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In this article we investigate the applicability of the statistical Gamma state as following from the
quasi-Gaussian entropy theory, where all thermodynamic properties at every temperature are
obtained from the knowledge of the potential energy distribution at one temperature. We compared
for a typically polar systenfwate) and an apolar onemethangthe experimental heat capacity and
entropy data with the predictions of the theory at various densities, ranging from the almost ideal gas
to typical liquids. Interestingly, the behavior of water and methane is quite similar. Low-density
gases and fluid-liquid systems can be described as weakly perturbed Gamma states. For intermediate
densities a more complex statistical state arises. In order to describe more accurately the fluid-liquid
regime, we propose in this paper a confined Gamma state, based on the division of phase-space into
two different regions: one of them described by an exact Gamma state and another very unstable
one. We conclude that typical fluid-liquids can be described very well by this new Gamma state
approximation. We also try to give a physical interpretation of the two parts of phase space that arise
from the model. The high accuracy of the theory over a large temperature range makes the approach
very suitable for the prediction of thermodynamical properties at, for example, supercritical
conditions. ©1996 American Institute of PhysidsS0021-960606)00317-X

I. INTRODUCTION We derived expressions for the thermodynamic properties in
The use of(empirica) fitting functions of thermod terms of the parameters of these distributions, which in turn
P 9 ¥ can be related t@emperature derivatives Jothe heat capac-

namic properties or equations of state is often not very sa |_ty C, . Using the thermodynamic relatiors/ T =C,/T we

isfactory because of the lack of a full physical consistency ere also able to obtain the temperature behavior of these
and the need of a large dataset to extract the parameters. The

possibility to obtain predictions of thermodynamic properties ermodynamic properties. Knowledge @, (Gaussian

or an equation of state, based on a coherent physical theo&até C_’r_CV and aCV./ﬁT (Gamma stafeat one t.emperature
which would require only a limited set of initial dataref- IS sufficient to predict the temperature behavior of the heat

erably measured at moderate conditioreould be of great capacity and the entropy. Combined with the knowledge of
importance the initial internal energy, also the internal energy and the
In this paper we apply a recently introduced physicalfree energy can be calculated as a function of temperature.

theory, the quasi-Gaussian entropy theory, to predict the N the same article we also tested the Gamma state solu-
temperature dependence of various thermodynamic propefi©n on liquid water and methanol, finding that both liquids
ties at a given density from the knowledge of the internaicould be c_0n5|dered as weakly perturbed Gammg states, still
energy, entropy, heat capacity, and its temperature derivatiy¥ell described by a simple Gamma state approximaten
at one(moderatg initial temperature. In a recent artitleve  fective Gamma staje Another interesting feature of these
described a way of Ca|cu|ating excess thermodynamic prodj.quids was the fact that the intrinsic entropy fUnCtiﬂni.e.,
erties, like excess free energy, entropy, potential energy, arffi€ ratio between excess entropy and heat capacity, is very
heat capacity, based on knowledge of the shape of the potefemperature insensitive over a large temperature interval.
tial energy distribution function. As the excess free energy is  In this paper we will investigate the effect of the density
uniquely related to the moment generating functipaplace  ©n the thermodynamic properties of water and metHéme
transform of the potential energy distribution, it follows that entropy, the heat capacity, and the intrinsic entropy fungtion
all thermodynamic properties can be derived from theand the quality of the Gamma state description. For low den-
knowledge of this distribution. Each different type of distri- Sity gas conditions a left-skewed Gamma distribution is in-
bution therefore defines a different “statistical state” of the troduced, defining the special negative Gamma stkte.
system, with its own specific equilibrium physics. A sche-For fluid-liquid conditions a confined Gamma approximation
matic diagram of the theory is given in Fig. 1. is proposed, based on the division of the phase-space into
We used a generalization of the Pearson system of frewo different regions, one of which is described by an exact
quency curve's’ to generate a set of differefpotential en- Gamma state and the other is completely unstable. Such a
ergy) distribution functions, with increasing complexity. The model provides a very accurate description of the fluid-liquid
simplest solutions are the Gaussian and Gamma distributiomegime, a weakly perturbed Gamma state condition. Interest-
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duced Helmholtz free energy of a system, i.e., the free en-
= n2 s = BAV X . ’ ’
AT=ATING, , S=kinjem oty v ergy with respect to a system with the same temperature and
: reT—r— diemons — density and the same bond and angle constraihsesen}
physical & mathematical — ofcurves but with no intermolecular and intramolecular interactions
restnetions f P and no vibrationsis given by
Gaussian G . A
(¢M ) ai:’;" " A =A—Ay=KT In(e?”) 1)
pM, p (M. My
=y’ By
b(Cy) p(Q%ST;) U’ +KkT In{e”). 2
define. i ! HereA andA, are the full free energies of the actual system
. — o=- 7 ®=3 +8i21n(1-5> and the reference stat@; is the total potential energy of the
=G o | 1 §oT@CMAT) 4 system (including possible quantum vibrational energjes
o j 2¢y U'=(7) is the (ideal reduceglinternal energyy=2"—(7")
T ; is the potential energy fluctuation ang=1/kT. Angular
1 ; brackets denote a canonical ensemble average and the prime
Thermodynamic : stands for “ideal reduced.”
anzeguiugda ' Equation(2) can be rewritten in terms of the potential
T ar at energy distribution functiop(y) as
A'=U"+kT In f e?p(y)dy, ©)
To:% Go= % To: Qo ,dd—CT\’lo—%o T 8o Go & wherep(y)dy is the probability of finding a potential energy

