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In this paper we present the quasi-Gaussian entropy theory in a comprehensive and consistent way,
introducing a new derivation of the theory very suited for applications to molecular systems, and
addressing its use in the case of multi-phase systems. A general derivation of the possible
confinement of the system within a part of phase space is given, and for water it is shown that for
this a hard sphere excluded volume model can be used. To obtain the temperature dependence of the
pressure, a new differential equation is derived, and besides the previously introduced Gaussian and
Gamma states, in this paper we also describe a new statistical state, the Inverse Gaussian state. We
discuss the properties of these different statistical states and for water compare their
thermodynamics with experimental data, finding that both the Gamma and Inverse Gaussian states
are excellent descriptions. @997 American Institute of Physids$S0021-960607)50305-9

I. INTRODUCTION with the previous properties, of the excess enthatidyand
Gibbs free energy'.

The key point in statistical mechanics is the evaluation In Ref. 2 we proposed the idea of a phase-space confine-
of the (configurationgl partition function, which is in general ment, i.e., a division of phase space into a “stable” and
a high-dimensional integral over all coordinates. For a sys“unstable” part, in a somewhat ad hoc way, based on a
tem not at very low density with a realistic Hamiltonian, it is general double state model. In this article we will derive the
virtually impossible to derive in this way rigorous but hand- phase-space confinement in a more natural way, and discuss
able expressions for the various thermodynamic propertiedts implications and the behaviour of the confinement for
In recent articles however, we showed that in the canoni- water as a function of the density. Moreover, we will discuss
cal ensemble it is possible to switch from the high_the properties of the statistical states described and we will
dimensional partition function to the one-dimensional poten-compare their zero and infinite temperature limits with gen-
tial energy distribution function of the system, which is in a €ral statistical mechanical results. _
way a special projection of the Hamiltonian. The advantage !N section Il we will present the general theory in a com-
of this approach is the fact that, because of the macroscop@ehens've and consistent way, introducing a new derivation

character of usual systems, the potential energy distributioflf the theory very suited for molecular systems, and in sec-
function is almost Gaussiar“quasi-Gaussian). Hence tion Il we summarize the properties of the various statistical

mathematically already relatively simple distributions can pedtates. In “Discussion and resultgsection IV) we will ad-

used to model the real distribution, yielding very Compactdress aspects of multiphase systems, the temperature limits

. . . of the expressions of the thermodynamic properties as dis-
expressions for the excess thermodynamic propefties . : : .
. cussed in section Ill, the phase-space confinement and its
with respect to a proper reference sjate

We also showed that, using this approach, in a very natur_elation to hard-sphere excluded volume and p_resen_t new

ral way a hidden differe,ntial equation thber1modynamic resglts of the excess pressure at constant density using the
. . PN . conjugated pressure equation.

master equationarises. For every type of distribution, which

defines a different statistical state of the system, the solution

of this master equation yields the temperature dependence of

the excess heat capaciBy, and hence of the excess entropy Il. GENERAL THEORY

S', internal energyJ’ and Helmholtz free energh’. In the  A. Definition of the system

previous articles we derived and tested the temperature de-

pendence of these excess thermodynamic properties at Cofk,

stant volume for a Gaussian and Gamma distribution.

In this article we will introduce a new distribution, the A=—-kTInQ, (1)
Inverse Gaussian distribution, which is very related to th%hereQ is the overall partition function. For a system Iof
Gamma distribution, and derive its thermodynamics. We Willientical molecules in the classical limit
also derive a new differential equation, tbenjugated pres-
sure equationthe solution of which yields the temperature Q= i QeQKingPet )
dependence of the excess pressutreand hence, combined N! ’

The Helmholtz free energy of a system at fixed volume,
perature and number of molecules is

with Q° the electronic partition function, a constant for most
dAuthor to whom correspondence should be addressed. of the systemsQ"" the kinetic energy partition function and
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QP°' the configurational partition function involving the po- with #° the overall vibrational ground state energy of the
tential energy of the system. The most general expression alystem. Since the same argument also implies that
ont iSl
S e BE-EI=S o BEGEQ @
| |

ont:E f e*B(fD+¢+KI)dX, (3)

! we finally obtain

wherex are the atomic coordinate®, is the intermolecular ' ,

potential energy,s is the intramolecular potential energy QP=Qj f e #” dx (8)
(excluding bond length and bond angle vibrational engrgy

#'is the overalllth quantum vibrational bond energjn  With #7'=®+y+#°—Ejy and whereEjy Qj; are the overall
general a function of the coordinaleg=1/kT and the sum Vibrational ground state energy and partition function of the
runs over all accessible vibrational stafelsof the system in ideal gasiwith ®=0), respectively. It is easy to see that Eq.
the temperature range of interest. The prime on the integrdl IS always exact if the system is completely confined in the
means that we integrate only over configurations where alfibrational ground state, or if no vibrations are presemon-

the bond lengths and angles are fixed at their equilibriunftomic moleculesor when the vibrational energies can be
values, see the Appendix. In a previous arficke derived considered independent of the coordinates, and therefore

the quasi-Gaussian entropy theory from the completely genfrom the temperature, hence being identical to the ideal gas
eral expression given in Eq. 3. However, in many cases suchnes.
a derivation of the theory is not very suitable for applica- | moreover, at least in the whole temperature range of
tions. In this paper we will therefore introduce a very generafnterest, only a part of the configurational space is energeti-
approximation oQP°, valid for many different types of mol- cally acgessm_lél.e., the system is confined within a part of
ecules, from which we will derive a very useful form of the the configurational spageve can rewrite Eq. 8 as
theory for applications to molecular systems. -

In fact we can simplify Eq. 3, considering that in general QPo'= Qi”df e A7 dx, 9
for systems where the vibrational energies have a significant
dependence on the coordinates, such a dependence is olhere now the star denotes an integration over the accessible
served only up to temperatures where the molecules angart of the configurational space only. It should be noted that
largely confined in the vibrational ground stafer water, the unaccessible configurations do not necessarily corre-
see Refs. 5 and)6In such systems, as the temperature isspond only to the ones which are forbidden by a simple
increased to values where the first excited states become sigxcluded volume concept, where it is assumed that the pair
nificantly populated, the vibrational energies converge to thepotential energy has an infinite barrier as in a hard sphere
ideal gas ones, i.e., bond vibrational energies of the samkguid. In fact, according to théotal intermolecular potential
molecules in the ideal gas condition which are in generaknergy, even configurations with non-penetrating molecules
independent of the coordinates. For these kind of systems waight be energetically excluded up to very high tempera-

can rewrite Eq. 3 as tures. Clearly in the infinite temperature limit every finite
energy configuration will be accessible implying that only

QPol— E f’e*ﬁ(‘b“ﬁ* ”')dx the conﬁnement due tp the infinite energy configurations can
[ be considered exact, i.e., really temperature independent.

Eq. 9, which reduces to Eq. 8 in case the whole configu-
:2 efﬁElf,efﬁ(<b+z//)ef,8(kflel)dX (4) rational space is available, is a very general expression that
T can be used for many different types of molecules: for all the

o _ cases where we applied the theory previoti$lywater,
with E' the coordinate averaged vibrational energy oflitme methanol and metha)']Eq 9is Comp|ete|y valid.

state. The fact that the vibrational energEsconverge to
the ideal gas onesEl,) when the temperature allows a rel-
evant excitation implies, at least for all the terms in Eq. 4

significantly different from zerdi.e., BE' not too largg, that B Definition of the reference states and excess

properties
f’ — RO+ ) o B(A —E For all the systems where Eq. 9 can be used, we can
e e dx ) . .
define two reference statggdeal reference and confined
. ideal referenceat the same temperature and density, but
Ef e~ B@+a=B(7°—E gy (5)  without inter (®) and intramolecular potential enerdy)),
see Fig. 1. For th@eal referencenve have
Hence Aer=—KT In Qpes, (10)
t - B(E'-E° " A= B(® 0 1 i
QPOZ(EI e B( )) f e B(O+y+ )dX (6) Qref:m QermQP:ft! (11)
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w AW =70 —{(W'"), (23
Ideal reference . I8 - - - » f’* dx f’* ei'g%, eﬁ//dx
Confined ideal reference " i et <e > = f % e,ﬁy/r dx = f % e’ﬁ”'dx (24)
. X X
Healgas ¢ k Hence the confined ideal reduced internal energy, heat ca-
System  ® 44+ 0~ EY, [ ll pacity, entropy and pressure are
pot
FIG. 1. Definition of the(reference states and of the various differences for * — _ i Q_ (o
. . =1 U IN — (7", (25
a propertyX. The prime and the star on the integral denote restrictions due aB Qgref
to fixed bondlengths and angles and a possible confinement of the system v
within a part of phase space, respectively. . JU* (9( %'>
S e (26)
\% \%
(A* - U*) o
’ __ _ BAY
Q- o, CER T K Ine™ 0, 0
and for theconfined ideal reference p*=— ( 3A*) (28)
AV
Arer= —KT INn Qy rer, (13 T
1 We also define thédeal reducedree energy as
Qurer=1g7 Q°Q"Qer (14 A'=A—Ag=A*+A/ =A* KT In € (29
. and so the ideal reduced internal energy, heat capacity, en-
QM =@y | dx. (15)  tropy and pressure are
9 QpOt
Therefore the excess Helmholtz free energy of the confined U’=-— (— In —pm) =(w'y=U*, (30
ideal reference state with respect to the ideal reference state 9B Qrer v
" c’—(au,) —(‘WM) =Cy (3D
r,ef: Asrer—Arer=—KT In € (16) Vol ot V_ T V_ v
o gAY gy 32
_Jrdx . =-—F =S'tkhne (32
€= f’dX ( 7) ,
—_ || —p*
the fraction of available configurational spagehase-space P = ( oV )T pr+TE. (33)

fraction) previously introduced in a different wayHence

the corresponding excess entropy, internal energy, heat cginally, from these equations follow théconfined ideal
pacity and pressure dre reduced enthalpy and Gibbs free energy

