entropy function is the ratio betwe
the average slope ofS* versusb ~remembering thatS*50
when b50! and the instantaneous slope (]S* /]b)V . One
can moreover prove that1,2

lim
T→`

a* ~T!52
1

2
~52!

which implies that the~confined! ideal reduced thermody
namics of every system in the infinite temperature limit ten
to that of a Gaussian state, see section III A.

E. The conjugated pressure equation

From Eq. 46 it is moreover possible to obtain the co
fined ideal reduced pressure of the systemp*5p2p

* ref
as a

function of the temperature. In fact from the basic therm
dynamic relation

S ]S*

]V D
T

5S ]p*

]T D
V

~53!

we obtain

1

T S ]CV8

]V D
T

5S ]2p*

]T2 D
V

~54!

and hence in general

S ] f 0
]V D

T

5TS ]2p*

]T2 D
V

, ~55!

S ] f 1
]V D

T

5S ]2p*

]T2 D
V

1TS ]3p*

]T3 D
V

, ~56!

••• ~57!

S ] f l
]VD

T

5 l S ] l11p*

]Tl11 D
V

1TS ] l12p*

]Tl12 D
V

, ~58!

where

f 05CV8 ; f 15S ]CV8

]T D
V

; f l S ] lCV8

]Tl D
V

. ~59!

Therefore from Eqs. 46, 47 and 53 we finally obtain anot
closed differential equation at fixed density for the tempe
ture dependence of the confined ideal reduced pressure
conjugated pressure equation~CPE!

S ]p*

]T D
V

5Ta* ~T!S ]2p*

]T2 D
V

1CV8 ~T!S ]a*

]V D
T

~60!

or, equivalently, using Eqs. 46 and 54–59
J. Chem. Phys., Vol. 106,
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]T D
V

5(
l F S ]S*

] f l D
T, f l 8

S ] f l
]VD

T

G
5(

l F S ]S*

] f l D
T, f l 8

H l S ] l11p*

]Tl11 D
V

1TS ] l12p*

]Tl12 D
V

J G ~61!

with l 8Þ l and l50,...,(n22). Eq. 60 or 61 can be solve
once the firstn21 temperature derivatives of the confine
ideal reduced pressure are known at one arbitrary temp
tureT0. Its solution provides the temperature dependence
(]p* /]T)V for a system at fixed density and, if the confine
ideal reduced pressure is known at one temperature as
also the temperature dependence of the confined idea
duced pressure, enthalpy and Gibbs free energy via

p* ~T!5p* ~T0!1E
T0

T S ]p*

]T D
V

dT, ~62!

H* ~T!5U8~T!1p* ~T!V, ~63!

G* ~T!5A* ~T!1p* ~T!V. ~64!

Note that it is not necessary to explicitly solve the con
gated pressure differential equation if the temperature dep
dence ofA* is already known from the thermodynam
master equation, sincep* (T)52(]A* (T)/]V)T . As
A* (T) is an explicit function of T only, with
U08 ,CV08 ,(]CV08 /]T)V ,... as parameters~i.e., the values ofU8
etc. at the reference temperatureT0! depending only on the
volume, the resulting volume derivatives atT0 can be related
to p0* ,(]p0* /]T)V ,(]

2p0* /]T
2)V ,..., according to Eqs

55–59 ~see also the description of the Gamma and Inve
Gaussian states!.

Hence the knowledge of the potential energy distribut
function at one temperature, as well as the knowledge oe
and j fully defines the whole~confined! ideal reduced ther-
modynamics of a system at every temperature at fixed d
sity. Every potential energy distribution function therefo
defines a different statistical state of the system with a th
modynamical complexity given by the number of the he
capacity temperature derivatives, necessary to define the
responding type of potential energy distribution function.

F. Reduced thermodynamic properties

The reference states defined by Eqs. 10–15 can be
also to express the~confined! ideal reduced properties of a
ideal gas, see Fig. 1. Using Eq. 29 and Eqs. 30–32, con
ering that in an ideal gasF50, we obtain

Aid8 5Aid*1Aref8 5^c& id1kT ln^ebDc& id2kT ln e id , ~65!

U id8 5^c& id , ~66!

CV id8 5S ]^c& id
]T D

V

, ~67!
No. 5, 1 February 1997
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1898 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
Sid8 5Sid*1Sref8 52k ln^ebDc& id1k ln e id , ~68!

where the ‘‘id’’ subscript denotes the ideal gas condition
is important to note thate id 5 * id8* dx/*8dx is due only to
restrictions in the intramolecular configurational space,
plying always thatde id/dV50 and, apart from the case o
very large molecules with many intramolecular interactio
eid51. It should be noted moreover that in Eq. 65, sin
F50, the two expectation values only depend on the
tramolecular coordinates and therefore are also indepen
of the volume of the system. Hence

2S ]Aid8

]V D
T

5pid8 5pid2pref50 ~69!

which implies that the pressure of the ideal reference co
tion is identical to the ideal gas one. We can now express
reduced properties of a system, i.e., the thermodyna
properties with respect to the ideal gas condition, using
fact that usuallyeid51, as

Ar5A82Aid8 5^U8&2^c& id1kT ln
^ebDU8&

^ebDc& id
2kT ln e,

~70!

Sr5S82Sid8 52k ln^ebDU8&1k ln e1k ln^ebDc& id ,
~71!

Ur5U82U id8 5^U8&2^c& id , ~72!

CV
r 5CV82CV id8 5S ]^U8&

]T D
V

2S ]^c& id
]T D

V

, ~73!

pr5p82pid8 5p8, ~74!

Hr5H82H id8 5Ur1prV, ~75!

Gr5G82Gid8 5Ar1prV. ~76!

It is evident that if we consider small molecules wherec50,
the reduced thermodynamic properties are identical to
ideal reduced ones.

Hence the knowledge of the statistical state of a sys
and, whencÞ0, also of the corresponding ideal gas con
tion provides the complete reduced thermodynamics at e
temperature. We showed1,2 that statistical states defined b
relatively simple potential energy distribution function
~Gaussian and Gamma states! describe with high accurac
the gas and liquid-state reduced thermodynamics. In the
section we will derive in detail the properties of three diffe
ent statistical states: the Gaussian, the Gamma and th
verse Gaussian statistical state. Moreover, we will sum
rize the properties of the constant alpha approximati
which is valid for strongly confined Gamma or Inver
Gaussian states for a certain temperature interval.
J. Chem. Phys., Vol. 106,
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III. DESCRIPTION OF DIFFERENT STATISTICAL
STATES

A. Gaussian state

The symmetric Gaussian distribution corresponds to$m
50, n50% in the generalized Pearson system, Eq. 40. T
distribution is given by

r~DU8!5
1

A2pb0
expH 2

DU82

2b0
J ~77!

with b05M2 . Using the fact that the moment generatin
function of a Gaussian is simply1,9,19

GDU8~b!5expH b0b2

2 J ~78!

and expressingM2 in terms ofCV8 ~Eq. 43!, we obtain for the
confined intrinsic entropy function

a*52
1

2
. ~79!

The thermodynamic master equation~TME!, Eq. 48, there-
fore reduces to

S ]CV8

]T D
V

522
CV8

T
~80!

the solution of which provides for a confined Gaussian sta1

a* ~T!52
1

2
, ~81!

CV8 ~T!5CV08 S T0T D 2, ~82!

S8~T!52
1

2
CV08 S T0T D 21k ln e, ~83!

U8~T!5U081T0CV08 S 12
T0
T D , ~84!

and

A8~T!5U081T0CV08 S 12
T0
2TD2kT ln e, ~85!

whereU08 andCV08 are the values ofU8 andCV8 at an arbi-
trary reference temperatureT0.