fluctuation betweery andy+dy. Thus if we know the en-
ergy distribution, all equilibrium physics follows from that,
since

phase space partitioning

T,:8,Co $Go>¢
0% Go o

A’ U —-A’
S'=- O,)—T = T =—kIn eﬁyp(y)dy, (4)
FIG. 1. A schematic diagram of the quasi-Gaussian entropy theory. Left of \

the dotted line are the input equations, approximations are denoted by
dashed arrows. The input dataTatto calculateS'(T) andCy,(T) are given s’ )
Y

®

—
below the different solutions. For all solutions with the knowledgeJgf Cy=T oT
alsoA’(T) andU’(T) can be obtained.

etc.

ingly, the Gamma region, where fluid-liquid systems are Equation(1) indicates that thdideal reducelifree en-

completely confined, could be connected with the restriction§' 9V 'S pr.o%ortlonal to the logarithm of the moment generat'
in molecular organization, arising at increasing density. Ing functiort (or Laplace transformof the total potential

The paper is organized as follows. The first two theoryenergy distribution function, whereas Eg) shows that the
. ) A . .
sections are a summary of the quasi-Gaussian entropy theo eal reduced entropgs IS propomonal o the I_oga_nthm of
described in detail previousfywhile in Sec. Il C we intro- the moment generatlng_functlon of the distribution of the
duce the special’_ state and in Sec. Il D we describe the potential energy fluctuations.

new confined Gamma approximation based on the doubl? I thle macro”sc?.plc s¥§(tjemt_ca? _bedthou%ht tto bi bmit up
state modelin Appendix B we give a general description of rom a farge coflection of idenfical, independent SUbsystems

this mode). In the results part we investigate for both Water(.e lementary systemsvhich are St”.l thermodynamlcally de-
and methane the effect of the densftpnging from the al- fined, we can apply the central limit theorem to ?ho."" that
most ideal gas to a typical liquicand the polarity on the p(y) must be uninormal and close to a Gaussian distribution.

applicability of the Gamma state descriptions. Using a generahzed_ Pgars_on sys_tem_ of frequency c’u?ve_s
we can generate distributions with increasing complexity

which satisfy the mathematical and physical restrictions that
Il. THEORY we can imposé.The solutions of this Pearson system can be
A. Introduction used to classify the physical systems into different “statisti-
cal states,” since the shape @liniquely determines the kind
'of physics. The two simplest possible solutigase also Fig.
ei) are the Gaussian distribution,

For clarity a schematic diagram is presented in Fig. 1
summarizing the theory and the various approximations, d
scribed previousfyand in this article. The macroscopic mo-
lecular systems under consideration @® usuglassumed to y?
be in the quasiclassical limit. This means that apart from P(y)z(l/\/ZTrbo)eXF{ _E) (6)
guantum bond and angle vibrations, all other interactions are 0
described classically. In that case the exc@ssideal re- and the Gamma distribution,
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by(1/b)"0 %
T'(by/b?)
+b1y)/b3] (7)

with I'(-) the Gamma functiohand where the parametesg
andb, are related to the central momens,=(y") of the
energy distribution in the following way:

2
p(y)= (bo+byy)PoP1~Texy — (b,

bo=M,, (8)
M3
bl—z—Mz. 9)

Using standard statistical mechanical relatibhsye can
link these moments t@emperature derivatives Jothe ideal
reduced isochoric heat capacidy,, obtaining

bo=kT?C},, (10)
KT2(9C\/dT)y
2c,

Hence with the knowledge df’, Cy,, anddC/4T all ther-

b, =KT+ (12

6667

the thermodynamics is indistinguishable from that of a
Gaussian state. For example we find that in this high tem-
perature limitS'(B)x°.