A "=URH(p*+TEV=H*+TVE, (39
o ref| _
rer ( T )V kin e, (18 G/ =A*—KT In e+ (p* +T&)V=G* —KT In e+ TVE.
(35
Urer=Arert TSer= 0, (19) It should be noted that the ideal reduced properties of the
U’ systems previously investigatetican be considered as dif-
Clrer= (—'ef) =0, (200  ferent cases of Egs. 29-35 since for those systems the refer-
IT |y ence conditions chosen can be considered as special condi-
. A B din e tions of Eq. 12.
Pref= — N T_ dv =&T, (21) C. The potential energy distribution

Eq. 27 can be explicitly expressed as

wheree and¢, at least within the whole temperature range of
interest, are by definition independent of the temperature. S*=—kIn G (B)
We define theconfined ideal reducefiee energy as
QP! =—kIn f ePr (A7 YdA Y, (36
A* IA—A* ref— — kT In ~pot_
Qiret whereG, ,,(B) is the moment generating functiot? of the
kT In<e5”'>=<%’)+kT In(eBM‘/), 22) potential energy distribution function(A7/’) (note thatp is

in general temperature dependefrom the fact that a mac-
where roscopic system can be considered as a very large collection
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!

-
at |,

of identical, independent subsystertedementary systems

we can conclude that because of the central limit thedrém M3(T)= (kT2)2<
the corresponding potential energy distribution function can

be regarded as uninormal. In fact the possible deviations

from the uninormal shape in the far tail of the distribution are

in general negligible because of the very sharply peaked be- M, (T)

haviour of the curve around its mo@@aximum of probabil-
ity), also due to the macroscopic nature of the systeh, T 9C(/) (ﬁZC\I/> (ﬂk_zc\//) )
and therefore the integrand in Eq. 36 can be modeled con- v o1 ) a2 T a2 '
sideringp an exact uninormal distribution. In general we can v v \4’15)
express the potential energy distributiorf’d$

+2(kT)%Cy, (44)

whereM k=<(Af?/)"> is thekth central potential energy mo-

QA7) ment and we used the fact th@ = C\,. If the functional

DN T =B )
pAZ) QP € (37 shape ofp is defined by the firsh central moments, from
Egs. 36 and 45 it follows that
with ) s
aCy 9°Cy "~ eCy
& s=5| .| 57| | 577 (aT—V )

Q(A%’)zf (A7 (X)—A 72" )dx (38 v v
the confined configurational microcanonical partition func- (46)
tion, and hence D. The thermodynamic master equation

dp nQ We define thantrinsic entropy functioras
Iz L Tt 39 8§ kine
AN A o

Using a Padepproximant®>®instead of a usual Taylor se-

ries, to expand the function between brackets in Eq. 39 aCy, a2c\’/ 3"*2c\’/
around the mode of the distribution, we finally obtain a gen- =a* ( T,C\'/,(ﬁ) ( T2 ) (W) )
eral differential equation, equivalent to the one of the gener- v v v
alized Pearson system of cun/el;*®®which can be used to

k In
obtain the possible potential energy distribution functions: c < 47
\Y
m )i
d_p: (A — AN M with o* = S*/C\, theconfinedntrinsic entropy function, and
— (AZ' = A700)p =n o (40 : v . )
dAw G'(A7") using the general thermodynamic relatior?S{/dT)y

= (dS*/1dT)y = C{/T, we obtain thehermodynamic master

whereA 77/, is the value ofA7Z" wherep has its mode and equatiort (TME)

P™A%4") and G"(A74') are some arbitrary polynomials of

orderm andn: Cy da* dCy,
—=C/ *|
i T Cy 0T V-I—a it (48
m D — . 2! i
I C izo a(AZ"), “D This is a completely defined differential equation where its

unigue, always existing solution gives the temperature de-
‘ pendence of the ideal reduced isochoric heat cap&jty

Gh(A7')= ZO bj(A7"), (42 once the values aE,...,(d" 2C./aT""2), at one arbitrary

I~ temperaturel, are known. Note that in Egs. 47 and 48 we

where without loss of generaliy,,=1. The solutions of Eq. used a generalized expression of the intrinsic entropy func-
40 are therefore fully defined by the parametars;,, {a;}  tion, treating explicitly the possible confinement of the sys-
and {b;} which can be expresskdn terms of the central tem, which reduces to the usual one whefll and therefore
potentia| energy momentMn_ Hence with the use of a=a*. From the solution of the master equation we can
physical-mathematical restrictionse can select the physi- Obtain the confined ideal reduced entropy via Eq. 46, and
cally acceptable distributions, fully defined by a limited setthen the confined ideal reduced internal energy and free en-
of central moments, and then order them according to theiergy at fixed density via
increasing complexity. We also showed that these potential

n

T
energy moments can be expressed as a function of the iso- U*(T)=U’(T)=U’(TO)+J Cy(T)dT, (49
choric heat capacity and a limited number of its temperature To

Ma(T)=kT?Cy, (43 I1tis interesting to note that, since
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S* Sy ap* [ oS of
i LA (51 R e R
C{ (S*19B)y aT T af oV
v . T.f T
the confined intrinsic entropy function is the ratio between - 141
) IS* J " p*
the average slope @&* versusgB (remembering tha8* =0 :2 - J [—
when 8=0) and the instantaneous slopeSt/dB), . One I afy iy al y
I A

can moreover prove that

(62)

)

with I’ #1 andl=0,...,(h—2). Eq. 60 or 61 can be solved
once the firsn—1 temperature derivatives of the confined
Sdeal reduced pressure are known at one arbitrary tempera-
ture T,. Its solution provides the temperature dependence of
(ap*14T)y, for a system at fixed density and, if the confined
ideal reduced pressure is known at one temperature as well,
E. The conjugated pressure equation also the temperature dependence of the confined ideal re-
duced pressure, enthalpy and Gibbs free energy via

al+2p*
) 1 +T| =7
lim a*(T)=—= (52) ( aT'™"
T—o 2
which implies that thelconfined ideal reduced thermody-
namics of every system in the infinite temperature limit tend
to that of a Gaussian state, see section Il A.

From Eq. 46 it is moreover possible to obtain the con-

fined ideal reduced pressure of the sysgghs=p—p,;as a T ap*
function of the temperature. In fact from the basic thermo- p*(T)=p*(To)+ L JT ) dT, (62)
dynamic relation 0 v
H*(T)=U"(T)+p*(T)V, (63)
aS* ap*
TV)T:( 0T )V (53 G*(T)=A*(T)+p*(T)V. (64)
Note that it is not necessary to explicitly solve the conju-
we obtain gated pressure differential equation if the temperature depen-
, - dence of A* is already known from the thermodynamic
1 (5_(3\/) :<5 p ) (54) master equation, sincep* (T)=—(dA*(T)/oV)s. As
Tlov), | aT?], A*(T) is an explicit function of T only, with

Ug,Clg,(dCyo/dT)y,... as parametekse., the values of)’
and hence in general etc. at the reference temperattitg depending only on the
- volume, the resulting volume derivativesTgican be related
(‘9_](0) :T<a_p (55 10 Pg ,(9p19T)y ,(6°pE13T?)y,..., according to EQgs.
v aT? ]’ 55-59(see also the description of the Gamma and Inverse
Gaussian states
oty F*p* a°p* Hence the knowledge of the potential energy distribution
N . JT? FE v function at one temperature, as well as the knowledge of
and ¢ fully defines the wholgconfined ideal reduced ther-
(57) modynamics of a system at every temperature at fixed den-
sity. Every potential energy distribution function therefore
9" 2p* defines a different statistical state of the system with a ther-
+ (ﬁlﬁ) ' (58) modynamical complexity given by the number of the heat
v capacity temperature derivatives, necessary to define the cor-

+T
\Y

(56)

(afl) ((9|+1p~k
v R
oV T JT v

where responding type of potential energy distribution function.
, dCy ‘9IC\I/ F. Reduced thermodynamic properties
fo=Cy; f1:<0—-|-) ; |(—r0,,-|- ) - (59 y brop
v v The reference states defined by Egs. 10—15 can be used