Since a*521/2, and hence (]a* /]T)V50 and
(]a* /]V)T50 it follows that (](]a* /]T)V/]V)T
5(](]a* /]V)T/]T)V50. Therefore we see that if at on
density the statistical state of a system is an exact Gaus
one, for all other densities it must be Gaussian too. T
result, obvious for a Gaussian state, is true in general
each statistical state, implying that the thermodynamic co
plexity is conserved at every density.

Since (]a* /]V)T50, the conjugated pressure equati
~CPE!, Eq. 60, is in this case a simple first order different
equation
No. 5, 1 February 1997
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TABLE I. The T→` limits of the confined ideal reduced properties for different states. Values between square brackets denote limits of ideal
properties.

Stat. mech. Gaussian G1/G2 IG1/IG2

CV8 0 0 0 0
S* [S8] 0 @k ln e# 0 @k ln e# 0 @k ln e# 0 @k ln e#
U8 U* ref U081T0CV08

U081
T0CV08

12d0
U081

T0CV08

g0
S 1

A122g0

21D
A* [A8] U* ref @`# U081T0CV08 @`#

U081
T0CV08

12d0
@`# U081

T0CV08

g0
S 1

A122g0

21D @`#

p* 2dU* ref/dV 2d(U081T0CV08 )/dV
2dSU081

T0CV08

12d0
DYdV 2dSU081

T0CV08

g0
S 1

A122g0

21D DY dV

a* @a#
2
1

2
@2`# 2

1

2
@2`# 2

1

2
@2`# 2

1

2
@2`#

d 0 0 0 0
g 0 0 0 0
e

ust
ite
ee
S ]p*

]T D
V

52
1

2
TS ]2p*

]T2 D
V

. ~86!

The solution is

p* ~T!5p0*1T0S ]p0*

]T D
V

S 12
T0
T D , ~87!

where p0* and (]p0* /]T)V are the values at the referenc
temperatureT0. The ideal reduced pressurep8(T) follows
from Eq. 87, using p85p*1Tj and (]p8/]T)V
5(]p* /]T)V1j ~Eq. 33!:

p8~T!5p081T0H S ]p08

]T D
V

2jJ S 12
T0
T D 1j~T2T0!.

~88!
J. Chem. Phys., Vol. 106,
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The T→` and T→0 limits of the various thermody-
namic properties are summarized in Tables I and II. It m
be noted that only for the confined properties the infin
temperature limits are always physically meaningful, s
also section IV B.

B. Gamma state

The Gamma distribution, given by1,2,9

r~DU8!5
b1~1/b1

2!b0 /b1
2

G~b0 /b1
2!

~b01b1DU8!b0 /b1
2
21

3expH 2
b01b1DU8

b1
2 J ~89!
.
TABLE II. The T→0 ~or T→T
*

! limits of ~confined! ideal reduced properties for different states, whereT
*
~G2! andT

*
(IG2! are given by Eqs. 113 and 138

a* ~G2! andA* (IG2! are obtained by settinge51 and the sign of thep* limits for the Gaussian,G2 and IG2 states depends on the sign of]p0* /]T or
Bi* , respectively.

Class. stat. mech.
T→0

Gaussian
T→0

G1

T→0
G2

T→T
*

IG1

T→0
IG2

T→T
*

CV8 ~in!finite ` CV08

d0
2

` ` `

S8/S* 2` 2` 2` 2` 2` 2`
U8 Umin8 2`

U082
T0CV08

d0

2`
U082

T0CV08

g0

2`

A8/A* Umin8 2`
U082

T0CV08

d0

2`
U082

T0CV08

g0
U082

T0CV08

g0
S12

T*
A122g0

T0g0
D 2kT

*
ln e

p8/p* 2dUmin8 /dV 6`
2dSU082

T0CV08

d0
DYdV

6`
2dSU082

T0CV08

g0
DYdV

6`

a/a* 2` or <21
2
1

2

2` k ln e

CV08

d0
2

~12d0!
2

22 0

d 2 0 1 2` 3

4

2`

g 2 0 2

3

2` 1

2

2`
No. 5, 1 February 1997
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1900 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
with G~•! the Gamma function,20 b05M2 and
b15M3/(2M2), corresponds to the$m50, n51% solution of
the generalized Pearson system, Eq. 40. The moment ge
ating function of this Gamma distribution is1,9,19

GDU8~b!5expH 2b
b0
b1

J ~12bb1!
2b0 /b1

2
~90!

and expressing the central momentsM2 andM3, appearing
in b0 andb1, in terms ofCV8 and (]CV8 /]T)V ~Eqs. 43–44!,
the confined intrinsic entropy function is in this case giv
by1

a*5
1

d
1

1

d2
ln~12d! ~91!

with

d5
M3

2kTM2
5
T~]CV8 /]T!V

2CV8
11. ~92!

The expression ofa* , combined with the general ther
modynamic master equation~Eq. 48!, yields

TS ]a*

]T D
V

1~2d21!a*2150, ~93!

where (]a* /]T)V5(da* /dd)(]d/]T)V and (da* /dd) fol-
lows from Eq. 91. After straightforward algebra we obtain
a simple form of the TME

S ]d

]TD
V

52
d~12d!

T
. ~94!

The solution providesd(T), which can be expressed in term
of CV8 and (]CV8 /]T)V . Hence this gives rise to a new di
ferential equation inCV8 , the solution of which yields for a
confined Gamma state1,2

d~T!5
T0d0

T~12d0!1T0d0
, ~95!

a* ~T!5
1

d~T!
1

1

d2~T!
ln$12d~T!%, ~96!

CV8 ~T!5CV08 S d~T!

d0
D 2, ~97!

S8~T!5
CV08

d0
2 @d~T!1 ln$12d~T!%#1k ln e, ~98!

U8~T!5U081~T2T0!CV08
d~T!

d0
, ~99!

A8~T!5U082
T0CV08

d0
2
TCV08

d0
2 ln$12d~T!%2kT ln e,

~100!

with d0 the value ofd at T0. Note that (]CV8 /]T)V is always
negative, like in the Gaussian state.

Since for a Gamma state the pressure differential eq
tion ~Eq. 60! is very complicated, it is more convenient
obtain the confined ideal reduced pressure via the volu
J. Chem. Phys., Vol. 106,
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derivative ofA* (T), using Eq. 100. Thus, with the usua
notation where (]U08/]V)T etc. are the derivatives evaluate
at T0

p* ~T!52F ]A*

]U08
S ]U08

]V D
T

1
]A*

]CV08 S ]CV08

]V D
T

1
]A*

]d0
S ]d0

]V D
T

G , ~101!

where from general thermodynamic relations we have

S ]U08

]V D
T

5T0S ]p0*

]T D
V

2p0* , ~102!

S ]CV08

]V D
T

5T0S ]2p0*

]T2 D
V

, ~103!

and

S ]d0
]V D

T

5
1

CV08 S da0*

dd0
D 21F S ]p0*

]T D
V

2a0*T0S ]2p0*

]T2 D
V

G
~104!

as follows from the CPE atT0, with (da0* /dd0) following
from Eq. 91. The derivatives]A* /]U08 , ]A* /]CV08 and
]A* /]d0 follow from Eq. 100. After tedious but straightfor
ward algebra we finally obtain

p* ~T!5p0*1B0*1B1*
T

T~12d0!1T0d0

1B2* S TT0D lnH T~12d0!