Since S’ =C,@ we can obtain an analytical expression
for « using Eq.(4) if the distribution is known. We can
closely link @ and C, via their temperature derivatives. Us-
ing the fact that S'/9T)y = C./T we obtain thehermody-
namic master equation

C\ aCy, da
ool ) el 7,
\% \%
If at a certain temperature we know the exact statistical state
of the systenti.e., we know the analytical shape of the en-
ergy distribution defined by a set of parameters in terms of
energy moments, which can be linked to temperature deriva-
tives ofCy,), we can calculate the integral in Ed) to obtain
an analytical expression &' in terms of T, Cy,, dC\/dT,
etc. and, hence, &'/C,, = «(T,C\,,dC\/dT,...).Then Eq.
(15 forms a completely defined differential equationGy}
andT (see also Fig. J1 the solution of which yield<\,(T)
and all its temperature derivatives T given the values of

(15

a

modynamical properties are defined in the “Gamma state.”Cy,q,dCy,o/dT,... at one temperaturé, as boundary condi-

For the “Gaussian state” judt’ andC,, are sufficient. Fur-

ther solutions of the Pearson system will not be considered: C\(T) «(T),

tions. From that we can obtai(T), the entropy vieS' (T)
the potential energy via U’'(T)

here, partly because of their increased mathematical com= U(’)+f¥OC(,(T)dT and finallyA'(T)=U"(T)=TS'(T). In

plexity and partly because already the Gamma state is suffthe next section we will investigate in detail the expressions
cient to approximate in many different cases the actual stegf the Gamma state.

tistical state of the system.

B. Intrinsic entropy function and thermodynamic
master equation

We also introduced the concept of therinsic entropy

functiort a, a dimensionless and intensive quantity, define

as

12

Since the ideal reduced entropy is always negative @jd

positive, this means that<<0. The meaning oftx becomes
more evident by rewriting Eq12) as

s’ _((aS’/aT)V)‘l_ ((aS’/aﬂ)V
“« ST ~ T\ T 9B

-1

o (13

SinceS'=0 when8=0, «a is thus the ratio between the av-

erage slope o8’ vs 8 and the instantaneous slopg'/dg. If

C. Properties of the Gamma state

The free energy of the Gamma state can be readily cal-
culated, evaluating the integral in E3) using Egs.(7),

{10, and(11) to obtairt

A'=U'-TC, 5t %)2 |n(1—5)}, (16)
where
b, T(dC/IT
and, hence,
s 1 [1\2
a(5)=C—\,/=5+ 5) In(1—6). (19

The quantitysis a measure for the asymmetry of the energy

for instancga|>1 the instantaneous slope is smaller than thedistribution. For physical reasons, since the free energy must
average slope in absolute values, meaning that the syste¢ @ finite value and, hence, the integral in E8). must
has a large “resistance” against increasing the order by lowconverge, we find that

ering the temperature.

In Appendix A we derive the high temperature limit of

lim a(T)=—1%.

T—oo

(14

5<1. (19

Furthermore, the sign af indicates if we are dealing with a
left-skewed Gamma distributiof5<0) defining a negative
Gamma statgl’_) or a right-skewed Gamma distribution
(6>0) defining a positive Gamma stafE_ ). The values=0

The valuea=—13 corresponds to the Gaussian state condi-corresponds to a perfectly symmetrical distribution, i.e., a
tion, implying that at infinite temperature for every systemGaussian.
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It is important to note that in a negative Gamma state the ToClo
energy distribution is defined from to a finite upper en- lim A"(T)=limU'(T)=U,— . (30)
imi H T—0 T—0 0
ergy limit, as follows from Eg.(7) in the case that

kTé=b,<0. For a positive Gamma state, on the contrary,For a negative Gamma statE_), however, the solution of
the distribution has a finite lower energy limit, and is definedthe master equation in temperature encounters a singularity

up to +eo. This implies that only the positive Gamma state at a temperatur&, >0. The singularity occurs when the de-
can be considered as a real physical statistical state, fulfillingominator in Eq.(20) is zero, i.e.,

all the physical and mathematical restrictidnsshile the T e T8 (1—8 31
negative Gamma state must be regarded as a numerical ap- '*~ ~ '090 (1= o). (32)
proximation of a more complex statistical state. The T—T, limits in this case are

To solve the thermodynamic master equation, we first . - S ,
have to solve the differential equation written in terms of lim &(T)= lim S'(T)= lim U’(T)

T-T, T-T, T-T,
&T) and from that obtain the solution @,(T). We finally
find* = lim A" (T)=—oo, (32
T—»T*
8(T)= Tod 20 im C!
(D= =5+ T @ meme )

