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We derived a method to evaluate the liquid–vapor equilibrium pressure, with high accuracy over a
large range of temperature, using the quasi-Gaussian entropy theory. The final expression that we
obtain for the equilibrium pressure as a function of the temperature can be considered as a very
accurate approximate solution of the Clausius–Clapeyron equation. The method was applied to
water, methanol and mercury, and was compared to two usual approximations of the Clausius–
Clapeyron equation. ©1996 American Institute of Physics.@S0021-9606~96!52140-9#

I. INTRODUCTION

The best known approximation to calculate the liquid–
vapor equilibrium pressure is an approximated solution of
the Clausius–Clapeyron equation:1

p* ~T!>p* ~T0! expH 2
DHm~T0!

R S 1T2
1

T0
D J , ~1!

where it is assumed that the vapor is ideal and the vaporiza-
tion enthalpyDHm is independent of the temperature, the
constant enthalpy approximation~CEA!. However the latter
assumption usually breaks down within a temperature range
of ;502100 K. When we use the first temperature deriva-
tive of DHm along the saturation line, i.e.,Cs5dDHm/dT,
we obtain2

p* ~T!>p* ~T0!S TT0D
Cs /R

3expH 2
DHm~T0!2Cs

R S 1T2
1

T0
D J ~2!

which is applicable over a larger temperature range than the
previous equation. It should be noted that higher order ex-
pansions suffer from the difficulty to obtain reliable higher
order derivatives along the saturation line and hence are gen-
erally not used.

In this paper we will derive an~approximated! expres-
sion of the equilibrium pressure in terms of the reduced
Helmholtz free energy. This reduced free energyAr ~i.e.,
with respect to an ideal gas at the same density and tempera-
ture! can be evaluated using the quasi-Gaussian entropy
theory,3,4 a theory which provides reduced thermodynamic

properties as a function of temperature at fixed volume. The
basic idea of this theory is to rewrite in the canonical en-
semble the expressions of the reduced Helmholtz free energy
and entropy in terms of the potential energy distribution
function. For a macroscopic system this distribution must be
uninormal and very close to a Gaussian~‘‘quasi-Gaussian’’!.
Using a suitable framework to generate different uninormal
distributions, the reduced entropy can be expressed in terms
of the reduced isochoric heat capacity and a limited set of its
temperature derivatives. Hence this serves as a closure rela-
tion for the general thermodynamic equation
(]Sr /]T)V5CV

r /T, whereSr andCV
r are the reduced entropy

and heat capacity, thus forming a completely defined differ-
ential equation, the ‘‘thermodynamic master equation’’ at
constant volume. The solution of this equation depends on
the kind of potential energy distribution function, which
hence defines different ‘‘statistical states’’ of the system.

We showed3,4 that, apart from conditions close to the
critical density, for both fluid water and methane some ap-
proximations based on a Gamma distribution~the effective
Gammaandconfined Gammastate! can be used successfully
as solutions of the thermodynamic master equation. In this
paper we will apply the effective Gamma state to evaluate
the liquid–vapor equilibrium pressure of water, methanol
and mercury and we will compare the results with experi-
mental data and the predictions of Eqs.~1! and ~2!.

II. THEORY

A. General theory

For small molecules like water and methanol where the
classical intramolecular potential energy is absent~for the
latter considering its dihedral angle freely rotating! and
where the energy gap of the vibrational energy is mucha!Author to whom correspondence should be addressed.
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larger thankT in the temperature range of interest@for water
and methanol this is true at least up to 1000 K~Refs. 5 and
6!#, we can express the reduced free energyAr and entropy
Sr ~i.e., with respect to an ideal gas at the same temperature
and density! as3

Ar5Ur1kT ln E ebDUr~DU!dD U, ~3!

Sr52k ln E ebDUr~DU!dD U, ~4!

with

DU5U2^U&5U2Ur , ~5!

whereU is the potential energy difference between the sys-
tem and the ideal gas, i.e., the classical intermolecular poten-
tial energy plus the possible shift in the vibrational zero point
energy between the system and the ideal gas~for mercury
only the intermolecular potential energy is involved inU
since no vibrational energy is present!, b51/kT, andr~DU!
is the probability distribution of the energy fluctuationDU.
We showed3 that for macroscopic systems,7 using the central
limit theorem,8 r~DU! must be close to a Gaussian~‘‘quasi-
Gaussian’’!. Therefore we can use a generalized Pearson sys-
tem of uninormal distributions9–11 to evaluateAr and Sr ,
finding thatSr can be expressed as a function ofT, CV

r and a
limited number of its temperature derivatives.

It must be noted that the central limit theorem does not
guarantee that the distribution of the potential energy has no
~small! deviations from a uninormal function in the far tail.
However, the integral in Eqs. 3 and 4 should not be affected
if the corresponding integrand, which is in general also a
uninormal curve, is negligible in the far-tail range, as is usu-
ally the case sincer~DU! is very sharply peaked.12,13

Using the general thermodynamic equation
~]Sr /]T)V5CV

r /T and defining the intrinsic entropy
function3,4 a5Sr /CV

r , we finally obtain thethermodynamic
master equation3

CV
r

T
5CV

r S ]a

]TD
V

1aS ]CV
r

]T D
V

. ~6!