Therefore from Eqs. 46, 47 and 53 we finally obtain anotheraISO to express theconfined ideal reduced properties of an

closed differential equation at fixed density for the tempera-Ideal gas, see Fig. 1. Using Eq. 29 and Egs. 30-32, consid-

ture dependence of the confined ideal reduced pressure, thehd that in an ideal ga®=0, we obtain

conjugated pressure equati@PB L= AN+ A= (D) igt KT In(eP2¥) g—KT In ey, (65
P *p* , Ja* Uig=(Did, (66)
(aT V_Ta (T)(W V+CV(T) N (60)

, Kp)ia
. . Cv id:(—{ﬂ-l ) , (67)
or, equivalently, using Eqgs. 46 and 54-59 v
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= S5+ Slo= — K IN(EPAY) K In e, (69) gl_i_E_II_EESSCRIPTION OF DIFFERENT STATISTICAL

where the “id” subscript denotes the ideal gas condition. ItA. Gaussian state

. _ 1% ! H
strotons in the inamelecuta configurational space, m-_ T SYmMeti Gaussian disrbuion correspondsio
9 bace, =0, n=0} in the generalized Pearson system, Eq. 40. The

plying always thatde;y/dV=0 and, apart from the case of distribution is given b
very large molecules with many intramolecular interactions, 9 y

€q=1. It should be noted moreover that in Eq. 65, since A7s'?
®=0, the two expectation values only depend on the in- p(A%Z')= p{ ] (77
tramolecular coordinates and therefore are also independent V2
of the volume of the system. Hence with by=M,. Using the fact that the moment generating
function of a Gaussian is simpty*®
aA,’d)
p = Pid— Prer=0 (69) 0:82
( N Gav(B)=exp —— (79

which implies that the pressure of the ideal reference condiand expressinil, in terms ofC!, (Eq. 43, we obtain for the
tion is identical to the ideal gas one. We can now express thgonfined intrinsic entropy function

reduced properties of a system, i.e., the thermodynamic
properties with respect to the ideal gas condition, using the * 1

fact that usuallyey=1, as “ T 79
eBAY The thermodynamic master equatiofiME), Eq. 48, there-
A=A = AL= (7" —{)ig+KT In 2 BA¢>> KT In e, fore reduces to
(70 aCy, Cy
Pl e (€0

S=8-8,=—kIn(e’P 2”7y +kIn e+k In(eF*¥) 4, _ _ _ _ _
(71  the solution of which provides for a confined Gaussian State

1
U'=U"=U=(Z") = (), (72 a*(M=-73,

5 (82)
K7') K)ia , , [To\?
Cy=Cy—Cyiy= ( aT ) _( &TI ' (73 Cu(M)=Cyo T/ (82
\% \%
r ' ' ’ ' 1 ' To ?
P =P —Pyg=pP, (74) S(T):_ECVO T +kIn e, (83
H'=H'—H=U"+p'V, (75) To
U'(T)=U{+TeClp 1—? , (84)
G'=G'-G,=A"+p"V. 76
id p ( ) and
It is evident that if we consider small molecules wheéte0,
the reduced thermodynamic properties are identical to the A’(T)=Ug+ToCyo| 1— ZT) KT In e, (85

ideal reduced ones.
Hence the knowledge of the statistical state of a systemwhereU; and Cy,, are the values o)’ andC,, at an arbi-
and, wheng#0, also of the corresponding ideal gas condi-trary reference temperatufig.
tion provides the complete reduced thermodynamics at every Since «*=-1/2, and hence Ja*/dT)y=0 and
temperature. We show&fithat statistical states defined by (da*/dV);=0 it follows that (@(da*/dT)/oV)t
relatively simple potential energy distribution functions =(d(da*/dV)+/dT)y,=0. Therefore we see that if at one
(Gaussian and Gamma stateescribe with high accuracy density the statistical state of a system is an exact Gaussian
the gas and liquid-state reduced thermodynamics. In the nexine, for all other densities it must be Gaussian too. This
section we will derive in detail the properties of three differ- result, obvious for a Gaussian state, is true in general for
ent statistical states: the Gaussian, the Gamma and the leach statistical state, implying that the thermodynamic com-
verse Gaussian statistical state. Moreover, we will summaplexity is conserved at every density.
rize the properties of the constant alpha approximation, Since @a*/dV);=0, the conjugated pressure equation
which is valid for strongly confined Gamma or Inverse (CPB, Eq. 60, is in this case a simple first order differential
Gaussian states for a certain temperature interval. equation
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properties.
Stat. mech. Gaussian r,mr_ IG,/IG_
cy, 0 0 0 0
S*[S'] 0[kln € O[klIne 0[klIneél 0[kIn ¢
2 xref ’ ’ ’ ,
U U U+ ToClo o TO_CVO L ( 1 1)
f 1-% Y \V1-27,
A*[A/] U*Te [Oc:l UI+T CI [00] T ’ ’
0 o~Vvo U6+]-(’__C\/f)[oo] UéJrTO_CVO(;l) [oo]
f ) % \V1-2y,
p* —du*reiidy —d(Ug+ToClo)/dV T,C! '
oo —d(u5+°_—c"°)/dv d(U(’JJrTO—CVO(;l)) dv
1-4 Y \VI—27,
a*[a] 1
—5l==] —5l==] —5l==] —5 =]
5 0 0 0 0
y 0 0 0 0
ap* 1 _[d%p* The T—o and T—0 limits of the various thermody-
T ) ) T T2 ) - (86) namic properties are summarized in Tables | and Il. It must
v v be noted that only for the confined properties the infinite
The solution is temperature limits are always physically meaningful, see
* also section IV B.
*(T)=pg+T (9& 1—E (87
p pO 0 JT v T ’

where p and (@p%/dT)y are the values at the reference = C2MMa state

temperaturel,. The ideal reduced pressupg(T) follows The Gamma distribution, given bg°

from Eq. 87, wusing p'=p*+T¢ and (@p'/dT)y b (1/b2)b0/b2
— . 1
=(dp*1dT)y+ & (Eq. 33: (A )= W (bo+ blAO/A’)bO/bi*1
, , o To o
p (T):po+TO[ ﬁ) —5](1—7 +HET-To). bo+ b, A%
(88) 1

TABLE Il. The T—0 (or T—T,) limits of (confined ideal reduced properties for different states, whigrd™_) andT, (IG_) are given by Egs. 113 and 138.
o*(I'_) and A*(IG_) are obtained by setting=1 and the sign of th@* limits for the Gaussianl'_ and IG_ states depends on the sign &g /JT or
B/, respectively.

Class. stat. mech. Gaussian r, | IG, IG_
T—0 T—0 T—0 T-T, T—0 T-T,
Cy, (in)finite o Clo 0 0 o
%
S'/S* — — —x —» % »
u’ U tin —® Ulm ToClo - Ul ToClo -
0 % 0 Yo
A'IAY % rnin - . ToCho % . ToCw ., ToCh ( T, \/1——270)
o~ 5 Vo= =~ Up= = |1 = KTu e
'k o " , 4 , n
P AV - —d(Ué— TOCVO) / av - —d(ug— °CV°) / av .
% Yo |
ala* —wor<—1 1 —o0 kine & -2 0
2 Clo 1-&7
s - 0 1 —oo 3 —co
1
b - 0 2 — 1 -
3 2
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1900 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory

with T(-) the Gamma functio”? by=M, and derivative of A*(T), using Eq. 100. Thus, with the usual
b;=M3/(2M,), corresponds to then=0, n=1} solution of  notation where {Uy/dV) etc. are the derivatives evaluated
the generalized Pearson system, Eq. 40. The moment genett T,
ating function of this Gamma distribution'i%*°

. aA* [ U, aA* [ 9Cyq
bo —bg /b2 p*(T)=~ v T C\ Y
Gavr(B)=exp =B o~ (1= pby) >/ (90) o r v
1
and expressing the central momeMs and M5, appearing n IA* 3_50 (101)
in by andb,, in terms ofCy, and (C\/dT)y (Eqgs. 43—44 38y \ oV ; '
the confined intrinsic entropy function is in this case given
by* where from general thermodynamic relations we have
1 Uy Iy
* _ _ _ L A R

a 5+ 5 In(1-5) (97 ( p, )T To( T, P (102

with
dCyo 7°ps
Mz T(ICy/dT)y vl e (103
o= KM, 2C) +1 (92 T v
) _ ) and

The expression of’*, combined with the general ther-

modynamic master equatidiq. 48, yields 2 dag -1 py ‘1 °p§
* V| Cio | dd at | e
T\ =] +(26- 1)a*—1=0, (93 104
\Y

where ((9(1*/(71-)\/: (da*/dﬁ)(ﬂé/é’T)V and (da*/dé) fol- as follows from the CPE aTO, with (daé/déo) fOIIOWing