T~12d0!1T0d0
J , ~105!

where

Bi*5Ai1T0S ]p0*

]T D
V

1Ai2T0
2S ]2p0*

]T2 D
V

i50,1,2 ~106!

with

A0152
2~12d0!ln~12d0!1d0

D
,

A025
1

d0

~12d0!ln~12d0!1d0
D

,

A115
d0
D
, A1252

1

d0

ln~12d0!1d0
D

,

A215
2~12d0!

D
, A225

1

D
, ~107!

and

D52~12d0!ln~12d0!1d0~22d0!. ~108!

The ideal reduced pressurep8(T) follows from Eq. 105,
using p85p*1Tj, (]p8/]T)V5(]p* /]T)V1j and
(]2p8/]T2)V5(]2p* /]T2)V ~Eq. 33!:
No. 5, 1 February 1997
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1901Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
p8~T!5p081B01B1

T

T~12d0!1T0d0

1B2S TT0D lnH T~12d0!

T~12d0!1T0d0
J 1jT, ~109!

where

B05A01T0S ]p08

]T D
V

1A02T0
2S ]2p08

]T2 D
V

1A03T0j, ~110!

Bi5Ai1T0H S ]p08

]T D
V

2jJ 1Ai2T0
2S ]2p08

]T2 D
V

i51,2

~111!

and

A0352
d0~12d0!

D
. ~112!

In this way the temperature behavior of the~confined! ideal
reduced pressure, enthalpy and Gibbs free energy is
tained.

As pointed out previously,2 since the Gamma distribu
tion has a limited domain, it can be defined either from2`
to some upper limit or from some under limit to1`. The
first case corresponds to a distribution with an asymme
tail on the left~defining the negative Gamma stateG2 , with
d,0 and 21

2,a*,0!, the second case corresponds to
asymmetric tail on the right~defining the positive Gamma
stateG1 , with 0,d,1 anda*,21

2!. Note that ford50 the
distribution is a Gaussian. In Ref. 2 we describe the prop
ties of and differences between the two Gamma state
detail. Basically, theG1 state is physically acceptable in th
whole semi-classical temperature range, whereas theG2 state
must be considered as an approximation to a more com
cated statistical state within some temperature interval. O
relevant difference is the low temperature limit: while aG1

state may be extrapolated toT→0 ~although of course in tha
limit the semi-classical description is not valid any more, s
section IV B!, for a G2 state there exist a temperature

T*52T0d0 /~12d0!.0 ~113!

at which the solution encounters a singularity. For both sta
the different temperature limits for various thermodynam
properties are given in Tables I and II and discussed in s
tion IV B.

C. Inverse Gaussian state

The Inverse Gaussian~IG! distribution, given by21,22

r~DU8!5A c1
2p

~c01DU8!23/2

3expH 2
c1
2c0

2

DU82

~c01DU8! J ~114!

with c053M2
2/M3 andc15c0

3/M2 corresponds to a degen
erated$m51, n52% solution of the generalized Pearson sy
tem. The full $m51, n52% solution is characterized by th
J. Chem. Phys., Vol. 106,
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first five central moments, but with a relation between t
parameters the actual number of necessary moments red
to three and the distribution reduces to Eq. 114.

Using the fact that the moment generating function
this distribution is given by21,23

GDU8~b!5expH 2bc01
c1
c0

S 12A12
2c0

2

c1
b D J

~115!

and using the expressions forM2 andM3 ~Eqs. 43–44!, we
obtain for the confined intrinsic entropy function

a*5
1

g
2

1

g2 ~12A122g!, ~116!

where

g5
M3

3kTM2
5
2

3 S T~]CV8 /]T!V

2CV8
11D 5

2

3
d ~117!

with d the characteristic quantity of the Gamma state~see
Eq. 92!. The similarity between the expressions ofa* for the
IG distribution ~Eq. 116! and the Gamma distribution~Eq.
91! can be seen by expanding both expressions in a Ta
series aroundd50, obtaining

a* IG52
1

2
2

d

3
2

5

18
d22••• , ~118!

a* G52
1

2
2

d

3
2

d2

4
2••• . ~119!

Hence for smalld ~i.e., for not too asymmetric distributions!
both IG and Gamma distributions will give almost identic
results.

The temperature dependence of the various thermo
namic properties can be obtained from the TME, Eq.
written in the form

TS ]a*

]T D
V

1~3g22!a*2150, ~120!

where (]a* /]T)V5(da* /dg)(]g/]T)V and (da* /dg) fol-
lows from Eq. 116. After straightforward algebra we final
obtain as a simple form of the TME

S ]g

]TD
V

52
g~122g!

T
~121!

which providesg(T). Since g is a function of CV8 and
(]CV8 /]T)V and, Eq. 117, we have a new differential equ
tion in CV8 , yielding for a confined IG state

g~T!5
T0g0

T~122g0!12T0g0
, ~122!

a* ~T!5
1

g~T!
2

1

g2~T!
~12A122g~T!!, ~123!
No. 5, 1 February 1997
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1902 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
CV8 ~T!5CV08 S T0T D 1/2S g

g0
D 3/2, ~124!

S8~T!5CV8 ~T!H 1

g~T!
2

1

g2~T!
~12A122g~T!!J

1k ln e, ~125!

U8~T!5U081
T0CV08

g0
SA T

T0

g

g0
21D , ~126!

and

A8~T!5U082
T0CV08

g0
1
TCV08

g0
2 SAT0

T

g0

g
2A122g0D

2kT ln e. ~127!

Note that, similar to the Gaussian and Gamma sta
(]CV8 /]T)V is always negative.

Since, just as for a Gamma state, the pressure differe
equation is very complicated, also in this case it is m
convenient to obtain the ideal reduced pressure directly
the volume derivative ofA* (T), using Eq. 127. Thus with
Eqs. 102 and 103, and (]g0/]V)T via the CPE atT0, we
obtain in a similar way

p* ~T!5p0*1B0*1B1* S TT0D ~A122g0~12T0 /T!

2A122g0!1B2* S TT0D S 12T0 /T

A122g0~12T0 /T!

2
1

A122g0
D , ~128!

where

Bi*5Ai1T0S ]p0*

]T D
V

1Ai2T0
2S ]2p0*

]T2 D
V

i50,1,2, ~129!

with

A015
2A122g013g022

D
,

A0252
1

g0

A122g01g021

D
, ~130!

A1152
2A122g0

D
, A125

1

g0

A122g021

D
, ~131!

A2152
g0A122g0

D
,

A2252
1

g0

~12g0!A122g012g021

D
, ~132!

and

D5~g022!A122g023g012. ~133!
J. Chem. Phys., Vol. 106,
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The ideal reduced pressurep8(T) follows from Eq. 128,
using p85p*1Tj, (]p8/]T)V5(]p* /]T)V1j and
(]2p8/]T2)V5(]2p* /]T2)V ~Eq. 33!:

p8~T!5p081B01B1S TT0D ~A122g0~12T0 /T!

2A122g0!1B2S TT0D S 12T0 /T

A122g0~12T0 /T!

2
1

A122g0
D 1jT, ~134!

where

B05A01T0S ]p08

]T D
V

1A02T0
2S ]2p08

]T2 D
V

1A03T0j, ~135!

Bi5Ai1T0H S ]p08

]T D
V

2jJ 1Ai2T0
2S ]2p08

]T2 D
V

i51,2

~136!

and

A0352
g0A122g0

D
. ~137!

In this way the temperature behavior of the~confined! ideal
reduced pressure, enthalpy and Gibbs free energy is
tained.

