Prediction of the liquid—vapor equilibrium pressure using the
guasi-Gaussian entropy theory
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We derived a method to evaluate the liquid—vapor equilibrium pressure, with high accuracy over a

large range of temperature, using the quasi-Gaussian entropy theory. The final expression that we
obtain for the equilibrium pressure as a function of the temperature can be considered as a very
accurate approximate solution of the Clausius—Clapeyron equation. The method was applied to
water, methanol and mercury, and was compared to two usual approximations of the Clausius—
Clapeyron equation. €1996 American Institute of Physid$$0021-960606)52140-9

I. INTRODUCTION properties as a function of temperature at fixed volume. The
o .. basic idea of this theory is to rewrite in the canonical en-
The best known approximation to calculate the liquid—gempie the expressions of the reduced Helmholtz free energy
vapor equilibrium pressure is an approximated solution ofn4 entropy in terms of the potential energy distribution
the Clausius—Clapeyron equatibn: function. For a macroscopic system this distribution must be
AHL(To) (1 1 uninormal and very close to a Gaussidguasi-Gaussian).
p*(T)=p*(To) exp{ - T( ] (1) Using a suitable framework to generate different uninormal
distributions, the reduced entropy can be expressed in terms
where it is assumed that the vapor is ideal and the vaporizaf the reduced isochoric heat capacity and a limited set of its
tion enthalpyAH,, is independent of the temperature, thetemperature derivatives. Hence this serves as a closure rela-
constant enthalpy approximatig@EA). However the latter tion for the general thermodynamic equation
assumption usually breaks down within a temperature rang@)S'/4T),,=C\{/T, whereS" andC}, are the reduced entropy
of ~50—100 K. When we use the first temperature deriva-and heat capacity, thus forming a completely defined differ-
tive of AH,, along the saturation line, i.eG,=dAH,/dT, ential equation, the “thermodynamic master equation” at
we obtairt constant volume. The solution of this equation depends on
c, /R the kind of potential energy distribution function, which
p* (T)=p* (To)<— hence defines different “statistical states” of the system.
To We showed* that, apart from conditions close to the
AH(To)—C,(1 1 critical density, for both fluid water and methane some ap-
><exp|’ - T( )] (20 proximations based on a Gamma distributigine effective
Gammaandconfined Gammatatg can be used successfully
which is applicable over a larger temperature range than thas solutions of the thermodynamic master equation. In this
previous equation. It should be noted that higher order expaper we will apply the effective Gamma state to evaluate
pansions suffer from the difficulty to obtain reliable higher the liqguid—vapor equilibrium pressure of water, methanol
order derivatives along the saturation line and hence are geand mercury and we will compare the results with experi-
erally not used. mental data and the predictions of E¢b). and (2).
In this paper we will derive arfapproximatedl expres-
sion of the equilibrium pressure in terms of the reduced” THEORY
Helmholtz free energy. This reduced free enedy (i.e., '
with respect to an ideal gas at the same density and temper&- General theory

ture) can be evaluated using the quasi-Gaussian entropy  por small molecules like water and methanol where the
theory” a theory which provides reduced thermodynamiceagsical intramolecular potential energy is abséat the
latter considering its dihedral angle freely rotajingnd
dAuthor to whom correspondence should be addressed. where the energy gap of the vibrational energy is much
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larger tharkT in the temperature range of intergfir water bl(llbz)bo/bi ,
and methanol this is true at least up to 100QRefs. 5 and p(A2) = ————2 — (by+byA7)Po/bi1
6)], we can express the reduced free enekfyand entropy I'(bo/b7)
S (i.e., with respect to an ideal gas at the same temperature bo+b; A%
and density as X exp{ - T] (7)
1
A"=U"+KkT In f ePrp(A70)dA %, (3)  with by andb; parameters which can be expressed in terms

of T, Cy, and (#C\/4T),,. This distribution can be used to
obtain solutions of the thermodynamic master equatafn
S=_kin f P p(A /) dA %, 4) fec_tlve Gamma state and confined Gamma state solt)!t|ons
which reproduce accurately the thermodynamic properties of
fluid systems at fixed density as a function of the tempera-
with ture. In this paper we will use the effective Gamma state
solution, valid for systems in a perturbed Gamma state con-
A== (W)= 2=, (5)  dition, which can be considered as the “closest” Gamma
state solution to the real statistical state of the system around