: . _ from Eq. 91. The derivative®A*/9U}, dA*/3C\, and
lows from Eq. 91. After straightforward algebra we obtain as 0 VO
. g g dA* 108, follow from Eq. 100. After tedious but straightfor-

a simple form of the TME
'mp ward algebra we finally obtain

(05) _ 5(1—5). (94 T

ﬁ - T * —n* * *
v PT(T=Po +Bo + BT 115,77 Tos,
The solution provide$(T), which can be expressed in terms

of C\’,_and (&C\’_,/&T_)V. Hence this_, gives ris_e to a new dif- +B} l In[ T(1~3) ] (105
ferential equation irCy,, the solution of which yields for a To/ | T(1=30) +Tod
confined Gamma stdté where
T050 * 2%
(M= ——— J d
(= 1= 50+ ooy’ 9 Br =AuTol 0| +a,72 ZP0) 012 (108
oT aT v
*(T)= ! ! In{1—&(T 96 i
a* ( )_WJFW n{1-4&(T)}, (96)  with
C’V<T>=C’VO(5—O) , (97) o1 D !
Cly oL (1= 30)In(L=00)+ &
S’(T)=?O [8(T)+In{1—8(T)}]+k In €, (98) 927 8% D :
5(T) a=do a1 1A %)H 5%
U'(T)=Uy+(T—Ty)Cyp 5y (99 Hopr ™27 4 D ’
' ' 2(1-6p) 1
T,C TC _ 0 _=
A(T)=Up= ==~ Inf1- (T} —kTn e, An=—p— Axp (109
0 0
(100 and
with & the value ofé at Tj,. Note that ¢C,,/dT)y is always D=2(1— 85)IN(1— 8,) + 5o(2— 8). (108

negative, like in the Gaussian state.

Since for a Gamma state the pressure differential equaFhe ideal reduced pressug(T) follows from Eq. 105,
tion (Eqg. 60 is very complicated, it is more convenient to using p'=p*+T¢,  (9p'/dT)y=(Ip*/dT)y+ ¢ and
obtain the confined ideal reduced pressure via the volumgs?p’/dT?),=(°p*/3T?)y (Eq. 33:

J. Chem. Phys., Vol. 106, No. 5, 1 February 1997

Downloaded-26-Mar-2008-t0-151.100.52.54.-Redistribution-subject-to-AlP-license-or-copyright;-see=http://jcp.aip.org/jcp/copyright.jsp



Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory 1901

, T first five central moments, but with a relation between the
p'(T)=po+Bo+By T(1=065)+ Tods parameters the actual number of necessary moments reduces
0 0o to three and the distribution reduces to Eq. 114.

T T(1- 6p) Using the fact that the moment generating function of
+By T In T(1=69)+ Tod €T, (109 s distribution is given b§-2
where c 2c2
, 2 Gan(B)=exp —BCot+ —|1-\/1-—p
Bo=AorTol 0| + AT TP 4+ AgTos, (110 o e
o= Aolo| St y 02! o| 572 y 03! 06 (115
/ 2.1 and using the expressions fbr, andM; (Egs. 43—44 we
9Po 2 7Po i obtain for the confined intrinsic entropy function
Bi=A1To ﬁ —&r +ATh W =12 py
v v 1 1
(113 a* === — (1-\1-27), (116
and vy
8o(1— 6, where
Ags= — O(TO)' (112
M, 2 [T(aCIaTIV 2
In this way the temperature behavior of ttwnfined ideal YT 3kTM™M, 3 2C! +1l]= 3 g (117)
reduced pressure, enthalpy and Gibbs free energy is ob- v
tained. with & the characteristic quantity of the Gamma stéatee

As pointed out previously,since the Gamma distribu- Eq. 92. The similarity between the expressionsadffor the
tion has a limited domain, it can be defined either frem IG distribution (Eq. 11§ and the Gamma distributio(Eqg.
to some upper limit or from some under limit to. The  91) can be seen by expanding both expressions in a Taylor
first case corresponds to a distribution with an asymmetrigeries around=0, obtaining
tail on the left(defining the negative Gamma stdte, with

8<0 and —3<a*<0), the second case corresponds to an . 1 6 5
C 2 . - o a*C=— o — 52— (118
asymmetric tail on the rightdefining the positive Gamma 2 3 18
statel', , with 0<§<1 anda*<—3). Note that foré=0 the
distribution is a Gaussian. In Ref. 2 we describe the proper- ol 1 6 6
ties of and differences between the two Gamma states in ¢ ~ 5 37 2z - (119

detail. Basically, thd", state is physically acceptable in the

whole semi-classical temperature range, whereab thetate ~ Hence for smalb (i.e., for not too asymmetric distributions
must be considered as an approximation to a more compliboth IG and Gamma distributions will give almost identical
cated statistical state within some temperature interval. Oneesults.

relevant difference is the low temperature limit: whild'a The temperature dependence of the various thermody-
state may be extrapolated Te-0 (although of course in that namic properties can be obtained from the TME, Eq. 48,
limit the semi-classical description is not valid any more, seawritten in the form

section IV B), for aI'_ state there exist a temperature

da*

+(3y—2)a* —1=0, (120
\

at which the solution encounters a singularity. For both states
the different temperature limits for various thermodynamicwhere @a*/dT)y=(da*/dy)(dy/dT)y and da*/dy) fol-
properties are given in Tables | and Il and discussed in sedows from Eq. 116. After straightforward algebra we finally

tion IV B. obtain as a simple form of the TME
dy y(1-2y)

C. Inverse Gaussian state —| = (121
aT},, T

The Inverse GaussiafhG) distribution, given bg*??
which provides (T). Since y is a function of C, and
p(AZ/")= A /ﬂ (Co+ A7/ )32 (9Cy/dT)y and, Eqg. 117, we have a new differential equa-
2m tion in Cy,, yielding for a confined IG state

X W’ o an” (114 Tovo
eXp — S 2 T A _
2¢§ (Cot A7) ¥(T) T(1=270) + 2Toyo’ (122
with co=3M3/M; andc;=c3/M, corresponds to a degen-
erated{m=1, n=2} solution of the generalized Pearson sys- g 1 1 Ny
tem. The fullim=1, n=2} solution is characterized by the @™ (T) Y1) YA(T) (1=V1=2¥(M), (123
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1902 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory

, [ To Y2( 5\ 32 The ideal reduced pressug (T) follows from Eq. 128,
Cv(T)ICvo(?) (70) (124 using p'=p*+TE  (ap'1dT)y=(ap*/aT)y+& and
(0%p'19T?) = (6°p*19T?)y (Eq. 33:
S (T)=CUT 1—V1=29(T) ] T
(M= “)((T) zﬂ)( (1) p’(T)=p4+Bo+B; )mﬂ 270(1—To/T)
+kIn e, (129
1-To/T
T,C T —J1-2y,)+B
U'(T)=U}+ OVO(V——lml) (126) v0)* B2 ) V1= 2y5(1=To/T)
Yo To vo
and 1
— | +¢T, 13
, , *1_2)/0) ¢ (134
am=uy- 0w, T [ JTovo g
0T T, v T Yo where
—KkTln e (127) Ipg “pg

+AoaToé, (139

d“Pg
Bo= A01T0( aT +A02T§<—
v

2
Note that, similar to the Gaussian and Gamma states, Ty
(9Cy/dT)y is always negative. ap!
Since, just as for a Gamma state, the pressure differential  B,= A, T, Nt &
equation is very complicated, also in this case it is more a Y
convenient to obtain the ideal reduced pressure directly via (136
the volume derivative oRA*(T), using Eg. 127. Thus with

Egs. 102 and 103, and{y/dV) via the CPE afl,, we

obtain in a similar way A Yov1—=2y¢ (137
3=~ T

I*po

+ALTE —| =12

p*(T)=p5 +B§ +B1 | | (V1-27o(1-To/T)

In this way the temperature behavior of ttenfined ideal
reduced pressure, enthalpy and Gibbs free energy is ob-

1-To/T tained.
—V1-2y9)+B3| — ( 1—270(1-To/T) Moreover, there exist also negative and positive 1G
Yo 0 states(IG_ and 1G,). The IG_ state is characterized by a
1 finite energy upper limit of the distribution with 3<a* <0
- \/1?270 : (128 and y<0. The IG, state is characterized by a finite energy

lower limit of the distribution anda*<—3, 0<y<3/4.
where Clearly, for y=0 the distribution is a Gaussian. In the IG
state there is a temperature

apy R A
B =AirTo| =5 +Ai2To| Z72 . i=0,1,2, (129 Te=—27,To/(1—274)>0, (138
with where the solution in the temperature encounters a singular-
ity. Hence also the IG state must be regarded as an approxi-
2\1—2y4+3y,—2 mation to a more complex statistical state, valid within some
Ao1= D , temperature range. For both states the different temperature
limits for the various thermodynamic properties are given in
1 V1—2v0+ yo— Tables | and Il and discussed in section IV B.
Agx=— D , (130
7’0
= 2v1-2y, lz:i V1—2y,—1 (131) D. Constant alpha approximation
D Yo D In the case of a strongly confined Gamit@ Inverse
yov1—27, Gaussiapstate, it turns out thak(T) is almost constant over
Ar=— — 0D a large temperature intervhf. These strongly confined states
correspond to typical liquid densities. In that case
. 1 (1=y)V1- 270+270 1 (132 ((90[) _(aa*) KiIn e (aC(,) 139
%o aT), \ T ), CYTm T/,
and
where the first term on the right-hand side is positive for a
D=(yy—2)Jy1—2y,—3vyy+2. 133y Iy, (or IG,) state and the second term negati(g@nce
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Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory 1903