Moreover, there exist also negative and positive
states~IG2 and IG1!. The IG2 state is characterized by
finite energy upper limit of the distribution with2 1

2,a*,0
andg,0. The IG1 state is characterized by a finite ener
lower limit of the distribution anda*,21

2, 0,g,3/4.
Clearly, for g50 the distribution is a Gaussian. In the IG2

state there is a temperature

T*522g0T0 /~122g0!.0, ~138!

where the solution in the temperature encounters a singu
ity. Hence also the IG2 state must be regarded as an appro
mation to a more complex statistical state, valid within so
temperature range. For both states the different tempera
limits for the various thermodynamic properties are given
Tables I and II and discussed in section IV B.

D. Constant alpha approximation

In the case of a strongly confined Gamma~or Inverse
Gaussian! state, it turns out thata(T) is almost constant ove
a large temperature interval.1,2 These strongly confined state
correspond to typical liquid densities. In that case

S ]a

]TD
V

5S ]a*

]T D
V

2
k ln e

CV
2~T!

S ]CV8

]T D
V

, ~139!

where the first term on the right-hand side is positive fo
G1 ~or IG1! state and the second term negative~since
No. 5, 1 February 1997
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1903Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
(]CV8 /]T)V , 0 ande,1!. For these strongly confined state
both terms approximately cancel and hence (]a/]T)V>0, so
a(T)>a(T0)5a0 , reducing the TME to

S ]CV8

]T D
V

5
1

a0

CV8

T
~140!

yielding the constant alpha equations1,2

CV8 ~T!5CV08 S TT0D
l0

, ~141!

S8~T!5
CV08

l0
S TT0D

l0

, ~142!

U8~T!5U082
T0CV08

l011 H 12S TT0D
l011J , ~143!

A8~T!5U082
T0CV08

l011 H 1

l0
S TT0D

l011

11J , ~144!

with

l051/a0,0. ~145!

Furthermore, since in the range of typical liquid den
ties (]a/]T)V>0, it follows that also
(](]a/]T)V/]V)T5(](]a/]V)T/]T)V>0. Hence the first
derivative ofa in V is approximately temperature indepe
dent, and we obtain as conjugated pressure equation~Eq.
60!, using Eq. 141 forCV8 (T):

S ]p8

]T D
V

5
T

l0
S ]2p8

]T2 D
V

1CV08 S ]a0

]V D
T
S TT0D

l0

~146!

yielding

p8~T!5p081B0H S TT0D
l011

21J 2B1S TT0D
l011

lnS TT0D ,
~147!

where

B05
T0

l011 S ]p08

]T D
V

1
T0CV08 l0

~l011!2
S ]a0

]V D
T

, ~148!

B15
T0CV08 l0

l011 S ]a0

]V D
T

. ~149!

On the other hand, using the CPE atT0, we can express
(]a0/]V)T in terms of (]p08/]T)V and (]2p08/]T

2)V , giving

B05
2l011

~l011!2
T0S ]p08

]T D
V

2
T0
2

~l011!2
S ]2p08

]T2 D
V

, ~150!

B15
l0T0
l011 S ]p08

]T D
V

2
T0
2

l011 S ]2p08

]T2 D
V

. ~151!

Both sets of expressions ofB0 andB1 are completely equiva
lent. However, it seems from a practical point of view, th
the latter are more useful, since the experimental value
(]2p08/]T

2)V appear to be more accurate than the values
(]a0/]V)T , see also section IV D.
J. Chem. Phys., Vol. 106,
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Note that the approximation is valid for the phase spa
as a whole. Since the constant alpha approximation is a l
approximation only~although for liquids applicable over
large temperature range, especially for the entropy
Helmholtz free energy1,2!, theT→0 andT→` limits are not
given, as they are in principle irrelevant~for every confined
system the infinite temperature limit ofa52`, see section
IV B !.

IV. DISCUSSION AND RESULTS

A. Multiphase systems

The basic derivation of the theory~section II! does not
have any assumption on the phase condition of the sys
being then valid even for macroscopic multi-phase syste
at fixed overall density. In fact, such systems can also
considered as a very large collection of identical independ
subsystems~multi-phase elementary systems!, each contain-
ing all the phases present in the overall system. It is evid
hence that we can still apply the central limit theorem
macroscopic multi-phase systems just as for single-ph
ones. However, it must be noted that the potential ene
distribution required to model a multi-phase system,
though uninormal, is likely to be much more complex th
the one needed for a single phase condition. This implies
only very sophisticated solutions of the generalized Pear
system can be used as good descriptions of a multi-ph
statistical state. We can investigate this point, considerin
biphasic system~the generalization to more phases
straightforward!.

In general in a macroscopic system consisting of t
macroscopic phases we can express the total Helmholtz
energy as the sum of the free energies of the two phase

A52kT ln Q52kT ln QI2kT ln QII5AI1AII ,
~152!

whereAI andAII are the free energies of phase I and II a
QI and QII the corresponding partition functions. We ca
express in the usual way also the ideal reduced free energ

A85A2Aref5kT ln^ebU8&2kT ln e ~153!

or, equivalently, using Eq. 152 and the definition of the ide
reference state partition function, Eq. 11, as

A85AI2AI ref1AII2AII ref1AI ref1AII ref2Aref

5AI81AII81kT ln
~V/N!N

~VI /NI!
NI~VII /NII !

NII
, ~154!

whereAJ ref , AJ8 , VJ andNJ are the ideal reference state fre
energy, ideal reduced free energy, volume and numbe
molecules of phaseJ. V5VI1VII and N5NI1NII are the
volume and number of molecules of the total system. E
pressing the ideal reduced free energy of each phase via
22 and 29 we have

A85kT ln^ebU8& I2kT ln e I1kT ln^ebU8& II2kT ln e II

1kT ln
~V/N!N

~VI /NI!
NI~VII /NII !

NII
~155!
No. 5, 1 February 1997
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1904 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
and hence combining with Eq. 153 we finally obtain

^ebU8&5^ebU8& I^e
bU8& IIS ē~V/N!

ē I~VI /NI!
D NIS ē~V/N!

ē II~VII /NII !
D NII,

~156!

where

ē5e1/N, ~157!

the positive realNth root of e, is the overallmolecular
phase-space fraction, and

ē I5e I
1/NI, ~158!

ē II5e II
1/NII, ~159!

are the molecular phase-space fractions of the two pha
From Eq. 156 it is evident that the moment generating fu
tion of a biphasic system has a complexity, which is in ge
eral ~much! higher than the complexity of the moment ge
erating functions of its single phases, being even m
complex than the product of the two.

The fact that the moment generating function of a m
roscopic biphasic system is not identical to the product of
single-phase moment generating functions, although
overall partition function can be factorized~Eq. 152!, means
that the potential energy distributions of the two phases
not completely statistically independent of each other. T
residual correlation between the two subparts is due to
fact that we have considered two subsystems with differ
density, while this correlation would disappear if we sub
vide the whole system into parts of identical density a
composition.

In fact in the latter case, now denoting withQI andQII
the partition functions of two identical macroscopic halves
the whole system, each being multiphasic if the whole s
tem is multiphasic, since in this case

ē I5 ē II5 ē, ~160!

VI5VII5
1

2
V, ~161!

NI5NII5
1

2
N, ~162!

and

^ebU8& I5^ebU8& II5G~b!. ~163!

Eq. 156 reduces to

^ebU8&5^ebU8& I^e
bU8& II5G~b!2. ~164!

The last equation shows that if we subdivide the whole s
tem in this way, the moment generating function is giv
exactly by the product of the ones of its subparts, imply
that the potential energy distributions of the subparts are n
completely statistically independent. Hence, subdividing f
ther each subpart into two identical halves and so forth u
we reach the size of a single~multiphase! elementary system
J. Chem. Phys., Vol. 106,
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~the smallest thermodynamic subsystem that can be con
ered fully independent from the rest!, from Eqs. 163 and 164
we finally obtain

^ebU8& I5^ebU8& II5g~b!n/2, ~165!