where 77 is the potential energy difference between the sys—the reference temperatlg (i.e., the Gamma state solution

tem and the ideal gas, i.e., the classical intermolecular poteﬁr'\—’e']fzr;hnec;é:;nrﬁ eerg;)pry ;inghr;ea;szfsc;ty ?é;g%ﬁy;}?& Téfhe
tial energy plus the possible shift in the vibrational zero point peratui). 9 xp '

energy between the system and the ideal Gas mercury dhuced Helmholtz frge g?ergﬁthflxe(fjf de_nsnéas functlcin pf
only the intermolecular potential energy is involved % t .(;}emperatubederlve rom the efiective Gamma solution
since no vibrational energy is preseng=1/kT, andp(A%)

is the probability distribution of the energy fluctuatidvz.

We showed that for macroscopic systemsising the central ToCU(To)

limit theorem® p(A7/) must be close to a Gaussiéguasi- AL(T)=U"(To)— 5

Gaussian’). Therefore we can use a generalized Pearson sys-

tem of uninormal distributior’s*! to evaluateA™ and S', TCY(To) T(1-45) g
finding thatS' can be expressed as a functionlofCy, and a B (8%)2 : T(1-85)+Tyd5 ®

limited number of its temperature derivatives.

It must be noted that the central limit theorem does Noyith U’ the reduced internal energy, an arbitrary refer-
guarantee that the distribution of the potential energy has NQnce temperature and a parameterodefining the Gamma
(smal) deviations from a uninormal function in the far tail. state, connected to the skewness of the corresponding

However, the integral in Egs. 3 and 4 should not be affecteg; ;4 gistribution, which can be evaluated via the intrinsic
if the corresponding integrand, which is in general also aentropy function at the reference temperatiffe:
uninormal curve, is negligible in the far-tail range, as is usu-

ally the case sincp(A%/) is very sharply peaketf:®
: . . S(Ty) 1
Using the general thermodynamic  equation a(Tg)= =
(3S'19T)y,=CL/T and defining the intrinsic entropy CUTo) & (8)°
functior™* «=S'/C},, we finally obtain thethermodynamic
master equatioh

In(1—8%). (9)

B. Application to the liquid—vapor equilibrium

P acr pressure

o \Y

ﬁ) +a(ﬁ) . (6) We can link the liquid—vapor equilibrium pressure and
v v the reduced Helmholtz free energy in the following way.

) ] o We can express the chemical potential of the liquid in
. This equation can be solved.once the distribupeh7) ~_equilibrium with its vapor(considered as an ideal gas
is known at one temperature, since the parameters defining,ating the chemical potentials, as

p(A7/) can be expressed in termsBfCY, and a limited set

of its temperature derivatives. Hence via E4). we can also 0* (T)

_express‘sr anda in terms of_these quantities, and_ so_E@). M|(DK,(T),T)=#QG(T) +RT |”(T): (10)

is a completely defined differential equation yielding the p

temperature dependence ©f and hence ofs’, U" andA".

Therefore every type of potential energy distribution func-wherep* andpy, are the equilibrium pressure and the equi-
tion defines a different statistical state providing the comdibrium liquid density andp® and ,uge are the pressure and
plete reduced thermodynamics of the system. We shdfved the chemical potential of the ideal gas in the standard condi-
that one of the first acceptable distributions of the generaltion. On the other hand we can also express the chemical
ized Pearson system is the Gamma distribiitién potential of the liquid as

|
Lo
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FIG. 1. Experimental results and predictions for water. Legend: experimeng|G, 2. Experimental results and predictions for methanol. Legend: experi-
tal data are represented with error bars5%), effective Gamma approxi- mental data are represented with error bar§%), effective Gamma ap-

mation (—), CEA (---), and LEA (—--). proximation(—), CEA (---), and LEA (—--).
An(pr(To), T)—RT
m(pR(T).T)=p (pR(T), T)+ ug (T) p*(T)=pX(To)RT exp{ mi PN FST , (15
*

+RT Mw—) where Al (px(To),T) can be evaluated from the effective

p Gamma state free enerdfq. (8)], since it is the reduced
* Helmholtz free energy of a system at fixed density. It should