(9Cy/dT)y < 0 ande<1). For these strongly confined states Note that the approximation is valid for the phase space
both terms approximately cancel and henge/(T),, =0, so  as a whole. Since the constant alpha approximation is a local

a(T)=a(Ty) = ag, reducing the TME to approximation only(although for liquids applicable over a
, , large temperature range, especially for the entropy and
(a_CV) :i & (140 Helmholtz free energy?), the T—0 andT— limits are not
aT v o T given, as they are in principle irrelevatior every confined
yielding the constant alpha equatidfs |S\)//S|3t,?m the infinite temperature limit of=—, see section
) .
CV(T):CVO(T_O) : (14D v, DISCUSSION AND RESULTS
, Clo [ T\ A. Multiphase systems
S'(M= Ao (T_o) ' (142 The basic derivation of the theokgection I) does not
have any assumption on the phase condition of the system,
A ToClo LA being then valid even for macroscopic multi-phase systems
U'(T)=Uo~ Ao+1 1= To : 143 4t fixed overall density. In fact, such systems can also be
) i1 considered as avery large collection of identical indepgndent
A'(T)=Ul— ToCvo [ i (l) 0 1 (144) subsystems$multi-phase elementary systemeach contain-
O Not1 | N\ Tp ' ing all the phases present in the overall system. It is evident
with hence that we can still apply the central limit theorem on

macroscopic multi-phase systems just as for single-phase

No= La(<<O. (145 ones. However, it must be noted that the potential energy
. . . - . distribution required to model a multi-phase system, al-
Furthermore, since in the range of typical liquid densi- ; -
. . though uninormal, is likely to be much more complex than
ties (0aldT)y=0, it follows that also : . oo

: the one needed for a single phase condition. This implies that
(0(dal dT) V) 1= (d(dal dV)1/dT)y=0. Hence the first - . ;

L ’ . . . only very sophisticated solutions of the generalized Pearson
derivative ofa in V is approximately temperature indepen- b d dd o f lti-ph
dent, and we obtain as conjugated pressure equdEgn syst_er_n can be used as good escrlp_tlons_ ora ml.”"P ase

’ " statistical state. We can investigate this point, considering a

60), using Eq. 141 folC\(T): biphasic system(the generalization to more phases is

ap’ T (%p’ . [dag) [ T\t straightforwar.
(ﬁ) o (W) vo(W) (T_o> (146 In general in a macroscopic system consisting of two
v v T macroscopic phases we can express the total Helmholtz free
yielding energy as the sum of the free energies of the two phases,
, , T Ao+l T Aot T A:_kT |n Q:_kT |n Q|_kT In Q||:A|+A||,
R e e ] 52
(147 whereA, andA,, are the free energies of phase | and Il and
where Q, and Q; the corresponding partition functions. We can
express in the usual way also the ideal reduced free energy as
T a_Dé) N ToCluoho (@) 148 , s
TRor1 AT, ot 12\ 9V . ( A'=A—A=KT In(ef”)—KT In € (153
or, equivalently, using Eq. 152 and the definition of the ideal
_ToC</o)\0 @) (149 reference state partition function, Eqg. 11, as
1_ .
)\0+1 N T A,:AI_AI ref+AII_AIIref+AI ref+AIIref_Aref
On the other hand, using the CPE B§, we can express (VIN)N
(dagl dV)1 in terms of @pgy/dT)y and @2py/dT?)y, giving =A/+A|+KT In (154

(Vi INDMNICV IN N

’ 2 27
80:—2)\0+12 0(@) __To , (a_pz?) (150  WhereA; r, A}, V; andN, are the ideal reference state free
(Ao+1) aT ), (t1)2\aT7)’ energy, ideal reduced free energy, volume and number of
- molecules of phasd. V=V,+V, and N=N,+N, are the
ﬁ) (151) volume and number of molecules of the total system. Ex-
aT? v pressing the ideal reduced free energy of each phase via Egs.

) . 22 and 29 we have
Both sets of expressions Bf andB, are completely equiva-

lent. However, it seems from a practical point of view, that A’ =kT In(e#”"),—kT In €+kT In(ef”"),—kT In ¢,
the latter are more useful, since the experimental values of N

(0%p4ldT?)y appear to be more accurate than the values of +KkTIn (VIN)

(dap/ V)7, see also section IV D. (VNN ANy N

_ AoTo
7 No+1

&pé) TS
\Y

9T, Ao+l

(155
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1904

and hence combining with Eqg. 153 we finally obtain

BN — BN B _e_(V/N) )N|<_e_(V/N) )Nu
(7 )=(e"" ) (e >"(e|(V,/N,) (Vi IND
where

G_ZEIIN, (157)

the positive realNth root of ¢ is the overallmolecular
phase-space fraction, and

—_ 1N,
€|—€| y

(158

Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory

(the smallest thermodynamic subsystem that can be consid-
ered fully independent from the rg¢strom Eqgs. 163 and 164
we finally obtain

(eF7y=(eP” Y =g(B)"?, (165

(€”)=a(B)"9(B)"*=0g(B)", (166

whereg(B) andn are the moment generating function and
the number of the elementary systems contained within the
whole system andch— in a macroscopic condition. Egs.
165 and 166 show that the moment generating function of
every macroscopic system is always fully defined by the mo-
ment generating function of the correspondinuulti-phase
elementary system.

—_ 1IN,

€||:€“ y (159)

are the molecular phase-space fractions of the two phaseB: Temperature limits
From Eq. 156 it is evident that the moment generating func- | this section we will derive from general statistical
tion of a biphasic system has a complexity, which is in genechanical considerations the zero and infinite temperature
eral (much higher than the complexity of the moment gen- |imits of various thermodynamic properties. We will than
erating functions of its single phases, being even morgnoy that in the infinite temperature limit the statistical states
complex than the product of the two. _ described in section 11l are always consistent with these gen-
The fact that the moment generating function of @ macrg| results, and in the zero temperature limit the statistical
roscopic biphasic system is not identical to the product of its;tates which can be considered completely physically pos-
single-phase moment generating functions, although thgjpie even close td=0 (theT, and IG, states, where the

overall partition function can be factorizégq. 153, means  potential energy has a lower linigre consistent with clas-
that the potential energy distributions of the two phases argjcg| statistical mechanics.

not completely statistically independent of each other. This

residual correlation between the two subparts is due to thé. Infinite temperature limit

fact that we have considered two subsystems with different  \ve can define in general from Eq. 22 the confined ideal
density, while this correlation would disappear if we subdi-reduced free energy as

vide the whole system into parts of identical density and

i fr*efﬁ’V//’dX
composttion. : . A* =kT In(eﬁ/‘/)= —kTIn —5——
In fact in the latter case, now denoting wiy andQ,, J'*dx
the patrtition functions of two identical macroscopic halves of o
the whole system, each being multiphasic if the whole sys- =—KTIn(e™#”" ), et (167
tem is multiphasic, since in this case which also implies
e 160 A* =U*"—KT In 1+M§'efﬁ——|v|§fefﬁ—+--~
2 3! '
1
Vi=Vi=5V, (161 (169
where M:rEf is the nth central potential energy moment
1 evaluated in the confined ideal reference ensemble and
NI:NII:E N, (162 U*"e=(2/"), s is the corresponding average potential en-
ergy, which are clearly temperature independent. Since for
and every temperaturé\* is finite, it follows that all the mo-
o o ments in Eg. 168, which are identical to the infinite tempera-
BU'N — 1 aB7\ — e
(&P ) =" =G(p). (163 ire ones of the system, are finite as well. Therefore
Eq. 156 reduces to lim U’ =y*re (169
ol Py o1 T—eo
(P7)=(eP") (e )=G(B)% (164 f
* 1€’
The last equation shows that if we subdivide the whole sys-  lim C\,= lim #=0, (170
tem in this way, the moment generating function is given  T—= T
exactly by the product of the ones of its subparts, implyinggng by expanding the logarithm in Eq. 168
that the potential energy distributions of the subparts are now . el
completely statistically independent. Hence, subdividing fur- ~ lIm A*=U*", (171