^ebU8&5g~b!n/2g~b!n/25g~b!n, ~166!

whereg~b! and n are the moment generating function an
the number of the elementary systems contained within
whole system andn→` in a macroscopic condition. Eqs
165 and 166 show that the moment generating function
every macroscopic system is always fully defined by the m
ment generating function of the corresponding~multi-phase!
elementary system.

B. Temperature limits

In this section we will derive from general statistic
mechanical considerations the zero and infinite tempera
limits of various thermodynamic properties. We will tha
show that in the infinite temperature limit the statistical sta
described in section III are always consistent with these g
eral results, and in the zero temperature limit the statist
states which can be considered completely physically p
sible even close toT50 ~the G1 and IG1 states, where the
potential energy has a lower limit! are consistent with clas
sical statistical mechanics.

1. Infinite temperature limit

We can define in general from Eq. 22 the confined id
reduced free energy as

A*5kT ln^ebU8&52kT ln
*8* e2bU8dx

*8* dx

52kT ln^e2bU8&* ref ~167!

which also implies

A*5U* ref2kT lnH 11M2*
ref b2

2
2M3*

ref b3

3!
1•••J ,

~168!

where Mn*
ref is the nth central potential energy momen

evaluated in the confined ideal reference ensemble
U* ref5^U8&* ref

is the corresponding average potential e
ergy, which are clearly temperature independent. Since
every temperatureA* is finite, it follows that all the mo-
ments in Eq. 168, which are identical to the infinite tempe
ture ones of the system, are finite as well. Therefore

lim
T→`

U85U* ref, ~169!

lim
T→`

CV85 lim
T→`

M2*
ref

kT2
50, ~170!

and by expanding the logarithm in Eq. 168

lim
T→`

A*5U* ref, ~171!

and hence
No. 5, 1 February 1997
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1905Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
lim
T→`

TS*5 lim
T→`

S*50. ~172!

So, considering that (]S* /]T)V 5 CV8 /T andCV8 > 0 it fol-
lows thatS*<0. Moreover,1,2

lim
T→`

a*52
1

2
~173!

and then

lim
T→`

a5 lim
T→`

a*1 lim
T→`

k ln e

CV8 ~T!
52`. ~174!

From the definition ofd we also have

lim
T→`

d5 lim
T→`

M3*
ref

2M2*
refkT

50, ~175!

and hence, usingg5~2/3!d, we find limT→` g50. Finally,
the infinite temperature limit of the confined ideal reduc
pressurep*52(]A* /]V)T is

lim
T→`

p*52
dU* ref

dV
, ~176!

which is in general finite, so limT→` p85` for j.0 ~see Eq.
33!.

From Table I it is evident that all the statistical stat
described in section III are consistent with these genera
finite temperature limits. If moreover the confinement is e
act ~i.e., really temperature independent! even the full ideal
reduced temperature limits~given between square brackets
Table I! are completely correct.

2. Zero temperature limit

For a pure classical system even for temperatures v
close to zero, we can express the confined ideal reduced
energy as

A*52
1

b
ln

*8* e2bU8dx

*8* dx
. ~177!

Therefore, since24 limb→`*8*exp$2bU8%dx/*8*dx50, we
can use L’Hospital’s rule20 to obtain

lim
b→`

A*5 lim
b→`

U85Umin8 , ~178!

with Umin8 the minimum possible potential energy, whic
must be finite, and hence

lim
T→0

S*5 lim
T→0

U82A*

T

5 lim
T→0

F ^U8&2Umin8

T
1k ln

*8* e2b~U82Umin8 !dx

*8* dx
G

5 lim
T→`

FCV81k ln
*8* e2b~U82Umin8 !dx

*8* dx
G . ~179!

In the last expression the last term clearly tends to2`, and
therefore ifCV8 tends to a finite valueS* ~and henceS8! will
J. Chem. Phys., Vol. 106,
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tend to2`. If CV8 tends to1`, the entropy will tend to2`
as well, since applying L’Hospital’s rule again to the fir
line of Eq. 179 we have

lim
T→0

S*5 lim
T→0

@CV81S* #. ~180!

Remembering thatS*<0 this last equation implies that i
CV8→ 1 `, bothS* andS8 must tend to2`. Hence

lim
T→0

a*5 lim
T→0

a<21. ~181!

Note that if the limit ifCV8 is finite, a* anda must tend to
2`. Finally, from Eq. 178 it follows that

lim
T→0

p*5 lim
T→0

p852
dUmin8

dV
50, ~182!

where in the last equation the volume derivative would n
be zero in the very unusual case where the overall volum
smaller than the volume of the classical crystal where all
atoms are at the positions of their overall lower energy lim

The requirement thatUmin8 is finite, implies that at very
low temperature only theG1 and IG1 states can be used as
proper description of the system. These states are consi
with classical statistical mechanics, even in the zero temp
ture limit, see Table II. The Gaussian state, for example, d
not fulfill Eq. 181. For theG2 and IG2 states, the zero tem
perature limits are even impossible, because of the occura
of a singularity atT

*
, given by Eqs. 113 and 138. If in th

low temperature regime the system is still within an exactG1

or IG1 state, Eq. 182 yields an extra relation betweend0 ~or
g0!, p0* , (]p0* /]T)V and (]2p0* /]T

2)V of the form

p0*1A01T0S ]p0*

]T D
V

1A02T0
2S ]2p0*

]T2 D
V

50. ~183!

However, for real systems this relation cannot be used,
cause of the emerging quantum character at low tempera

It is also important to note that in the zero temperatu
limit a classical system does not have to converge to a
monic one. In fact, this harmonic condition is obtained wh
both the overall energy lower limit is really an energy min
mum ~with continuous and zero forces! and the potential
energy close to the minimum can be described by a sec
order expansion~with non-zero continuous force deriva
tives!. It is obvious that these conditions are not fulfilled b
every type of potential energy function, implying that the
is no general rule for the zero temperature limit of the h
capacity, which can be even infinite, as for the IG1 state.

C. Phase-space confinement

A very simple model for the phase-space confinemen
introduced in Eq. 17 is excluded volume due to ‘‘hard bod
interactions. If, because of the strong Pauli repulsions
close contact, it is possible to define for~almost! spherical
molecules like water an interparticle distancesHS52rHS at
which the two-particle interaction energy is virtually infinit
No. 5, 1 February 1997
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1906 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
in the temperature range of interest, the confined ideal re
ence state can be described as a hard sphere~HS! system.13,25

Using the Carnahan-Starling equation of state~EOS!,26

pHS5rNkTF11h1h22h3

~12h!3 G ~184!

with pHS the pressure,h5vrN , rN the number density
v5psHS

3 /6 the hard-sphere volume per molecule andsHS the
hard-sphere diameter, we obtain25 for the excess Helmholtz
free energy, Eq. 16

Aref8 52NkTF3h224h

~12h!2 G52NkT ln ēHS, ~185!

whereēHS 5 eHS
1/N is the hard sphere phase-space fractionper

molecule. Hence

ēHS5expH 3h224h

~12h!2 J ~186!

and

jHS5Nk
d ln ēHS
dV

52
Nk

V F2h224h

~12h!3 G ~187!

which is always positive sinceh,1. Within this model,p* is
the pressure of the system with respect to a HS fluid at
same temperature and density. We will show that for wa
Eq. 186 provides a good description of the experimenta
observed phase-space fractions. Note that since water
not have any intramolecular interactions~c50!, the reduced
properties are identical to the ideal reduced ones.