' (p* S Pn(DRT be clear that Eq(15) is valid only in a temperature range
=An(pN(T), T)—RT+ug (T)+RT In| ——=—/, q ‘only _ p ge

P where the vapor can be considered an ideal gas and the liquid

(12) is approximately at constant densiiyr at least the integral
where u" is the reduced chemical potentid,, is the re- in Eq. (14) is negligible.
duced molar Helmholtz free energy and where we used the
fact thatp* V| = 0 (hereVy,, is the molar volume of the |, RESULTS
liguid). Combining Egs. 10 and 11 we obtain
For water we used as reference temperaiyye 300 K

P* (M ) (12) where the density of the saturated liquid is 55.3 mofidim
pn(T)RT) this conditiod the molar reduced internal energy
U/(To)=—41.43 kd/mol, the molar reduced heat capacity
cy(To) =0.0494 kd/mol K ands§ =0.772. In Fig. 1 we com-

AL (pN(T),T)—RT=RT In(

From the definition of the Helmholtz free energy we also

have L o . )
pare the prediction of our approximation with experimental
- - (T dpn datal® with the usual constant enthalpy approximation
Am(Pn(T), T)=An(pn(To), T) + L*( )p(pN'T)K (CEA) and the linear enthalpy approximatiohEA) of the
N Clausius—Clapeyron equation, E@$) and(2). We used the
pn(T) same reference temperaturg where the molar vaporization
—RT'”(pﬁ (To)) (13 enthalpy AH,(To)=43.9 kJ/mol andc,(To)=—0.0425
kJd/mol K. Note the logarithmic vertical scale. From the
and therefore from Eq12) figure it is evident that with our approach it is possible to
o (T) dpn reproduce the experimental data, within 5% of error, over
AL(pn(To), T+ f *N p(pn,T)——RT 260 K. From the figure it is also clear that both the CEA and
Pn(To PN LEA predictions are validwithin 5% of erro) for a more
p*(T) restricted temperature range, about 100 K and 160 K, respec-
:RTIH(W) (14  tively. At the highest temperature considerégb0 K) the

actual density of the saturated liquid is about 22% lower than
with T, any temperature in the range of interest apdand  the reference one. This implies that our method can be
p the density and the pressure of the liquid. If for the liquid still valid for moderate variations of the liquid density if
in equilibrium with its vapor, the density can be consideredthe integral in Eq.(14) can be neglected. In this case this
approximately constant in temperatufiee., dp/dT=0), integral yields a correction of only 0.3 kJ/mol at the highest
from Eq. (14) it follows that temperature.
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of temperature, the liquid—vapor equilibrium pressure with
high accuracy. The approximation used is limited to condi-
tions where the vapor can be considered an ideal gas, the
corrections in the Helmholtz free energy due to the change in
the liquid density are negligible and the effective Gamma
state provides an accurate description of the thermodynamics
at fixed density. The method was applied to water, methanol
and mercury providing an excellent prediction of the equilib-
rium pressure over a temperature range larger than the range
where the CEA has the same accuracy. For methanol and
mercury the LEA is as accurate as our method over a com-
parable temperature range, while for water it is worse. It is
moreover worth mentioning that a simple Gaussian distribu-
. . ‘ ‘ tion (defining the Gaussian stdtds in general unable to
200 300 400 500 600 700 reproduce the fluid thermodynamics at fixed density and
Temperature () hence cannot be used in this application. Our method seems
FIG. 3. Experimental results and predictions for mercury. Legend: experit0 be a more accurate approximation solution of the
men_tal d_ata are represented with error b@$%), effective Gamma ap- Clausius—Clapeyron equation than the CEA and LEA, re-
proximation(—), CEA (--), and LEA(—-). quiring one more input quantity at the reference temperature
than the latter. BesidesU},, ¢, andpy we need als&, (or

H *
In Fig. 2 we show the results for methanol. In this caseBquivalentlyp®).

we have used as reference temperaflge 180 K with a
saturated liquid density of 28.1 mol/dmin this conditiori
Ul (Tg)=—40.3 kd/mol, ¢{(T;)=0.040 kJ/mol K and

