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Abstract

In an analogous way as was done previously in the canonical ensemble, we derived for dilute gases an approximated
thermodynamic closure relation in the isothermal-isobaric ensemble using quasi-Gaussian entropy theory. For the Gamma
state, we formulated equations for the temperature dependence of various thermodynamic properties at constant pressure.
The theory was applied to gaseous water and methane at 1 and 10 bar respectively, and gave for both systems an accurate

prediction of the entropy and heat capacity over a large temperature interval.

1. Introduction

In recent articles [1,2] we have presented and
tested quasi-Gaussian entropy theory, a theory which
provides a thermodynamic closure relation for the
general differential equation (3S/3T), = C,/T. In
this way it is possible to predict the temperature
behavior of various thermodynamic excess properties
at constant volume, based on the knowledge of a
limited set of initial quantities.

The basic idea is to rewrite in the canonical
ensemble expressions for the excess Helmholtz free
energy and entropy in terms of the potential energy
distribution function. For a macroscopic system this
distribution must be uninormal and close to a Gauss-
ian (“‘quasi-Gaussian’’). Using a suitable framework
to generate different distributions, the excess free
energy is defined by the excess internal energy U*¢

and a limited set of its temperature derivatives, i.e.
Cs, (3C§ /3T), etc.

As the entropy is expressed in terms of T, C}, and
further temperature derivatives, this serves as a clo-
sure relation for the general equation (35°/3T), =
Cy /T, thus forming a completely defined differen-
tial equation, the thermodynamic master equation at
constant volume. The solution of this master equa-
tion still depends on the kind of potential energy
distribution function, which hence defines different
‘‘statistical states’” of the system. We investigated
the Gaussian and Gamma state and some approxi-
mations based on the latter, the effective and con-
fined Gamma state.

We demonstrated that a large part of the p7-di-
agram of both water and methane, except near the
critical density, can be considered as a (weakly)
perturbed Gamma state.
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For small molecules the equations we derived
provide the temperature behavior of the reduced Cy,
S%, UF and A" at constant volume (i.e. excess proper-
ties with respect to the ideal gas). In this Letter we
will derive an approximation for dilute real gases
which provides analogous equations in the NpT-en-
semble for C,, S', H" and G" with respect to an
ideal gas at the same pressure, as the usual experi-
mental set-up is at constant pressure, rather than at
constant volume. The equations are applied to
gaseous water and methane above the boiling point
at 1 and 10 bar, respectively.

2. Theory

Our aim is to find expressions for the excess
properties with respect to a reference system with the
same number of particles, temperature and pressure,
but without semi-classical interactions.

In the NpT- or isothermal-isobaric ensemble the
quasi-classical configurational partition function A€
(assuming as usual that we can separate the classical
kinetic part of the partition function) can be written
as [3,4]

A(p, T, %) =f°°e-ﬂf’v dVZf’e“””dx, (D
0

with

#(x)=®(x) +¢(x) +&(x) (2)

the full potential energy of the system, including
semi-classical inter and intramolecular interactions
(@ and ) and possible quantum bond and angle
vibrations &, and x the coordinates. (Note that
%(x) and & are identical to »(x) and E in Refs. [1]
and [2]). The summation runs over all possible quan-
tum vibration states and the prime on the integral
denotes the classical angle and bond length con-
straints [1]. V' is the volume of the system, 8 = 1/kT
and p the fixed pressure. We use calligraphic sym-
bols for instantaneous quantities and the usual capi-
tals for thermodynamic averages.

If we define a reference state with the same
temperature, number of particles and pressure but
without inter and intramolecular interactions and no
vibrational energy (i.e. Z = 0), we see that the corre-
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Fig. 1. Definition of the different reference systems and the
thermodynamic cycle used to calculate G" and related reduced
properties.

sponding configurational partition function can be
expressed as

A(p.T,0) =fxe-BPV dVZfl dx
0

=[xe”ﬂ”" dVZ[eM’e_B”dx.
0
(3)

Hence, using the relation [3,4] G= —kT In A, the
excess free energy G' is

A(p, T, %
G'= —kT 1nL——)

e RV Qv ['e P¥ dx
Joe PPV AV L [eP¥e B¥ 4x
kT IndeP?), (4)

where { ---) denotes an isothermal—isobaric en-
semble average. To calculate reduced thermody-
namic properties, we use the thermodynamic cycle as
given in Fig. 1.

For small molecules like water and methane the
semi-classical intramolecular interactions ¢ are ab-
sent (or as a good approximation zero, e.g. in the
case of methanol). Regarding the vibrations we can
distinguish two different cases, as explained in Refs.
[1] and {2].