8(T)\? 21 Note thatdC\/dT > 0 for all T in the case of &', distribu-
S |’ 21) tion, and for allT>T, in the case of & _ distribution?
Another distinction between the positive and negative

2
’ 7 0 — /!
CV(T)‘CVO(T<1—5O>+T060) v

, , 1 12 Gamma state is the domain af the intrinsic entropy func-
S(M=Cu(M o(T) * 5(T)) In{1- 5(T)]}' (22) tion. One can prove that
U (T)= UL+ T (T—To) —i<a<0 for 6<0(=T.),
07 TOVOT(1-80) +Tod0 a<—-1 for 0<8<1(=T,). (34)
o , [ 6(T) Although the positive Gamma state is compatible with
=Uo+(T=To)Cyo 5 | (23 all the mathematical and physical restrictions we for-

mulated! it cannot be an exact physical solution at every

, , ToCuo TClo T(1- o) temperature. The reason is the behavio€ofasT—0: from
A(T)=Uo~ S 5 n T(1— 5O)+T050) a thermodynamical point of view, both the heat capacity of
the system and that of the reference state must tend to zero as
o TGy TCy (T(1-6p) &(T) T—0, because of Nernst heat theofeli=0 at T=0).
o 5 &R In To 5 | 24 ThereforeC\, must tend to zero a¥—0 as well. This is

obviously not the case for both Gamma states. Therefore
whereCy,, Ug, and g, are the values o€y, U’, anddat  gyen the positive Gamma state cannot be considered a physi-
th? arbitrary reference temperatufg, and & is calculated 5 statistical state for systems in the liffiit>0. This restric-
using Eq.(17). _ L tion in the applicability of the positive Gamma state is con-
These expressions have a finite limit fbr for both  nected with the emerging quantum character of the system in
the positive and negative Gamma state. By expanding thge |ow temperature limit. However for systems in the liquid

logarithm we obtain or gas phase, th€—0 limit is never encountered, since at
lim 8(T)= lim CL(T)= lim S'(T)=0, (25) consta_\nt volume there is a phase trz_;ms_ition from a quui_d_ or
T T oo T gas with homogeneous density to a liquid or solid in equilib-
rium with a gas.
L . , , ToClo There is another important difference between the nega-
TI[nwA (T):TI'E:CU (T)=Uo+ 1-6y° (26) tive and positive Gamma state. The energy difference be-
tween the averagé7’), and the lowekor uppey limit of the
The low temperature limit though is different for both distribution 7, given by yo = 75 — (7) = —bg/b;
distributions. For a positive Gamma stafé,) we find the = —TC[/§, tends to—T,Cly/(6o(1 — &) asT—x=. For a
following limits for T—0: negative Gamma state we find km.y,>0 while a positive
. B Gamma state yields lim,.,y,<O0. If we look at the tempera-
T“LnO&(T)_l’ @7 ture derivative of this difference, we finddyy/dT
= —T3C/[T(1— &) + Tod,]? < O forbothstates. Thusthe
) , Cuo absolute differencey,| increases to a maximum for a posi-
T“mOCv(T) 2 (28 tive Gamma state, wherehg| decreases to a minimum for a
- negative Gamma state. This means that in the high tempera-
limS'(T)=—oo, (29) ture limit the corresponding left-skewed Gamma distribution
T—0 is more or less “squeezed.” This implies that the latter can
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only be a reasonable approximation up to a certain temperdrhis approximation turned out to be an excellent description
ture. As soon as the average energy is approaching the uppler liquid water and methanol over a large temperature
energy limit too much, the approximation of the real physicalrange* However, it can not be a global solution, since in the
statistical state by a negative Gamma state will break dowrlimit of infinite temperaturex must tend to—3, see Eq(14).
Therefore, the negative Gamma state must be regardddote that this approximation is, in principle, independent
always as an approximation of the real statistical state of th&com the choice of the potential energy distribution function
system, while the positive Gamma state, from a certain temfollowing from the generalized Pearson system.
perature on, might be considered the real statistical state of In this paper we introduce a new approximation for per-
the system. An exact right-skewed Gamma distribution igurbed Gamma state conditions, tbenfined Gamma state
obtained for the potential energy distribution of a collection based on a double state model. In Appendix B we derive the
of classical harmonic oscillators coupled to a temperaturgeneral equations for the ideal reduced free energy, entropy,
bath, which is a good model for a solid in the classicalenergy, and heat capacity, based on the division of phase
limit, % i.e., T>A w/k. space into two subspaces. By assuming that one of these
subspaces is very unstalfie., the free energy of that part of
phase space is much higher than the free energy of the other