5 =0.926. Also for methanol we compared our prediction
with experimental datd and with the CEA and LEAusing lfo}gv'l/;g;ns'PhySical Chemistry3rd ed.(Oxford University Press, Ox-
AHm(TO) =41.8 kJ/mOlland‘\’U(TO) = —0.030 kJ/mol K. !n 2K. D’enbigH,The Principles of Chemical Equilibriut€Cambridge Univer-
this case our method is able to reproduce the experimentalsity press, Cambridge, 1955
data, within 5% of error, over 220 K. Also for methanol the *A. Amadei, M. E. F. Apol, A. Di Nola, and H. J. C. Berendsen, J. Chem.
CEA prediction is valid for a shorter temperature range4Phy5~104 1560(1999.
(about 60 K, but the LEA approach has a comparable accu- 2"66%(;:(;’0'* A. Amadei, and H. J. C. Berendsen, J. Chem. Phgé.
racy'. It is interesting to ”Ot? that at the hlgheSt.temperatur&J. P. M. Po'.stma, Ph.D. thesis, University of Groningen, The Netherlands,
considered400 K) the density of the saturated liquid has a 1935
deviation from the reference one comparable to the watefc. J. PouchertThe Aldrich Library of Infrared Spectra3rd ed.(The

case(about 25% and the corresponding correction term is at _Aldrich Chemical Company, Milwaukee, 1981

most 0.6 kJ/mol. “In this paper, as in the previous ones, we only consider homogeneous
systems in a single phase. In the case of multiphase systems, although the
total potential energy distribution function in general must be also quasi-

10"

107 |
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Finally in Fig. 3 we show the results obtained for mer-

cury. We usedly=273 K wheré’ pu(To)=67.77 mol/dn, Gaussian, the description of this distribution probably requires a more
Ul (To)=—59.34 kJ/mol,c{(T,)=0.0155 kJ/mol K and  complex uninormal function that the ones suitable for single phase sys-
5 =0.960. For this metal our prediction reproducesthin tems.

50 of erroD the experimental da{%in almost the whole 8J. K. Patel, C. H. Kapadia, and D. B. OweHandbook of Statistical
Distributions Vol. 20 in Statistics: Textbooks and Monograptidarcel

temperature mterval. vyhere data are avalla(frbm 235 K to. Dekker, New York, 1976
670 K). Only for the initial 2 K a moderately higher erroris 9k pearson, Philos. Trans. R. Soc.185, 719 (1894,
present(this could be due to inaccuracies of the measurei®J. K. Ord,Families of Frequency Distributionriffin, London, 1972.

ment of the pressure at such low valuest 670 K, the K. A. Dunning and J. N. Hanson, J. Stat. Comp. Sinfl115(1978.

k - b ) 12 ; 2 . "
highest temperature, the deviation of the liquid density from - Hill. Statistical MechanicsMcGraw-Hill, New York, 1956.
D. A. McQuarrie, Statistical MechanicqdHarper & Row, New York,

pr(To) in only ~6% and our prediction is still almost within 1976,

5% of error. For mercury both the CEA and LE&vith 1N. I. Johnson and K. KotzContinuous Univariate Distributions-1
AH(Ty)=61.6 kJ/mol andc,(Ty)=—0.0661 kJ/mol K (Houghton Mifflin, New York, 1970

(Ref. 19) are comparable to our method up to 670 K, al- 15E. Schmidt,Properties of Water and Steam in SI-UniSpringer, Berlin,

: S g 1969.
though the CEA is accurate within 5% of error for a more ;" Liley, Chem. Engg9, 59 (1982,
restricted temperature range, about 260 K. 17CRC Handbook of Chemistry and Physigsth ed., edited by D. R. Lide
(Chemical Rubber, Cleveland, 1994—-1%95
IV. CONCLUSIONS 18CRC Handbook of Chemistry and Physiggth ed., edited by C. D. Hodg-

. L . man (Chemical Rubber, Cleveland, 1955-1956
m this paper we showed that it IS possible to use thesr jiga and R. I. L. GuthrieThe Physical Properties of Liquid Metals
guasi-Gaussian entropy theory to predict, over a large range(Clarendon, Oxford, 1988

J. Chem. Phys., Vol. 105, No. 16, 22 October 1996

Downloaded-26-Mar-2008-t0-151.100.52.54.-Redistribution-subject-to-AlP-license-or-copyright;-see=http://jcp.aip.org/jcp/copyright.jsp