Firstly, in the case of water, for example, the
energy gap is much larger than kT in the tempera-
ture range of interest, and hence the vibrations are
completely in the ground state. In that case the free

—kT In

i
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energy difference between an ideal gas with and
without vibrations is [1]

G" = kT In(eP’), =&, (5)

with & the zero-point energy of the ideal gas
(which is independent of the coordinates x and
therefore from T). Hence the reduced free energy is

G'=G"— G = kT In(eP@+5-%0)
=T In{e??")
= (") + kT In(ePr?"), (6)

with %"= d+&,— &7 the reduced potential en-
ergy, A" =%"—(%") and &, the zero-point
energy of the real system, which could be dependent
on x.

If that real system is a dilute gas consisting of ¥
molecules with interactions, but with an almost ideal
pV term = NikT (meaning that the average volume
(V) is almost that of the ideal gas {V°)) we have
H=(P)+(&,) + NkT and H° =& + NiT,
where (&) is the average of the ground state energy
over different configurations. Hence the reduced en-
thalpy is

Hi = (D) +(&,) —&0=(%") =U". (7)

If, on the other hand, as in methane, higher
vibrational states are accessible (because of anhar-
monicity [5,6]) and the vibrations are approximately
independent of the semi-classical coordinates x [2],
the configurational partition function can be factor-
ized into a semi-classical and a vibrational part.
Hence also the expectation value (e BZS can be
factorized [7]:

G'=G'— G'=kT In¢eP®)(e €Y — kT In{cP€"),
= (#") + kT In(eP*?"), (8)

with " = @, and where we have used the fact that
the vibrational partition function must be identical
for the real system and the ideal gas, since it is
independent of x. In this case, considering again a
dilute real gas, it follows that

H = (@)= (%) =U". (9)

Since in both cases the reduced free energy is
linked to the variable %" with U™~ H", this can be

used to form an approximated thermodynamic clo-
sure relation '. In both cases

S'= —k In(e PA%")
= —kn [eP*p(AZ") dAZ", (10)

with p(AZ") dAZ" the probability of observing a
reduced potential energy fluctuation between AZ"
and A" +dA%".

A usual macroscopic system can be considered as
a collection of N identical, independent thermody-
namic subsystems, the elementary systems. Each
elementary system i is characterized by its reduced
potential energy !} and fluctuation Au} = u} — (u}).
The total reduced potential energy is given by " =
¥ u' and the total fluctuation by A%* =LV Aul.
As the number of elementary systems N tends to
infinity, applying the central limit theorem [8], it
follows that the distribution p(A% ") must be uninor-
mal and close to a Gaussian (‘‘quasi-Gaussian’’). It
also must fulfil the same five physical and mathe-
matical restrictions as formulated in Ref. [1], replac-
ing the convergence of the excess Helmholtz free
energy by the convergence of the reduced Gibbs free
energy G'.

Therefore, we can use the same generalized Pear-
son system of uninormal distributions [1,9] and the
first two acceptable solutions, the Gaussian and
Gamma distribution. Here we will only focus on the
Gamma distribution [1,10],

by(1/62)""
I'(bo/57)
by + b,A?/’)

p(AZ") = (bo + b AZ/T) b/

(11)

>< .
exp( p?

where the parameters b, and b, are linked to the

central moments M, = ((A%Z")*) of the reduced po-
tential energy %" as[1] by =M, and b, =M,/2M,.

! Note that an exact thermodynamic closure relation can only
be obtained using a reference system with no potential energy and
zero pressure, since the free energy with respect to this reference
is given by G' = (exp{ 8#}), where # = # + pV. The moments
of # are exactly related to the ideal reduced C), and further
temperature derivatives. Unfortunately, the free energy of this
reference is infinite, and hence the reference as such is useless.
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We already obtained U' = H'. We further assume
that for the Gamma state the central moments of %"
up to the third one are (numerically) identical to
those of #'=%"+p(V—VP), ie. (V¥) = (V)
for k=1...3 and (AZ'AV ) = 0.

From elementary statistical mechanics [3,4] it is
known that the total isobaric heat capacity is propor-
tional to the second moment of the instantaneous
enthalpy. Hence it is easy to show that

M, =A%)’ = {(AZ"))
=kT*C, (12)

with C, the reduced heat capacity. In a similar way
as in Ref. [1], we can derive that

={(az)) =<(az"))

aC!

— e later + 72| Zp
(kT) {ZTCP+T ( = ),,} (13)
Solving the integral in Eq. (10) with Egs. (11),

(12) and (13) and the relations for b, and b, we
obtain (see also Ref. [1])

1 1
Srnc;{§+?ln(1—9)}, (14)
with
T(3C: /3T
0=1+—(—”——)—". (15)
2C;

In an analogous way as in the canonical ensemble
we can define an intrinsic entropy function[1,2] @, a
dimensionless and intensive property, as

Sl’
w=—, (16)

r

Cl’
being a kind of ‘‘resistance’’ of the system against
increasing the order by lowering the temperature.
Combining this with the general thermodynamic re-

lation (35/9T), = C,/T, we obtain

C‘; GC;, dw
—=g|l—] +C|—| , (17)
T oT |, PNoT ),

the thermodynamic master equation at constant pres-
sure. For the Gamma distribution (Egs. (14) and
(15)) the solution of this master equation is mathe-

matically identical to the one at constant volume
[1,2):