In Ref. 2 we presented for water values ofē andd for a
confined Gamma state at various liquid densities, calcula
from experimental values ofSr , CV

r and]CV
r /]T ~i.e., d was

calculated fromCV
r and]CV

r /]T, Eq. 92, yieldingS* , Eq. 98,
and henceē 5 exp$(Sexp

r 2 S* )/Nk%). Values ofē were evalu-
ated at two different temperatures~T0 and 653 K! and were
consistent within the accuracy, indicating that a confin
Gamma state is a very good description of the real phys
state at those liquid conditions. We now extended these
culations atT0 to the low-density region as well, see Fig.
~open diamonds!. Clearly, apart from some noise, we see
gradual decrease ofē with the density, i.e., an increasin
confinement.
J. Chem. Phys., Vol. 106,
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In order to reduce the noise, we calculated values oē
andd0 for all the densities by least-square fitting Eq. 98
the experimental reduced entropy data, denoted byēfit and
d0 fit. We feel that this procedure is allowed, since the te
perature at whichē is evaluated does not seem to affect t
value. Results are given in Fig. 2~filled diamonds! and Table
III. From the figure and the table it is clear that the values
ē andd0 obtained from the entropy fit are in good agreeme
with the previous values~ēT0 and ē653!, based on]CV

r /]T.
We then fitted a HS confinement curve~Eq. 186! through the
data, yieldingsHS52.70 Å, see Fig. 2. In the table we als
give theseēHS values and the correspondingd0 HS values,
obtained by solving d0 HS from S0 exp

r 2 Nk ln ēHS
5 CV0

r @1/d0 HS1 1/d0 HS
2 ln(12 d0 HS)#. All the data are con-

sistent within the experimental accuracy, implying amo
others that thed0 HS values in fact can be considered as ‘‘e
act’’ values. Especially from the values ofd0 fit andd0 HS in
the liquid regime, it is clear that, increasing the density,
energy distribution gradually changes from a left-hand
~Gamma! distribution, via a Gaussian~37 mol/dm3! into a
right-handed~Gamma! distribution, as already stated in Re

FIG. 2. Molecular phase-space fractionē of water as a function of density
Legend: from entropy fit~l!, from values of]CV0

r /]T at T0, partly from
Ref. 2 ~L!, other values from Ref. 2 atT0 ~1! and 653 K~3! and HS
confinement, Eq. 186, usingsHS52.70 Å ~—!.
TABLE III. ē andd0 parameters for liquid water.

rN
~mol/dm3!

T0
~K! ēT0

a ē653
b ēfit

c ēHS
d d0

a d0 fit
c d0 HS

e

30.38 653.0 0.42~0.37! 0.37 0.33 0.37 20.13~20.23! 20.49 20.27
37.24 613.0 0.21~0.35! 0.32 0.28 0.28 20.26~0.22! 0.05 0.02
42.69 563.0 0.24~0.33! 0.26 0.26 0.21 0.30~0.44! 0.35 0.22
49.00 513.0 0.15~0.24! 0.20 0.22 0.15 0.34~0.49! 0.49 0.31
55.32 313.0 0.09~0.14! ;0.22 0.11 0.09 0.49~0.57! 0.49 0.49

aFrom Ref. 2, evaluated atT0 with two different methods to obtain]CV0
r /]T.

bFrom Ref. 2, evaluated atT5653 K.
cFrom least-square fitting Eq. 98 to experimental entropy data.
dFrom least-square fitting Eq. 186 toēfit values.
eUsing ēHS values, see text.
No. 5, 1 February 1997
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1907Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
2. Another implication is the fact that at least for water t
G2→G1 transition of the effective Gamma states~i.e., ap-
proximate Gamma state descriptions without confineme!2

at low density is for the greater part due to the HS confi
ment; using the confinement the energy distribution is le
handed over the whole temperature range, see also se
IV D.

In Table IV we present some radii which are an indic
tion of the possible HS radius of water. All values are ve
close to our value ofrHS51.35 Å, implying that our value is
physically meaningful. Also Pierotti41 points out that various
methods, including the Scaled Particle Theory, yield an
erage radius of;1.35 Å. The results based on theb param-
eter of the different cubic equations of state~basically modi-
fied van der Waals equations13,27!, like the Redlich-Kwong,28

Soave29 and Peng-Robinson30 EOS, are perhaps somewh
fortuitous, since it is known that they are not very suited
polar molecules.27 However, theb parameters are calculate
via critical properties~the critical temperatureTc and pres-
surepc! and the relation betweenb and the HS volume is
valid in the low density limit, where these EOS still might b
reasonable.

At this point it must be stressed that there is in fac
~rather narrow! window of ē andd0 values, which are con
sistent with the experimental data. However, within the
curacy of the experimental data, it is very difficult to disti
guish between these values. Moreover, the values of
example]CV

r /]T are ~probably! much affected by the spe
cific choice of the EOS used to collect and present all the
~often inconsistent! experimental data in consistent therm
dynamic tables. So from a pragmatic point of view, it
much better to use a HS model for theē and j values, and
then to calculated0 HS or g0 HS values, based on the he
capacity and entropy at one temperatureT0 only.

For larger molecules lacking an almost spherical shap
simple HS description may not be sufficient. For no

TABLE IV. Molecular ~hard sphere! radii of water.

Method r ~Å!

HS confinement fit onē a 1.35
HS gOO(r )

b 1.27

1

2
sLJ

c
1.32

b parameter van der Waals EOsd 1.44
b parameter Redlich-Kwong/Soave EOSe 1.28
b parameter Peng-Robinson EOSf 1.24
van der Waals radius oxygeng 1.40

aFit of Eq. 186 on experimentalē values, see text and Fig. 2.
bBy fitting the height of the first peak of the oxygen-oxygen radial distrib
tion function ~RDF! at 300 K and 1.0 g/ml~Ref. 5! to the HS RDF~Ref.
39!.
cFrom the Lennard-Joness parameter, based on viscosity data~Ref. 27!.
dFrom the b parameter of the van der Waals EOS~Ref. 27!, where
b5(1/8)RTc/pc and using the relationb52psHS

3 /3 ~Ref. 13!; the critical
parametersTc andpc were taken from Ref. 36.
eIdem via the Redlich-Kwong or Soave EOS, whereb50.08664RTc/pc
~Ref. 27!.
fIdem via the Peng-Robinson EOS, whereb50.07780RTc/pc ~Ref. 27!.
gReference 40.
J. Chem. Phys., Vol. 106,

Downloaded¬26¬Mar¬2008¬to¬151.100.52.54.¬Redistribution¬subject¬
-
-
ion

-

-

r

-

or

al

a
-

spherical molecules several equations of state have b
proposed.31–35 For hard ellipsoid-of-revolution~HER! fluids
with length to breath ratiok, Maeso and Solana32 for ex-
ample proposed a generalized Carnahan-Starling EOS,
k-dependent coefficientsai~k!:

pHER5rNkTF11a1~k!h1a2~k!h21a3~k!h3

~12h!3 G , ~188!

where

a1~k!521.1811.09/k11.09k,

a2~k!521.9211.59/k11.33k

and

a3~k!55.2322.91/k22.96k

for 1/3,k,3, yielding

ēHER5~12h!~11a3!

3expH 1

2
~31a12a223a3!h

22~21a12a3!h

~12h!2
J

~189!

and

jHER52
Nk

V F2~11a3!h
31~32a2!h

22~31a1!h

~12h!3 G .
~190!

These equations reduce to the HS ones~Eqs. 184, 186 and
187! for a15a251 anda3521, and may be used for mor
complex molecules.