D. Approximated solutions of the thermodynamic part, meaning that the system is completely confined within
master equation the stable pajt and assuming that the stable subspace is
In this section we will describe different approximated exactly described by a Gamma stalg we obtain
solutions of the thermodynamic master equation, @), C\’,(T):CE/(T), (39)
two of which are based on the assumption that the real sta-
tistical state is(very) close to a Gamma state, a perturbed s’(T)zsr'(T)+k In €, (40
Gamma state conditio(see also Fig. 1 .
The first approximation is theffective Gamma stafelt u/(m=ut(T), (4)

provides the “closest” Gamma state solution to the real sta- S
tistical state around the reference temperafliye The en- A(M=A"(T)—kTIn e, (42)
tropy at the reference temperature is used to calculate the (7= I, (43)

effective &5 via Eq.(18), i.e., solving ) _
where the ‘T superscript refers to the purE equations

Sp/Clo= aro=1/55 +(1/55)?In(1— 55). [Egs. (21)—(24) and (7)] and € is the volume fraction of
With this effectives; Eqgs.(20—(24) can be used. It must be phase, space corresponding to theegion. Note that onl’
noted that in the case of an exact Gamma state the values 8fd A’ are corrected for the presence of the other unstable
5, obtained from Egs(17) and (18) must be equal. In the Part of phase space. _ S .
case of a perturbed Gamma state on the other hand both AS already mentioned this approximation is only appli-
equations will provide somewhat different values and EqC@bPle in the case of a perturbed Gamma state. Such an ap-
(18) is used to calculaté? as in this way the approximated proach can be conslder.ed than as a more sophisticated
Gamma solution will reproduce the entropy and, hence, théamma state approximation than the effective Gamma state.
free energy of the system very efficiently. This effective TOWeVer, it must be noted that in the infinite temperature
Gamma state proved to be a general good approximation fgfmit this new approximation cannot be valid, because in this
liquid water and methandl. limit the dlfference.ln stability of the two states in reality will

The second approximated solution of the thermodynamid€nd to zero. In this approach though tends to a constant
master equation is theonstant alpha approximatiohHere @fferent from zero. Th_e effec.uve Gamma state approxima-
it is assumed that the last term in E45) is negligible with ~ flon on the contrary still provides a proper behavior in the

respect to the other terms. This means thatdT~0 and, Nfinite temperature limit.
hence(T)=«y. This simplifies the master equation consid-

erably, and we obtain E. Application to small molecules
Ao

(35 From a practical point of view, the measurable quantities

are thereducedproperties instead of the ideal reduced prop-
, ) erties, i.e., with respect to a reference system with no inter-
Cu(MT CyTo molecular interactioriphysical ideal ggs The reduced free

Cy(M)= C\//o(-r_0

UM =Uo+ Not1l Agtl’ (36 energyA’ can be written in general hs
! o r— Al _ A — Br\ _ BVO
A(T)=U )\Ciol aoT(TL T, a7 A A AL=KkT In{e ). KT fn(e. Yo, F44)
0 0 where? includes only semiclassical intramolecular interac-
where tions and quantum vibrations. For small molecules like water
and methane, however, the intramolecular interactions are
)\Ozi_ (38) no_t present or can t_)e ngglected, and therefSrenly con-
o tains the quantum vibrational energy.
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For small molecules with a large seperation between the 1200
vibrational energy levels for a large range of temperature Eq.
(44) becomes

A'=KT In(ef")—E) (45)

with Eg the total vibrational groundstate energy of the ideal
gas, which is independent from the temperature. In this case
thereforeS'=S’, C{,=C/,, andU"'=U’'—E].

For small molecules where excited vibrational states are
accessible, assuming that in the real system the vibrational

1000

800

MECX X X XX X XX X XX
R XX XK X XX KK XK

Temperature (K)

600

energy is independent from the semiclassical coordinates, 0ol
Eq. (44) reduces to
A'=KT In(ef?) (46) 200 : :
0.0 20.0 . 40.0 60.0
with ® the intermolecular interaction energy, as in this case Density (mol/dm’)

0 .
(eP"y=(eP?)(ePE) and (ePEy=(eft), where E is the ) . et f oced o data
; ; IG. 2. The covered part of theT diagram of water, based on data from
guantum vibrational energy of the real system. We can thu chmidt (Ref. 17 (x) and Burnhamet al. (Ref. 12 (O). C denotes the

use the quasi-Gaussian entropy theory to exp(eég) in critical point, andG, L, andF denote gas, liquid, and fluid pha&mnditions
terms of(®)=U" and central moments @b, and to express above the critical temperatyreaespectively.

the thermodynamic master equation in reduced properties.