T—oo

ther each subpart into two identical halves and so forth until
we reach the size of a sing{multiphas¢ elementary system and hence
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Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory 1905

lim TS = lim S*=0. (172 tend to—ce. If Cy, tends to+, the entropy will tend to-o
T T as well, since applying L'Hospital’'s rule again to the first
So, considering thataS*/aT)y = Cl/T andCl, = 0 itfol-  Ine of Eq. 179 we have
lows thatS*<0. Moreover-? lim S* = lim[C},+ S*]. (180
1 T—0 T—0
. e_ 1
T'[T:O * =75 173 Remembering thaS* <0 this last equation implies that if
Cy— + , bothS* andS’ must tend to—«. Hence
and then ) )
lima*=Ilima<-—1. (181
: , __kine T—0 T—0
lim a=Ilim o*+ lim ﬁ=—w. (174
Tooe  Tow T Cu(T) Note that if the limit if C|, is finite, o* and @ must tend to
From the definition ofs we also have —o. Finally, from Eq. 178 it follows that
Mgref . . dzAr,nin
lim &= li = 17 limp* = limp’=—- —===0, (182
m T kT O A

and hence, using=(2/3)8, we find lim;_ ., y=0. Finally,  where in the last equation the volume derivative would not
the infinite temperature limit of the confined ideal reducedbe zero in the very unusual case where the overall volume is

pressure* = — (dA*/9V)y is smaller than the volume of the classical crystal where all the
qu* et atoms are at the positions of their overall lower energy limit.
lim p*=— , (176 The requirement that/,,, is finite, implies that at very
Toow dv low temperature only th€_ and IG, states can be used as a

proper description of the system. These states are consistent
33) with classical statistical mechanics, even in the zero tempera-
' ture limit, see Table Il. The Gaussian state, for example, does

From Table | it is evident that all the statistical states .
described in section Il are consistent with these general inr—wt fulfill Eq. 181. For thel'_ and IG_ states, the zero tem-

finite temperature limits. If moreover the confinement is ex-perature Iimi'gs are even impossible, because of the occurance
act (i.e., really temperature independenven the full ideal of a singularity afT, , given by Eqs. 113 and 138. If in the

reduced temperature limifgiven between square brackets in EV\I/éen;Ft);tr:tuEre riglzm?etlgi Z}Sfx?:rztlgt;’(\)’:ihtlgzt?; eﬁft
Table |) are completely correct. * : =4 y %

Yo), Pe , (peldT)y and @*pg!dT?)y of the form

which is in general finite, so lim, ., p’ =« for £&>0 (see Eq.

2. Zero temperature limit opz p%
. 0 0
For a pure classical system even for temperatures very pg +A01To(— +A°2T3(W =0. (183
close to zero, we can express the confined ideal reduced free v
energy as However, for real systems this relation cannot be used, be-
1 [rre 7 dx cause_of the gmerging quantum character at low temperature.
AF=——In——0p—. 177 It is also important to note that in the zero temperature
B J7*dx limit a classical system does not have to converge to a har-
Therefore, sincé limg_..["*exp{—B7/'}dx/["*dx=0, we  monic one. In fact, this harmonic condition is obtained when
can use L’Hospital’s rufé to obtain both the overall energy lower limit is really an energy mini-

mum (with continuous and zero forcesnd the potential
energy close to the minimum can be described by a second
order expansion(with non-zero continuous force deriva-
with 77/, the minimum possible potential energy, which tives). It is obvious that these conditions are not fulfilled by

lim A* = lim U’ =%, (178

min’
B—* B—oe

must be finite, and hence every type of potential energy function, implying that there
U’ — A* is no general rule for the zero temperature limit of the heat
lim S* = lim —T capacity, which can be even infinite, as for the, |&ate.
T—0 T—0
— I <O/J’ > - //r,nln + k I f "* eiﬁ( %' - /Kfrﬂin)dX .
_Tlino T n T dx C. Phase-space confinement
A very simple model for the phase-space confinement as
_ , [+ e B =7 min)dx introduced in Eq. 17 is excluded volume due to “hard body”
:T“m Cytkin [ dx . (79 interactions. If, because of the strong Pauli repulsions at

close contact, it is possible to define f@mos} spherical
In the last expression the last term clearly tends-te, and  molecules like water an interparticle distanegs=2r,g at
therefore ifCy, tends to a finite valu&* (and hences’) will which the two-particle interaction energy is virtually infinite
J. Chem. Phys., Vol. 106, No. 5, 1 February 1997
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1906 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory

in the temperature range of interest, the confined ideal refer-
ence state can be described as a hard sphSesystem'2°
Using the Carnahan-Starling equation of si@E®S,%

1+ 9+ 772— 7]3
(1-7)°
with pys the pressurep=vpy, pny the number density,
v=1o}g/6 the hard-sphere volume per molecule and the

hard-sphere diameter, we obt&iror the excess Helmholtz
free energy, Eq. 16

Prs=pnKT (184

molecular phase-space fraction €

ref NKT[ (1 :| —NKkT In €HS, (185)
whereeyg = eHS is the hard sphere phase-space fracgien 005 oo 20 00 @0 00 soo
molecule Hence density p,, (mol/dm®)
— 39’47 FIG. 2. Molecular ph fractierof function of densi
EHS: ex ﬁ (186) L 2. - olecular p as_e—space ractiero Wate[ as a function o en3|ty.
(1—7n) Legend: from entropy fit ), from values ofdCly/JT at Ty, partly from

Ref. 2 (©), other values from Ref. 2 af, (+) and 653 K(X) and HS
and confinement, Eq. 186, using,s=2.70 A (—).

dlne_HS Nk[Zn —47

ens= Nk —5y =77 (187 i E
Y In order to reduce the noise, we calculated valueg of

which is always positive sincg<1. Within this modelp* i and &, for all the densities by least-square fitting Eq. 98 on
the pressure of the system with respect to a HS fluid at théhe experimental reduced entropy data, denotedgpyand
same temperature and density. We will show that for watedo - We feel that this procedure is allowed, since the tem-
Eq. 186 provides a good description of the experimentallyperature at whicke is evaluated does not seem to affect the
observed phase-space fractions. Note that since water dogalue. Results are given in Fig.(#lled diamondg and Table
not have any intramolecular interactioagzo)’ the reduced ﬁ From the figure and the table it is clear that the values of
properties are identical to the ideal reduced ones. € and &, obtained from the entropy fit are in good agreement

In Ref. 2 we presented for water valueseond for a ~ With the previous valueser, and egs9), based orvCy/JT.
confined Gamma state at various liquid densities, calculate@e then fitted a HS confinement cur(ieg. 186 through the
from experimental values @&, C|, andgC{/JT (i.e., swas data, yieldingops=2.70 A, see Fig. 2. In the table we also
calculated fronC{, anddCl/aT, Eq. 92, yieldingS*, Eq. 98, give theseeys values and the correspondingj s values,
and hence = exp{(S, — S')/NK). Values ofe were evalu- ~ obtained by solving & s from Sy, — NKIneys
ated at two different temperaturés, and 653 K and were = Cl,[1/8gns + 1/85 s In(1 — & no) 1. All the data are con-
consistent within the accuracy, indicating that a confinedsistent within the experimental accuracy, implying among
Gamma state is a very good description of the real physicabthers that the, 45 values in fact can be considered as “ex
state at those liquid conditions. We now extended these cakct” values. Especially from the values éf; and & ps in
culations afT, to the low-density region as well, see Fig. 2 the liquid regime, it is clear that, increasing the density, the
(open diamonds Clearly, apart from some noise, we see aenergy distribution gradually changes from a left-handed
gradual decrease of with the density, i.e., an increasing (Gamma distribution, via a Gaussiat87 mol/dn?) into a
confinement. right-handed Gamma distribution, as already stated in Ref.

TABLE lIl. ‘e and &, parameters for liquid water.

PN 0
(mol/dn) (K) E_Toa €653’ 5 ens’ 8" 3o it 8o ns’
30.38 653.0 0.4®.37) 0.37 0.33 0.37 -0.13-0.23 —0.49 -0.27
37.24 613.0 0.2D.39 0.32 0.28 0.28 —-0.260.22 0.05 0.02
42.69 563.0 0.20.33 0.26 0.26 0.21 0.30.49 0.35 0.22
49.00 513.0 0.1®.249 0.20 0.22 0.15 0.38.49 0.49 0.31
55.32 313.0 0.09.14 ~0.22 0.11 0.09 0.49.57) 0.49 0.49

8From Ref. 2, evaluated &t, with two different methods to obtaieCy,o/JT.
From Ref. 2, evaluated at=653 K.

°From least-square fitting Eq. 98 to experimental entropy data.

YFrom least-square fitting Eq. 186 &g, values.