TOOO
)= 700y + 700, (18)
Ci(T) =c;0( O(OT)) , (19)
1
S(T)—C(T){G(T) B(T)ln[l—O(T)]}
(20)
8(1)
HY(T) = Hy + (T = To) Cho—g— (21)
and
ToCly  TC
G'(T)=H5——(—)0———0—g—
T(1-6,) 6(T
ln( L . (@)

where C,, H; and 6, are the values of C;, H" and
0 at the arbitrary reference temperature T, and 0 is
given by Eq. (15). In Refs. [1] and [2] we decribed
the properties of a left-skewed or right-skewed
Gamma distribution, defining the '™ and I'* state.
From these properties it follows that 6 tends to one,
and both C}(T) and S"(T) tend to zero if T— x,
with C) always positive and S always negatlve
hence w < 0. Moreover, the value o= — 5 denotes
a perfectly symmetric enthalpy distribution (compatl-
ble with a Gaussian state). For a '~ state (which
must be regarded only as an approximation to a more
complex physical statistical state) — 3 < w < 0, while
fora ['* state < — 3.

Solutions of the generalized Pearson system of
distributions beyond the Gamma distribution are
mathematically much less manageable. Therefore,
we will only focus on the exact Gamma solution and
an approximation, the effective Gamma state [1,2], in
which the parameter 6, is calculated from w,=
S5/ Cho=1/8¢+(1/63) In(1 — 6,), rather than us-
ing Eq. (15). In this way, especially the entropy can
be predicted efficiently [1,2].

To calculate experimental reduced properties X',
we must again use the thermodynamic cycle as given
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in Fig. 1, where for a pressure p* =0 (ideal gas
condition) we have X** =X(p)— X(p*). Observ-
ing further that the free energy difference between
the two ideal gas states G“ = [f. V dp=
kT In(p/p*) and S“= —Nk In(p/p*) since H™
= 0 for an ideal gas, we see that

H'=H(p.T)—H(p".T), (23)
S'=S(p.T)—S(p*,T) +Nk ln% (24)
and

C;=Cp(p,T)—Cp(p*,T)=T(ﬁ)p. (25)

3. Results

Experimental data for methane were obtained from
Angus et al. [11] and for water from Schmidt [12].
Values of C,, were obtained directly from the tables
in the case of methane, and were calculated numeri-
cally from the reduced entropy data in the case of
water using Eq. (25).

For methane the results of C, and S" at a pressure
p = 10 bar, using p* = 0.25 bar, are given in Fig. 2.
For a reference temperature T, = 155 K, we see an
excellent agreement between the experimental values
and the predictions from the theory over a tempera-
ture range of more than 450 K. In this case the
effective and the exact 6, are identical, which means
that the statistical state is virtually an exact Gamma
state. Choosing the reference temperature at 400 K,
we basically obtain the same results over the whole
temperature range. It must be noted that at high
temperature the relative errors in C;, and S' are quite
large, and hence the definition of the Gamma state
(especially the I'™ states, see Ref. [2]) is in general
not sufficiently accurate to predict values at tempera-
tures much lower than 7.

For water the results of C, and S" at a pressure
p=1.0 bar, using p* =0.01 bar, are given in Fig.
3. For T,=1533 K, from ~ 450 to 1000 K the
agreement with the experimental data is good. Below
450 K there is some deviation, because of the stronger
non-ideality, in water, due to the long-range electro-
static interactions. The small deviations above ~ 800
K are artefacts of the numerical calculation of exper-
imental C; values. Using T, =713 K, we obtain

0.0 i . . ; , 15.0

10t 10.0
- (@]
& ® -
© T
E 3
s =3
- =

20} -4 5.0

-3.0 cmmrene . 0.0

100 200 300 400 500 600
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Fig. 2. Experimental results and effective Gamma predictions of $* and C ; for methane at p = 10 bar. Legend: S' experimental (O) and

predictions for low ( ) and high T, (

), C; experimental (A) and predictions for low (-=--- ) and high T, (=====), The
values at the reference temperatures T, are denoted by solid symbols.
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Fig. 3. Experimental results and effective Gamma predictions of " and C}, for water at p =1 bar. Legend: S" experimental (O) and

predictions for low (

) and high T, (

virtually identical results, except for the temperature
range below ~ 550 K, due to the larger relative
errors in the input data, as discussed before.

4. Discussion and conclusions

In this Letter we have demonstrated that for dilute
real gases also at constant pressure it is possible to
derive a thermodynamic closure relation, albeit an
approximated one. Clearly, because of the nature of
the approximation, this approach will not be applica-
ble to dense gases or liquids. The equations for the
temperature dependence of various thermodynamic
properties were tested for water and methane. For
both gases the theory gives good results in a temper-
ature interval of more than 450 K. One could expect
that the method is applicable for methane, or in
general apolar molecules, at even larger pressures.
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