Hence in this case we can apply the equations of the previous

section directly to the reduced properties. where the last term on the right-hand side is the correction of
the ideal gas entropy due to the change of density.

The experimental data for water were taken from
Schmidt!® The covered part of the,T phase diagram is
represented in Fig. 2. The data on the liquid side are severely

Here we present a survey for water and methane at varlimited at high temperature because of the pressure, as the
ous densities, ranging from the almost ideal gas to typicaflensity has to be fixed; experimental data are given by
liquids. We focus mainly on the reduced entropy and iso-Schmidt up to 1000 bar, and this especially affects the liquid
choric heat capacity, since they are the most sensitive quafiegion (see, for example, Obert and Gaggldior the pvT
tities andU"=fC{,dT andA"=— [S'dT are determined by surface of water We therefore also included high-pressure
these quantities up to a constant. Therefore, a consistent prdata(100—10 000 barfrom Burnhamet al.** Previously we
diction of bothS" andCY, means that alsa U" andAA" will presented data for the reduced free energy at 55.32 mol/dm
be predicted with comparable accuracy. Moreover, we willthe largest density in Fig.)dver a large temperature range,
use the intrinsic entropy functioa to judge the quality of using liquid-vapor equilibrium data. However we had to
the various prediction@ﬁective Gamma, confined Gamma, make several Corrections, which were difficult to evaluate
and constant a|pha approximat)on within 0.5 kJ/mol at temperatures above500 K, say.

In the previous articlewe showed that for water we can Hence, the numerical calculation & and Cy, from these
calculate the reduced properties via E4§5), since the first data(basically the first and second derivatiie somewhat
vibrational energy gap is much |arger thify at least up to difficult at high temperatures. We therefore decided to use
1000 K. For methane on the contrary, because opnly the data from Burnharet al. and Schmidt. To reduce
anharmonicity:>*? already at moderate temperature excitedthe random noise i, the heat capacity data at low density
states are accessible. In this case we assume the vibrationswére calculated from a sixth-order polynomial least square
be independent from the environment and therefore we cafit of S'. At high density the heat capacity data were calcu-
calculate the reduced properties via E4f). lated directly fromS', separately for each data source. How-

In all cases we calculated the excess quantities usingver, the input data for the predictionsTay, i.e.,Cy,, a, and
tabulated values of the entropy and, if available, the isochdCy/dT were also calculated from a sixth-order polynomial
oric heat capacity. If not available, the heat capacity wadit of the merged entropy data set.
calculated from the entropy vi@\,=T(3S'/dT)y . As refer- For methane we used the tables of Angusl'® These
ence state we chose for both systems a defisitpressurg  tables were calculated on the basis of a 32-parameter equa-
close enough to the ideal gas condition for the whole temtion of state, which was used also successfully for air, para
perature range we investigated. For water we used for thdtydrogen, nitrogen, oxygetsee Reynold$) and Lennard-
purpose data measured at 0.01 bar, for methane we used)@nes fluids(see Nicolaset al'’). Values ofC}, could be
density of 0.001 mol/dth The molar reduced entropy was extracted directly from the tables, values @\/JT were

Ill. RESULTS

calculated as calculated numerically aroundl,. The covered part of the
p,T diagram is represented in Fig. 3. Note that compared to
S(T,p)=S(T,p)— Sy(T,po) +R In ﬁy (47) wa’Fer a relatively much Igrger tem_pera_tL_Jre range is covered,
0 taking into account the difference in critical temperature be-
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FIG. 3. The sampled part of theT diagram of methaneC denotes the
critical point, andG, L, F, andS denote gas, liquid, fluid, and solid phase

- " FIG. 5. Experimental results and effective Gamma predictionsx dbr
respectively.

low-density water. Legendx experimental( ¢ ) and prediction(—). The
values at the reference temperatiiigare solid symbols; the critical tem-
perature is denoted by an arrow.
tween wate(T.=647.3 K) and methanéT.=190.6 K).

Only for low density methane the exact Gamma state
formulas[Egs. (20)—(24), using the actual value ofC\/dT  For low-density water up to~0.4 mol/dni the effective
at To)] gave identical results to the effective Gamma stateGamma state is an excellent description for b8trand C},
equations[Egs. (20)—(24) with the effectives; calculated even for temperatures up to 1000 K. At densities above 1.0
from Eq.(18)]. All other gas and typical liquid densities can mol/dn? (=0.018 kg/dm) there is a small but distinct devia-
thus be considered, if applicable, perturbedGamma states. tion starting at~800 K. All these low-density gases are de-
We therefore use the effective Gamma state equations for adcribed by negative Gamma staté§ < 0 atT,). As already
densities and the constantand the confined Gamma ap- mentioned the negative Gamma state can be considered only
proximations only for the more dense liquidlike systems. Weas an approximation of a more complex statistical state, valid
will focus on low density water and methane first, then weup to a certain temperature. While initially, close to the co-
will investigate high density systems, and finally we describeexistence line, the energy distribution is left-skewed, at a
the behavior close to the critical point. certain temperature it will become symmetric and for even
higher temperatures it will transform itself into a right-
skewed distribution. This is especially clear from the behav-