®Using ey values, see text.
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Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory 1907

TABLE IV. Molecular (hard sphergradii of water. spherical molecules several equations of state have been
proposed?~2° For hard ellipsoid-of-revolutiofHER) fluids

Method A . .
o r& with length to breath ratiac, Maeso and SolaRafor ex-
HS confinﬁment fit ore @ 1.35 ample proposed a generalized Carnahan-Starling EOS, with
HS goo(r) 122 k-dependent coefficients ():
l .
EULJC KT 1+a1(K)77+a2(K)772+a3(K)773 188
b parameter van der Waals EDs 1.44 PHER™ PN (1-7)° . (188
b parameter Redlich-Kwong/Soave EDS 1.28
b parameter Peng-Robinson EOS 1.24 where
van der Waals radius oxygén 1.40 a;(k)=—1.18+1.09/k+1.09%
3t of Eq. 186 on experimentad values, see text and Fig. 2. ay(k)=—1.92+1.59/k+1.33k

bBy fitting the height of the first peak of the oxygen-oxygen radial distribu-

tion function (RDF) at 300 K and 1.0 g/m(Ref. 5 to the HS RDF(Ref. and
39). _
°From the Lennard-Jones parameter, based on viscosity déRef. 27. a3(k)=5.23-2.91/k—2.96«
d9From the b parameter of the van der Waals EQRef. 27, where for 1/3<x<3 yielding
b=(1/8)RT,/p. and using the relatiob=2mo5¢/3 (Ref. 13; the critical o ’

parameterd . andp. were taken from Ref. 36. €ner=(1— 77)(1“’3)
fldem via the Redlich-Kwong or Soave EOS, whére0.0866RT,/p,
(Ref. 27). 1 2
fldem via the Peng-Robinson EOS, whére 0.0778R T./p, (Ref. 27. 5 (3+a;—a,—3ag)n°—(2+a;—az)y
9Reference 40. X exp
(1-7)?

o (189
2. Another implication is the fact that at least for water the
I' T, transition of the effective Gamma statée., ap- and
proximate Gamma state descriptions without confinejfent Nk[—(1+ag) 7+ (83—a,)n°—(3+a;)ny
at low density is for the greater part due to the HS confine- ~ $HER™ ~ v (1—7)3 .
ment; using the confinement the energy distribution is left-
handed over the whole temperature range, see also section (190
IV D. These equations reduce to the HS ofiegs. 184, 186 and

In Table IV we present some radii which are an indica-187) for a;=a,=1 anda;=—1, and may be used for more
tion of the possible HS radius of water. All values are verycomplex molecules.
close to our value of,s=1.35 A, implying that our value is
physically meaningful. Also Pieroffi points out that various
methods, including the Scaled Particle Theory, yield an av- For three different densitie§9.038, 37.24 and 55.32
erage radius of-1.35 A. The results based on theparam-  mol/dnT) we will compare the results of the confined Gauss-
eter of the different cubic equations of stéimsically modi- ian, Gamma and Inverse Gaussian states and the constant
fied van der Waals equatiori€’), like the Redlich-Kwong®  alpha approximation with the experimental d¥fta! see also
Soavé® and Peng-Robinsdf EOS, are perhaps somewhat Ref. 2 for further details. It should be noted that there is
fortuitous, since it is known that they are not very suited forsubstantial noise especially in the experimental heat capacity
polar molecule$’ However, theb parameters are calculated data at higher density, although already calculated from a 6th
via critical propertieqthe critical temperatur&, and pres- order polynomial fit on the reduced entropy data, probably
surep.) and the relation betweeln and the HS volume is due® to the shape of the EOS, used to produce the steam
valid in the low density limit, where these EOS still might be tables of Burnhanet al3” We use the HS confinement val-
reasonable. ues eys, éus and &g from the previous section, with

At this point it must be stressed that there is in fact aoys=2.70 A (based on a Gamma state analysand y, ps
(rather narrow window of € and & values, which are con- for the IG state, obtained in a similar way #,g i.e.,
sistent with the experimental data. However, within the acby solving y, s from Sy, — NKkIn'eys = CuolUyons
curacy of the experimental data, it is very difficult to distin- + 1/73 sl — V1—2vy9u9]. We will compare the reduced
guish between these values. Moreover, the values of foentropy, heat capacity and pressure, since with these proper-
exampledC\/dT are (probably much affected by the spe- ties all other properties can be reconstructed. Within the con-
cific choice of the EOS used to collect and present all the readtant alpha approximation, the pressure is calculated using
(often inconsistentexperimental data in consistent thermo- Egs. 150 and 151, since for the equivalent Egs. 148 and 149
dynamic tables. So from a pragmatic point of view, it isthe accuracy on the experimental valuesdef/dV is not
much better to use a HS model for theand £ values, and  enough. It should be mentioned once more, that since water
then to calculatedy s or yons values, based on the heat has no intramolecular interactions, the reduced properties are
capacity and entropy at one temperatiligeonly. in this case identical to the ideal reduced ones.

For larger molecules lacking an almost spherical shape a At 9 mol/dn? (dense gas conditiorihe potential energy
simple HS description may not be sufficient. For non-distribution is left-handed, since & us=—1.99

D. Entropy, heat capacity and pressure results
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FIG. 3. Results for water giy=9.038 mol/dni: reduced entrop’. Leg-
end: experimental 4 ), confined Gaussiaft--), confined Gamm#&—) and

confined IG(--+), using a HS confinement withy,s=2.70 A, and constant

(Yons=—1.49 at T;=661 K. The confined Gamma and IG
results are almost identical, and agree very well with th
experimental data over a temperature range of at least 500
see Figs. 3, 4 and 5. Obviously the Gaussian state giv
worse results, since the energy distribution is quite asymm

ric (note especially the shift in the entropy, becauge =

— 0.226, instead of-3). Since for lower density systems

with a small confinemente,;s=0.79 in this casethe intrin-
sic entropy function is not all temperature indepenfi¢see

Eq. 139, also the constant alpha approximation, being a lo-
cal approximation, is much worse than the Gamma and |
states: the entropy for example is reproduced only within
temperature range of 75 K. As already mentioned in the

previous section, at least for water the—I"_ transition of

the effective Gamma statése., approximate Gamma state
descriptions without confinemenht at low density is for the

40.0 T T T

30.0 -

20.0 |

100 -

Reduced heat capacity C,’ (J/mol K)

00 1 L 1 1
600 700 800 900 1000

Temperature (K)

1100

FIG. 4. Results for water aiy=9.038 mol/dm: reduced heat capaciy,.
Legend: experimental4 ), confined Gaussiaft--), confined Gamma—)
and confined IQ-+), using a HS confinement withy,s=2.70 A, and con-
stant alphg(----- ).
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FIG. 5. Results for water giy=9.038 mol/dm: reduced pressung’. Leg-
end: experimental 4 ), confined Gaussiat--), confined Gamm#—) and
confined IG(--+), using a HS confinement withy,s=2.70 A, and constant

egreater part due to the HS confinement. At least within the
kange of 500 K the energy distribution remains left-handed.

From Table Il it is clear that at 37 mol/dhtlow density

jlsquid) the statistical state is almost Gaussian, since

8 ns=0.02(yyus=0.015 at Ty=613 K. This is also evident
from Figs. 6, 7 and 8, where the Gaussian state predictions
are very close to the Gamma and |G ones and all agree very
well with the experimental data over a range of at least 500
K. The Gamma and IG results obviously are identical, since

é)oth states converge to the Gaussian stateffar vy, tend-

ing to zero. Clearly, at this not too high density with

a—

ens=0.32, the constant alpha approximation, being a local
approximation, breaks down after200 K for the entropy

and heat capacity. The pressure results, however, are very
good, although this may be a little bit fortuitous.

-12.0 . . . . l .
-140 |
-16.0
-18.0 |
-200 |

-22.0

Reduced entropy S' (J/mol K)

.0 1 1 L 1 1 1
500 600 700 800 900 1000 1100
Temperature (K)

FIG. 6. Results for water giy=37.24 mol/dm: reduced entropys’. Leg-
end: experimental 4 ), confined Gaussiat--), confined Gamma—) and
confined IG(-++), using a HS confinement with,s=2.70 A, and constant
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FIG. 7. Results for water gty =37.24 mol/dri: reduced heat capaci;,. ~ FIC- 9- Results for water giy=55.32 mol/dri: reduced entrop{'. Leg-
Legend: experimental® ), confined Gaussiaft--), confined Gamma—) end: experimenta( ), confined Gaussiaft--), confined Gamm#—) and
and confined 1Q-++), using a HS confinement with,s=2.70 A, and con- confined IG(--+), using a HS confinement withy,s=2.70 A, and constant
stant alphg----- ). alpha(----- ).

V. CONCLUSIONS

Turning to the highest densits5 mol/dnt), where we The basis of the quasi-Gaussian entropy theory is the
have a right-handed potential energy distributionfact that theexcessHelmholtz free energyor entropy, i.e.,
(8ons=0.49, %us=0.31 atT(=313 K), we see that the with respect to a proper reference state, can be expressed in
Gamma and IG results are virtually identical for all proper-terms of the moment generating function of the potential
ties, even for this value of, 45, and again agree very well energy distributionEgs. 22 and 36 therefore reducing the
with the experimental data over a range of at least 500 K, sestatistical mechanical description, which is usually based on
Figs. 9, 10 and 11. Sinc&, 4s—=0.49, the Gaussian state is the high-dimensional configurational partition function, to a
clearly not sufficient in this cas@ote especially the shift in  one-dimensional problem. Furthermore, because of the mac-
the entropy, ast§y = —0.771). The constant alpha approxi- roscopic character of usual systems, the central limit theorem
mation, however, although less accurate than the Gammean be used to show that this potential energy distribution
and IG states, gives satisfactory results at this high densitgan be described by a uninormal distribution function, close
with a strong confinemen(es=0.09, which seems to be to a Gaussiar“quasi-Gaussiany.
the case for many different liquids at high denéify. In this article we derived the quasi-Gaussian entropy

theory, using slightly different, but more convenient refer-

60.0 T T

50.0

40.0

30.0

20.0

Reduced pressure p' (kbar)
Reduced heat capacity C,’ (J/mol K)