D. Entropy, heat capacity and pressure results

For three different densities~9.038, 37.24 and 55.32
mol/dm3! we will compare the results of the confined Gaus
ian, Gamma and Inverse Gaussian states and the con
alpha approximation with the experimental data,36,37see also
Ref. 2 for further details. It should be noted that there
substantial noise especially in the experimental heat capa
data at higher density, although already calculated from a
order polynomial fit on the reduced entropy data, proba
due38 to the shape of the EOS, used to produce the ste
tables of Burnhamet al.37 We use the HS confinement va
ues ēHS, jHS and d0 HS from the previous section, with
sHS52.70 Å ~based on a Gamma state analysis!, andg0 HS
for the IG state, obtained in a similar way asd0 HS, i.e.,
by solving g0 HS from S0 exp

r 2 Nk ln ēHS 5 CV0
r @1/g0 HS

1 1/g0 HS
2 (1 2 A122g0 HS)#. We will compare the reduced

entropy, heat capacity and pressure, since with these pro
ties all other properties can be reconstructed. Within the c
stant alpha approximation, the pressure is calculated u
Eqs. 150 and 151, since for the equivalent Eqs. 148 and
the accuracy on the experimental values of]a0/]V is not
enough. It should be mentioned once more, that since w
has no intramolecular interactions, the reduced properties
in this case identical to the ideal reduced ones.

At 9 mol/dm3 ~dense gas condition! the potential energy
distribution is left-handed, since d0 HS521.99

-

No. 5, 1 February 1997
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1908 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
~g0 HS521.45! at T05661 K. The confined Gamma and IG
results are almost identical, and agree very well with
experimental data over a temperature range of at least 50
see Figs. 3, 4 and 5. Obviously the Gaussian state g
worse results, since the energy distribution is quite asymm
ric ~note especially the shift in the entropy, becausea0* 5
2 0.226, instead of21

2!. Since for lower density system
with a small confinement~ēHS50.79 in this case! the intrin-
sic entropy function is not all temperature independent2 ~see
Eq. 139!, also the constant alpha approximation, being a
cal approximation, is much worse than the Gamma and
states: the entropy for example is reproduced only withi
temperature range of;75 K. As already mentioned in th
previous section, at least for water theG2→G1 transition of
the effective Gamma states~i.e., approximate Gamma sta
descriptions without confinement!1,2 at low density is for the

FIG. 3. Results for water atrN59.038 mol/dm3: reduced entropySr . Leg-
end: experimental~l!, confined Gaussian~---!, confined Gamma~—! and
confined IG~•••!, using a HS confinement withsHS52.70 Å, and constant
alpha~-•-•-!.

FIG. 4. Results for water atrN59.038 mol/dm3: reduced heat capacityCV
r .

Legend: experimental~l!, confined Gaussian~---!, confined Gamma~—!
and confined IG~•••!, using a HS confinement withsHS52.70 Å, and con-
stant alpha~-•-•-!.
J. Chem. Phys., Vol. 106,
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greater part due to the HS confinement. At least within
range of 500 K the energy distribution remains left-hande

From Table III it is clear that at 37 mol/dm3 ~low density
liquid! the statistical state is almost Gaussian, sin
d0 HS50.02~g0 HS50.015! atT05613 K. This is also evident
from Figs. 6, 7 and 8, where the Gaussian state predict
are very close to the Gamma and IG ones and all agree
well with the experimental data over a range of at least 5
K. The Gamma and IG results obviously are identical, sin
both states converge to the Gaussian state ford0 or g0 tend-
ing to zero. Clearly, at this not too high density wi
ēHS50.32, the constant alpha approximation, being a lo
approximation, breaks down after;200 K for the entropy
and heat capacity. The pressure results, however, are
good, although this may be a little bit fortuitous.

FIG. 5. Results for water atrN59.038 mol/dm3: reduced pressurepr . Leg-
end: experimental~l!, confined Gaussian~---!, confined Gamma~—! and
confined IG~•••!, using a HS confinement withsHS52.70 Å, and constant
alpha~-•-•-!.

FIG. 6. Results for water atrN537.24 mol/dm3: reduced entropySr . Leg-
end: experimental~l!, confined Gaussian~---!, confined Gamma~—! and
confined IG~•••!, using a HS confinement withsHS52.70 Å, and constant
alpha~-•-•-!.
No. 5, 1 February 1997
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1909Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
Turning to the highest density~55 mol/dm3!, where we
have a right-handed potential energy distributi
~d0 HS50.49, g0 HS50.31 at T05313 K!, we see that the
Gamma and IG results are virtually identical for all prope
ties, even for this value ofd0 HS, and again agree very we
with the experimental data over a range of at least 500 K,
Figs. 9, 10 and 11. Sinced0 HS50.49, the Gaussian state
clearly not sufficient in this case~note especially the shift in
the entropy, asa0* 5 20.771!. The constant alpha approx
mation, however, although less accurate than the Gam
and IG states, gives satisfactory results at this high den
with a strong confinement~ēHS50.09!, which seems to be
the case for many different liquids at high density.1,2

FIG. 7. Results for water atrN537.24 mol/dm3: reduced heat capacityCV
r .

Legend: experimental~l!, confined Gaussian~---!, confined Gamma~—!
and confined IG~•••!, using a HS confinement withsHS52.70 Å, and con-
stant alpha~-•-•-!.

FIG. 8. Results for water atrN537.24 mol/dm3: reduced pressurepr . Leg-
end: experimental~l!, confined Gaussian~---!, confined~—! and confined
IG ~•••!, using a HS confinement withsHS52.70 Å, and constant alpha
~-•-•-!.
J. Chem. Phys., Vol. 106,
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V. CONCLUSIONS

The basis of the quasi-Gaussian entropy theory is
fact that theexcessHelmholtz free energy~or entropy!, i.e.,
with respect to a proper reference state, can be express
terms of the moment generating function of the poten
energy distribution~Eqs. 22 and 36!, therefore reducing the
statistical mechanical description, which is usually based
the high-dimensional configurational partition function, to
one-dimensional problem. Furthermore, because of the m
roscopic character of usual systems, the central limit theo
can be used to show that this potential energy distribut
can be described by a uninormal distribution function, clo
to a Gaussian~‘‘quasi-Gaussian’’!.

In this article we derived the quasi-Gaussian entro
theory, using slightly different, but more convenient refe

FIG. 9. Results for water atrN555.32 mol/dm3: reduced entropySr . Leg-
end: experimental~l!, confined Gaussian~---!, confined Gamma~—! and
confined IG~•••!, using a HS confinement withsHS52.70 Å, and constant
alpha~-•-•-!.

FIG. 10. Results for water atrN555.32 mol/dm3: reduced heat capacityCV
r .

Legend: experimental~l!, confined Gaussian~---!, confined Gamma~—!
and confined IG~•••!, using a HS confinement withsHS52.70 Å, and con-
stant alpha~-•-•-!.
No. 5, 1 February 1997
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1910 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory
ence states than the ones used previously to derive the
theory.1,2 Moreover, we now included a general descripti
of the possible confinement of the system within a part
phase space~configurational space!. Although the theory is
in principle valid for single-phase, as well as multi-pha
systems, specific attention is paid to the conditions in
latter case, concerning the use of the central limit theor
and the moment generating function. We also showed
the generalized Pearson system of distributions, which
used to generate and classify different uninormal distri
tions of increasing complexity, follows directly from the st
tistical mechanical definition of the energy distribution.