In Fig. 4 the experimental values 6f andCy, are given  jor of ain T, see Fig. 5. We see that close to the coexistence
for water, together with the effective Gamma predictions.jine, low-density water is described almost exactly by a
negative Gamma state. For densities up-t4 mol/dn? this
holds for a temperature range of about 200 K. Above a cer-
tain temperature, the behavior efstarts to deviate from that
of an effective negative Gamma state. We see that for all

A. Low density water
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densities shown the real crosses the line-3 at ~700 K,
followed by a very shallow minimum of about0.6 to —0.7
(corresponding t05~0.3-0.4, indicating that p(y) has
transformed itself into a slightly right-skewed distribution.
Above 1000 K, the thermodynamics is basically indistin-
guishable from that of the Gaussian state. By increasing the
density to 5 mol/driwe see that only the temperature range
of “perfect” negative Gamma behavior is reduced, giving
rise to a final 0.7 J molt K ! deviation inS' at 1100 K for

the last density. Also note that for the lowest densities the
values of @ close to the coexistence line are quite small
(~—0.25, indicating that the initial distribution is rather
asymmetric.

FIG. 4. Experimental results and effective Gamma prediction§' odind

C\, for low-density water. Legend' experimentalO) and prediction—);

C\, experimentalA) and prediction(---). The values at the reference tem-
peratureT, are filled symbols; the critical temperature is denoted by an
arrow.

B. Low density methane

A similar behavior is observed for low-density methane,
but in details different because of the different type of mo-
J. Chem. Phys., Vol. 104, No. 17, 1 May 1996
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FIG. 7. Experimental results and effective Gamma predictions dér
low-density methane. Legend:experimental ¢ ) and predictions with low
T, (—) and highT, (---). The critical temperature is denoted by an arrow;
the Ty's by solid symbols.

FIG. 6. Experimental results and effective Gamma prediction§' ofind
Cy, for low-density methane. Legen&' experimentalO) and predictions
with low T, (—) and highT, (—); C{, experimental(A) and predictions
with low T, (--) and highT, (---). The values at both reference tempera-
turesT, are denoted by solid symbols; the critical temperature is denoted by

an arrow. . . .
the confined Gamma equations are compared to experimental

data in Figs. 8 and 9 for densities ranging from 0.55 g/t
lecular interactions. In Fig. 6 the experimental values and th€.997 g/cm.
effective Gamma predictions @& and C\, are presented, For all four densities the confined Gamma predictions
using aT, close to the coexistence line. First of all we seeagree very well with both the experimental entropy and heat
that in the first 60 K, say, starting from the coexistence linecapacity data, even for a temperature range of 500 K. Both
the effective Gamma is in good agreement with the experithe effective Gamma and the constant alpha approximations
mental entropy data for all densities presented, although theeproduce the entropy data over 200—300 K very well, but
deviations for the heat capacity are larger. Furthermore, it isleviate somewhat for larger temperature ranges. It is clear
clear that, in contrast with water, already at the lowest denthat the quality of the constant alpha approximation im-
sity there is a distinct deviation at higher temperature. Jugproves with increasing density. The experimental heat capac-
like water, the deviations are more pronounced at higheity data from Schmidt and Burnhaet al. are given sepa-
densities. Interestingly, if we look at the temperature rangeately, to indicate the noise and discrepancies in the
AT within which the entropy is more or less well described, experimentalC, data, especially at lower density, when cal-
we find that forp=1.0—5.0 mol/dm (=0.016-0.080 kg/drh culated directly from the entropy. For the heat capacity the
the normalized quantibtAT/T, for methane(0.26-0.32 is  effective Gamma approximation is less accurate than the
virtually the same as for wat€0.31—-0.3%. The behavior of confined Gamma one, while for higher densities the constant
ais given in Fig. 7. We see that close to the coexistence linalpha approximation is comparable. This confirms our previ-
the system is also described by a negative Gamma state,
although less asymmetric than water-—0.4). We see also
in this case that there is a transition from a moderately left-
skewed distribution via a symmetric towards a quite asym-
metric right-skewed onéx~—3, corresponding té&~0.98).
If we choose a higher reference temperailrg=420 K) we
obtain for all gas densities presented a positive Gamma state,
which is perfectly able to describe the high temperature data
(S',Cy as well asa) over a large rang€250-600 K, see
Figs. 6 and 7. Of course below a certain temperature the
agreement breaks down. From Figures 6 and 7 it is clear that
after the transformation from a left to a right-skewed distri-
bution, a stable positive Gamma state is obtained. The same
is true also for low-density water, although there the stable L ‘ . . . .
positive Gamma state is almost a Gaussian gtate—0.5). 30 400 500 600 700 300 900 1000 1100