1 L 1 1 L 0.0 1 1 1 Il
600 700 800 900 1000 1100 1200 300 400 500 600 700 800

Temperature (K) Temperature (K)

FIG. 8. Results for water giy=37.24 mol/dm: reduced pressung’. Leg- FIG. 10. Results for water g, =55.32 mol/dm: reduced heat capacity,.
end: experimental 4 ), confined Gaussiaf--), confined(—) and confined  Legend: experimental® ), confined Gaussiaft--), confined Gamma—)
IG (--+), using a HS confinement witb,s=2.70 A, and constant alpha and confined IG:-+), using a HS confinement with,s=2.70 A, and con-
(-+---). stant alphg-----).
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1910 Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory

8.0 . . . . excluded volume of a hard sphefdS) fluid, yielding a HS
diameteros=2.70 A, which is in agreement with values
obtained from other methods. Using this HS confinement, for
three different densitie&lense gas, low and high-density lig-
uid) we compared the results of the different statistical states
with experimental entropy, heat capacity and pressure data,
indicating that both the Gamma and IG states give excellent
results within a temperature range of at least 500 K. If the
guantitiesé or y (Eq. 92 and 11) which are a measure of
the asymmetry of the distribution, are approximately zero
within the accuracy, also the Gaussian state can be used suc-
cessfully.
Finally, we also compared the experimental data with
s . ‘ ‘ ‘ the constant alpha approximation, merely a local approxima-
800 400 500 600 700 800 tion, which is valid for high density liquids within a certain
Temperature (K) . .
temperature range, especially for the prediction of the Helm-
FIG. 11. Results for water gby=55.32 mol/dm: reduced pressurg'. holtz free energy. Because of its simplicity, though, it is very
Legend: experimental®), confined Gaussiaf--), confined Gammg&—)  Suited for approximate applications, like for example the cal-
and confined IQ+-), using a HS confinement with,s=2.70 A, and con-  cylation of the liquid-vapour equilibrium pressure along the
stant alphd-----). coexistence line, where the accuracy of this approximation is
comparable to that of the Gamma state previously dsed.
It is interesting to note that a similar derivation of this

ence states than the ones used previously to derive the badfteory in the isothermal-isobaric ensembikp(T), express-
theory!? Moreover, we now included a general descriptioning the excess Gibbs free energy in terms of the moment
of the possib|e confinement of the System within a part o1generating function of the instantaneous enthalpy distribu-
phase spacéconfigurational spage Although the theory is tion, and hence expressing the entropy in termgadfmited
in principle valid for single-phase, as well as multi-phaseset of temperature derivatives)dhe isobaric heat capacity,
systems, specific attention is paid to the conditions in thelthough very appealing from a practical point of view, is not
latter case, concerning the use of the central limit theorenpossible in a rigorous way. The reason is the fact that the
and the moment generating function. We also showed thdgleal reference state in that case would be a system with no
the generalized Pearson system of distributions, which wéter and intramolecular interaction®=y=0) at exactly
used to generate and classify different uninormal distribuzero pressure. The latter implies that the excess Gibbs free
tions of increasing complexity, follows directly from the sta- €nergy of the system is infinite and therefore we cannot use
tistical mechanical definition of the energy distribution. ~ this “exact” reference condition. However, we showed that
The excess Helmholtz free energy, internal energy, enit is still possible for gases to use this theory for the potential
tropy and heat capacity are defined by the potential energgnergy distribution in th&lpT ensemble, although in an ap-
distribution, the parameters of which can be always ex{roximate way, by chosing a proper reference state, see Ref.
pressed in terms of the excess heat capacity and a limited st
of its temperature derivatives, and their temperature depen- The fact that already relatively simple statistical states
dence follows from the solution of the thermodynamic mas<eproduce with high accuracy, both for liquids and gases, the
ter equationEq. 48. In this article we derived a new differ- temperature dependence of all thermodynamic properties at
ential equation, the Conjugated pressure eque(ﬁq] 60 or fixed density(in the liquid regime much better than usual
61), the solution of which yields the temperature dependenc€quations of state, like the van der Waals, Peng-Robinson,
of the excess pressure and hence of the enthalpy and Gib&®ave or Redlich-Kwong equatiopgmplies that this theory
free energy. Therefore each type of potential energy districould provide the basis for a general, fully physically con-
bution provides the complete excess thermodynamics of théistent fluid equation of state. In a forthcoming article, we
system at constant density, and hence defines a different st#ill describe the use of the quasi-Gaussian entropy theory in
tistical state. different ensembles, and derive in this way the density de-
For the Gaussian, Gamma and Inverse Gausdiah Pendence of the thermodynamic properties, which might be
distribution we derived the corresponding thermodynamicg!sed to construct a complete equation of state, combining
and showed that in the infinite temperature limit all the statemperature and density dependence.
tistical states are consistent with statistical mechanics, and in
the zero temperature limit the statistical states with a finite
energy lower limit(the I', and IG, states, defined by the
right-handed Gamma and IG distributionare still com- ACKNOWLEDGMENTS
pletely consistent with classical statistical mechanics.
For water we showed that the confinement of the system  This work was supported by the Netherlands Foundation
within a part of phase space can be modeled very well by théor Chemical ResearckSON) with financial aid from the
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Amadei, Apol, and Berendsen: Quasi-Gaussian entropy theory 1911
where 77*, b is an arbitrary configuration on the constraint
surface. Now considering that when,=#9 we haveb=0,

we can express the second integral on the right-hand side of
Eqg. A3 as

Netherlands Organization for Scientific Reseail@®iWVO)
and by the Training and Mobility of Research€f$1R) Pro-
gram of the European Community.
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APPENDIX f R AT C S (O SILE L

8(b) .y
ICop B0y

In general for a molecular system in the classical limit
the atomic motions, not involving changes in bond lengths
and bond angles, can be described in a pure classical way,
while the bond vibrations require a real quantum mechanicavhere J(z7*,b°) is the Jacobian for the transformatian,,
treatment. These quantum bond vibrations, however, virtu@»— 7, b, evaluated aty* b°%), which is a function of the
ally do not alter the bond lengths and angles from their equicoordinates only and hence a constant for a given configura-
librium (ground statevalues, implying that the othdclas-  tion. Using Eq. A4 in Eq. A3 and transforming, b,
sica) atomic motions are equivalent to the ones of a@—X.P, remembering that the Jacobian of the transforma-

completely classical system in the presence of ideal holotion from one set of generalized coordinates and conjugated

— | e=BH s B0, ) (A4)

nomic constraint forces, which keep the bond lengths andhomenta to any other is unity, we finally obtain

angles fixed. Hence defining as a set of generalized coor-
dinates on the constraint surfageordinates which define
positions only on the surfageand =7, as their conjugated

momenta, we can express the partition function for a system

of N identical molecules in the electronic ground state as
G%hd
N!

Q= 2 Je—B(Wc(17,|)+-’/7'c(7lm,7))dﬂd,n.n, (A1)
1

where 7. and.7Z; are the total potentialincluding vibra-
tional) and kinetic energy functions, evaluated on the
d-dimensional constraint surfadg? is the overall electronic
ground state degeneracy factdhe electronic ground state
energy has been included i), h Planck’s constant and the
summation runs over all accessible vibrational stétgs

If we defineb as the bond lengths and angleSas their
equilibrium values ands, as the corresponding conjugated
momenta, we can rewrite the integral in Eq. Al as

fe*ﬁ(7”0(7/,|)+»%};(71,ﬂ,,))d,7d1777
:j e*ﬁ(7"(77,b,|)+v75'(n,byﬁﬂvﬂb))g(b_bO)

X 8(m,— my)d pdbd 7w, dm, (A2)

where now the energy is evaluated in the whole phase spac

and wg(n, m,) are the values ofr, on the constraint surface
in such a way thab=0.

G°h~d

N!

_8(b)
X - BZ(p)

f TP
with x°=#* b%. Eq. A5 is therefore Eq. Al expressed in
terms of the usual coordinates and momeqtaand describ-
ing the constraints in terms of the bonds properties and their
time derivatives instead of using these properties and their
conjugated momenta which are in general complicated func-

tions involving the mass tensor. Hence with the notation
previously' used to introduce the theory we have

Q= Z f e A7 5(b—b%) dx

dp (A5)

1 enkinHpot
Q=7 Q°Q“"Q” (A6)

with

(AT)
ont=§|) f efﬁ”‘é(b—b")dx=2 f e F7dx, (AB)

Qkin: h*df 6*5-7//'5( b)dp, (A9)
e

where in the last equation we must calculatt the arbitrary
position on the constraint surfacé.

For macroscopic systems Eq. A2 can be factorized as it

follows from the fact that the integral on the momenta is

virtually independent of the coordinates although the inte-

grand generally is not. Hence
f efﬁ(%‘(n,b,l)#%'(n,b,w”,ﬂ-b))b\(b_ bO)
X 8(mm,— my)dydbd , dam,
=f e A71nbD 5(b— b°)dndbf e~ AT By )

X 8(amp— ﬁg( 7, m,))dm,dm,, (A3)
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