The excess Helmholtz free energy, internal energy,
tropy and heat capacity are defined by the potential ene
distribution, the parameters of which can be always
pressed in terms of the excess heat capacity and a limite
of its temperature derivatives, and their temperature dep
dence follows from the solution of the thermodynamic m
ter equation~Eq. 48!. In this article we derived a new differ
ential equation, the conjugated pressure equation~Eq. 60 or
61!, the solution of which yields the temperature depende
of the excess pressure and hence of the enthalpy and G
free energy. Therefore each type of potential energy dis
bution provides the complete excess thermodynamics of
system at constant density, and hence defines a differen
tistical state.

For the Gaussian, Gamma and Inverse Gaussian~IG!
distribution we derived the corresponding thermodynam
and showed that in the infinite temperature limit all the s
tistical states are consistent with statistical mechanics, an
the zero temperature limit the statistical states with a fin
energy lower limit~the G1 and IG1 states, defined by the
right-handed Gamma and IG distributions! are still com-
pletely consistent with classical statistical mechanics.

For water we showed that the confinement of the sys
within a part of phase space can be modeled very well by

FIG. 11. Results for water atrN555.32 mol/dm3: reduced pressurepr .
Legend: experimental~l!, confined Gaussian~---!, confined Gamma~—!
and confined IG~•••!, using a HS confinement withsHS52.70 Å, and con-
stant alpha~-•-•-!.
J. Chem. Phys., Vol. 106,
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excluded volume of a hard sphere~HS! fluid, yielding a HS
diametersHS52.70 Å, which is in agreement with value
obtained from other methods. Using this HS confinement,
three different densities~dense gas, low and high-density liq
uid! we compared the results of the different statistical sta
with experimental entropy, heat capacity and pressure d
indicating that both the Gamma and IG states give excel
results within a temperature range of at least 500 K. If
quantitiesd or g ~Eq. 92 and 117!, which are a measure o
the asymmetry of the distribution, are approximately ze
within the accuracy, also the Gaussian state can be used
cessfully.

Finally, we also compared the experimental data w
the constant alpha approximation, merely a local approxim
tion, which is valid for high density liquids within a certai
temperature range, especially for the prediction of the He
holtz free energy. Because of its simplicity, though, it is ve
suited for approximate applications, like for example the c
culation of the liquid-vapour equilibrium pressure along t
coexistence line, where the accuracy of this approximatio
comparable to that of the Gamma state previously used.4

It is interesting to note that a similar derivation of th
theory in the isothermal-isobaric ensemble (NpT), express-
ing the excess Gibbs free energy in terms of the mom
generating function of the instantaneous enthalpy distri
tion, and hence expressing the entropy in terms of~a limited
set of temperature derivatives of! the isobaric heat capacity
although very appealing from a practical point of view, is n
possible in a rigorous way. The reason is the fact that
ideal reference state in that case would be a system with
inter and intramolecular interactions~F5c50! at exactly
zero pressure. The latter implies that the excess Gibbs
energy of the system is infinite and therefore we cannot
this ‘‘exact’’ reference condition. However, we showed th
it is still possible for gases to use this theory for the poten
energy distribution in theNpT ensemble, although in an ap
proximate way, by chosing a proper reference state, see
3.

The fact that already relatively simple statistical sta
reproduce with high accuracy, both for liquids and gases,
temperature dependence of all thermodynamic propertie
fixed density~in the liquid regime much better than usu
equations of state, like the van der Waals, Peng-Robins
Soave or Redlich-Kwong equations!, implies that this theory
could provide the basis for a general, fully physically co
sistent fluid equation of state. In a forthcoming article, w
will describe the use of the quasi-Gaussian entropy theor
different ensembles, and derive in this way the density
pendence of the thermodynamic properties, which might
used to construct a complete equation of state, combin
temperature and density dependence.
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APPENDIX

In general for a molecular system in the classical lim
the atomic motions, not involving changes in bond leng
and bond angles, can be described in a pure classical
while the bond vibrations require a real quantum mechan
treatment. These quantum bond vibrations, however, vi
ally do not alter the bond lengths and angles from their eq
librium ~ground state! values, implying that the other~clas-
sical! atomic motions are equivalent to the ones of
completely classical system in the presence of ideal h
nomic constraint forces, which keep the bond lengths
angles fixed. Hence definingh as a set of generalized coo
dinates on the constraint surface~coordinates which define
positions only on the surface! and ph as their conjugated
momenta, we can express the partition function for a sys
of N identical molecules in the electronic ground state as

Q5
G0h2d

N! (
l
E e2b~V c~h,l !1K c~h,ph!!dhdph , ~A1!

whereV c andK c are the total potential~including vibra-
tional! and kinetic energy functions, evaluated on t
d-dimensional constraint surface.G0 is the overall electronic
ground state degeneracy factor~the electronic ground stat
energy has been included inV c!, h Planck’s constant and th
summation runs over all accessible vibrational states$ l %.

If we defineb as the bond lengths and angles,b0 as their
equilibrium values andpb as the corresponding conjugate
momenta, we can rewrite the integral in Eq. A1 as

E e2b~V c~h,l !1K c~h,ph!!dhdph

5E e2b~V ~h,b,l !1K ~h,b,ph ,pb!!d~b2b0!

3d~pb2pb
0!dhdbdphdpb, ~A2!

where now the energy is evaluated in the whole phase s
andpb

0(h,ph) are the values ofpb on the constraint surfac
in such a way thatḃ50.

For macroscopic systems Eq. A2 can be factorized a
follows from the fact that the integral on the momenta
virtually independent of the coordinates although the in
grand generally is not. Hence

E e2b~V ~h,b,l !1K ~h,b,ph ,pb!!d~b2b0!

3d~pb2pb
0!dhdbdphdpb

5E e2bV ~h,b,l !d~b2b0!dhdbE e2bK ~h* ,b0,ph ,pb!

3d~pb2pb
0~h* ,ph!!dphdpb , ~A3!
J. Chem. Phys., Vol. 106,
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whereh* , b0 is an arbitrary configuration on the constrai
surface. Now considering that whenpb5pb

0 we haveḃ50,
we can express the second integral on the right-hand sid
Eq. A3 as

E e2bK ~h* ,b0,ph ,pb!d~pb2pb
0~h* ,ph!!dphdpb

5E e2bK ~h* ,b0,ph ,ḃ!
d~ ḃ!

J~h* ,b0!
dphdpb, ~A4!

where J~h* ,b0! is the Jacobian for the transformationph ,
pb→ph , ḃ, evaluated at~h* ,b0!, which is a function of the
coordinates only and hence a constant for a given config
tion. Using Eq. A4 in Eq. A3 and transformingh, b, ph ,
pb→x,p, remembering that the Jacobian of the transform
tion from one set of generalized coordinates and conjuga
momenta to any other is unity, we finally obtain

Q5
G0h2d

N! (
l
E e2bV ~x,l !d~b2b0!dx

3E e2bK ~p!
d~ ḃ!

J~x0!
dp ~A5!

with x05h* ,b0. Eq. A5 is therefore Eq. A1 expressed
terms of the usual coordinates and momentax, p and describ-
ing the constraints in terms of the bonds properties and t
time derivatives instead of using these properties and t
conjugated momenta which are in general complicated fu
tions involving the mass tensor. Hence with the notat
previously1 used to introduce the theory we have

Q5
1

N!
QeQkinQpot ~A6!

with

Qe5
G0

J~x0!
, ~A7!

Qpot5(
l
E e2bV d~b2b0!dx5(

l
E8

e2bV dx, ~A8!

Qkin5h2dE e2bKd~ ḃ!dp, ~A9!

where in the last equation we must calculateḃ at the arbitrary
position on the constraint surfacex0.
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