This equation can be solved once the distributionr~DU!
is known at one temperature, since the parameters defining
r~DU! can be expressed in terms ofT, CV

r and a limited set
of its temperature derivatives. Hence via Eq.~4! we can also
expressSr anda in terms of these quantities, and so Eq.~6!
is a completely defined differential equation yielding the
temperature dependence ofCV

r and hence ofSr , Ur andAr .
Therefore every type of potential energy distribution func-
tion defines a different statistical state providing the com-
plete reduced thermodynamics of the system. We showed3,4

that one of the first acceptable distributions of the general-
ized Pearson system is the Gamma distribution8,14

r~DU!5
b1~1/b1

2!b0 /b1
2

G~b0 /b1
2!

~b01b1DU!b0 /b1
2
21

3 expH 2
b01b1DU

b1
2 J ~7!

with b0 andb1 parameters which can be expressed in terms
of T, CV

r and ~]CV
r /]T)V . This distribution can be used to

obtain solutions of the thermodynamic master equation~ef-
fective Gamma state and confined Gamma state solutions!
which reproduce accurately the thermodynamic properties of
fluid systems at fixed density as a function of the tempera-
ture. In this paper we will use the effective Gamma state
solution, valid for systems in a perturbed Gamma state con-
dition, which can be considered as the ‘‘closest’’ Gamma
state solution to the real statistical state of the system around
the reference temperatureT0 ~i.e., the Gamma state solution
with the same entropy and heat capacity of the system at the
reference temperatureT0!. The general expression of the re-
duced Helmholtz free energy~at fixed density as function of
the temperature! derived from the effective Gamma solution
is:3,4

Ar~T!5Ur~T0!2
T0CV

r ~T0!

d0*

2
TCV

r ~T0!

~d0* !2
lnS T~12d0* !

T~12d0* !1T0d0*
D ~8!

with Ur the reduced internal energy,T0 an arbitrary refer-
ence temperature andd0* a parameter defining the Gamma
state, connected to the skewness of the corresponding
Gamma distribution, which can be evaluated via the intrinsic
entropy function at the reference temperature:3,4

a~T0!5
Sr~T0!

CV
r ~T0!

5
1

d0*
1

1

~d0* !2
ln~12d0* !. ~9!

B. Application to the liquid–vapor equilibrium
pressure

We can link the liquid–vapor equilibrium pressure and
the reduced Helmholtz free energy in the following way.

We can express the chemical potential of the liquid in
equilibrium with its vapor ~considered as an ideal gas!,
equating the chemical potentials, as

m l~rN* ~T!,T!5mg
*~T!1RT lnS p* ~T!

p* D , ~10!

wherep* andrN* are the equilibrium pressure and the equi-
librium liquid density andp* andmg

* are the pressure and
the chemical potential of the ideal gas in the standard condi-
tion. On the other hand we can also express the chemical
potential of the liquid as
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m l~rN* ~T!,T!5m r~rN* ~T!,T!1mg
*~T!

1RT lnS rN* ~T!RT

p* D
5Am

r ~rN* ~T!,T!2RT1mg
*~T!1RT lnS rN* ~T!RT

p* D ,
~11!

wherem r is the reduced chemical potential,Am
r is the re-

duced molar Helmholtz free energy and where we used the
fact thatp*Vm,l* > 0 ~hereVm,l* is the molar volume of the
liquid!. Combining Eqs. 10 and 11 we obtain

Am
r ~rN* ~T!,T!2RT5RT lnS p* ~T!

rN* ~T!RTD . ~12!

From the definition of the Helmholtz free energy we also
have

Am
r ~rN* ~T!,T!5Am

r ~rN* ~T0!,T!1E
rN* ~T0!

rN* ~T!
p~rN ,T!

drN
rN
2

2RT lnS rN* ~T!

rN* ~T0!
D ~13!

and therefore from Eq.~12!

Am
r ~rN* ~T0!,T!1E

rN* ~T0!

rN* ~T!
p~rN ,T!

drN
rN
2 2RT

5RT lnS p* ~T!

rN* ~T0!RT
D ~14!

with T0 any temperature in the range of interest andrN and
p the density and the pressure of the liquid. If for the liquid
in equilibrium with its vapor, the density can be considered
approximately constant in temperature~i.e., drN* /dT>0),
from Eq. ~14! it follows that

p* ~T!>rN* ~T0!RT expH Am
r ~rN* ~T0!,T!2RT

RT J , ~15!

whereAm
r (rN* (T0),T) can be evaluated from the effective

Gamma state free energy@Eq. ~8!#, since it is the reduced
Helmholtz free energy of a system at fixed density. It should
be clear that Eq.~15! is valid only in a temperature range
where the vapor can be considered an ideal gas and the liquid
is approximately at constant density~or at least the integral
in Eq. ~14! is negligible!.

III. RESULTS

For water we used as reference temperatureT05300 K
where the density of the saturated liquid is 55.3 mol/dm3. In
this condition3 the molar reduced internal energy
Um
r (T0)5241.43 kJ/mol, the molar reduced heat capacity

cV
r (T0)50.0494 kJ/mol K andd0*50.772. In Fig. 1 we com-
pare the prediction of our approximation with experimental
data,15 with the usual constant enthalpy approximation
~CEA! and the linear enthalpy approximation~LEA! of the
Clausius–Clapeyron equation, Eqs.~1! and~2!. We used the
same reference temperatureT0 where the molar vaporization
enthalpy DHm(T0)543.9 kJ/mol andcs(T0)520.0425
kJ/mol K. Note the logarithmic vertical scale. From the
figure it is evident that with our approach it is possible to
reproduce the experimental data, within 5% of error, over
260 K. From the figure it is also clear that both the CEA and
LEA predictions are valid~within 5% of error! for a more
restricted temperature range, about 100 K and 160 K, respec-
tively. At the highest temperature considered~550 K! the
actual density of the saturated liquid is about 22% lower than
the reference one. This implies that our method can be
still valid for moderate variations of the liquid density if
the integral in Eq.~14! can be neglected. In this case this
integral yields a correction of only 0.3 kJ/mol at the highest
temperature.

FIG. 1. Experimental results and predictions for water. Legend: experimen-
tal data are represented with error bars~65%!, effective Gamma approxi-
mation ~—!, CEA ~---!, and LEA ~–-–!.

FIG. 2. Experimental results and predictions for methanol. Legend: experi-
mental data are represented with error bars~65%!, effective Gamma ap-
proximation~—!, CEA ~---!, and LEA ~–-–!.
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In Fig. 2 we show the results for methanol. In this case
we have used as reference temperatureT05180 K with a
saturated liquid density of 28.1 mol/dm3. In this condition3

Um
r (T0)5240.3 kJ/mol, cV

r (T0)50.040 kJ/mol K and
d0*50.926. Also for methanol we compared our prediction
with experimental data16 and with the CEA and LEA~using
DHm(T0)541.8 kJ/mol andcs(T0)520.030 kJ/mol K!. In
this case our method is able to reproduce the experimental
data, within 5% of error, over 220 K. Also for methanol the
CEA prediction is valid for a shorter temperature range
~about 60 K!, but the LEA approach has a comparable accu-
racy. It is interesting to note that at the highest temperature
considered~400 K! the density of the saturated liquid has a
deviation from the reference one comparable to the water
case~about 25%! and the corresponding correction term is at
most 0.6 kJ/mol.

Finally in Fig. 3 we show the results obtained for mer-
cury. We usedT05273 K where17 rN* ~T0!567.77 mol/dm3,
Um
r (T0)5259.34 kJ/mol,cV

r (T0)50.0155 kJ/mol K and
d0*50.960. For this metal our prediction reproduces~within
5% of error! the experimental data18 in almost the whole
temperature interval where data are available~from 235 K to
670 K!. Only for the initial 20 K a moderately higher error is
present~this could be due to inaccuracies of the measure-
ment of the pressure at such low values!. At 670 K, the
highest temperature, the deviation of the liquid density from
rN* (T0) in only;6% and our prediction is still almost within
5% of error. For mercury both the CEA and LEA~with
DHm(T0)561.6 kJ/mol andcs(T0)520.0661 kJ/mol K
~Ref. 19!! are comparable to our method up to 670 K, al-
though the CEA is accurate within 5% of error for a more
restricted temperature range, about 260 K.

IV. CONCLUSIONS

In this paper we showed that it is possible to use the
quasi-Gaussian entropy theory to predict, over a large range

of temperature, the liquid–vapor equilibrium pressure with
high accuracy. The approximation used is limited to condi-
tions where the vapor can be considered an ideal gas, the
corrections in the Helmholtz free energy due to the change in
the liquid density are negligible and the effective Gamma
state provides an accurate description of the thermodynamics
at fixed density. The method was applied to water, methanol
and mercury providing an excellent prediction of the equilib-
rium pressure over a temperature range larger than the range
where the CEA has the same accuracy. For methanol and
mercury the LEA is as accurate as our method over a com-
parable temperature range, while for water it is worse. It is
moreover worth mentioning that a simple Gaussian distribu-
tion ~defining the Gaussian state3! is in general unable to
reproduce the fluid thermodynamics at fixed density and
hence cannot be used in this application. Our method seems
to be a more accurate approximation solution of the
Clausius–Clapeyron equation than the CEA and LEA, re-
quiring one more input quantity at the reference temperature
than the latter. BesidesDUm

r , cV
r andrN we need alsoSm

r ~or
equivalentlyp* !.
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