Temperature (K)

§' (Wmol K)

-
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=15
-20
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C. High density water FIG. 8. Experimental results and predictions®ffor high-density water.

. . . .., Legend:S" experimentalO) and effective Gammé--), confined Gamma
Next we will focus on h'gh'den5|ty systems. For liquid () and constant alpha predictions-). The value at the reference tem-
water the results of the effective Gamma, constant alpha angkratureT, is denoted by solid symbols.
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Temperature (K)

FIG. 9. Experimental results and predictionsGif for high-density water.

Legend:Cy, experimental from SchmidiRef. 1) (A) and Burnhanet al.
(Ref. 12 (V) and effective Gamm#&--), confined Gamm#—), and con-
stant alpha prediction6—). The value at the reference temperatiiggis
denoted by solid symbols.

ous findings on liquid watérat 55 mol/dri. Maybe the
“waves” in the experimentalC\, data from Burnhanet al.

6673

TABLE |. Gamma state parameters of high-density watef at

p (mol/dn®) T, (K) &% € &5°
30.38 653.0 -0.13-0.23 0.42(0.37 0.44(0.48
37.24 613.0 —0.260.22 0.21(0.35  0.63(0.66
42.69 563.0 0.30.44) 0.24(0.33  0.72(0.72
49.00 513.0 0.30.49 0.15(0.24  0.77(0.76
55.32 313.0 0.4®.57) 0.09(0.14 0.77(0.77

aCalculated from a sixth-order polynomial fit @; values between paren-
theses are calculated from a second-order fit on crude experim@jtal
data.

we give the molecular phase-space fractione'’N, with N

the total number of molecules in the system. As an illustra-
tion of the errors in these parameters the value€{pfand

dC{/ 4T were also calculated via a second-order polynomial
fit on the mergecC\, data from Schmidt and Burnhaet al,
instead of via a sixth-order polynomial fit on the merd&d
data. This gave a second set of paramegrs, and 55 at

Ty, see the values in Table | between parentheses. Compar-
ing the two sets we see that they are quite close. It is also
clear that the confined Gamma state at the two lowest liquid

are caused by the particular choice of the analytical shape Qfansities is not completely defined: the valuedgfis very

the equation of state they used to produce their tables. For glj

ose to zero, being either negative or positive depending on

densities the confined Gamma approximation seems to be thfe precise input data. In fact, these exact Gamma states are
best curve through the experimental data. In Fig. 10 the eX5;m0st Gaussian ones.

perimental values of are presented with the various predic-

To illustrate the effect of the density on the energy dis-

tions. The values ot were calculated separately for each (i tion we calculated the values of 5 anda at a com-

source. Even fow the confined Gamma prediction is about
the best curve through th@oisy) experimental points for

every density. We see that with increasing densitype-

mon temperature, namely 653 K, see Table II. In addition,
the values of were calculated again and matched very well
the values evaluated @} (Table ), as the volume fraction of

comes more constant in temperature. This explains why thgecnied phase space should be temperature independent.
quality of the constant alpha approximation is enhanced witljgre \ve must stress that for this temperature the value of
density. For 55 mol/drhwe see that this constant alpha ap- dCy/aT at 55 mol/dmi was more difficult to evaluate with

proximation is almost exact.

In Table | we present the parameters of the effectivg

the same precision than at lower densities, because of the
arge noise in the experimental data. Remember that for this

Gamma and confined Gamma state. Note that in the tab"?fensity the temperature is350 K away from the coexist-
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alpha

FIG. 10. Experimental results and predictionsaofor high-density water.

Legend: @ experimental from SchmidtRef. 13 (<) and Burnhamet al.
(Ref. 12 (O) and effective Gammé&--), confined Gamm#&—), and con-
stant alpha prediction6—). The value at the reference temperatiligeis
denoted by solid symbols.

ence line, and the experimental data are measured at pres-
sures exceeding 8000 bar. A worse evaluatiow®f,/dT

will especially influence the calculation o&=exd (S
—S'")/K]. Anyway, the values ob of the confined Gamma
state clearly increase with density, the system at 30 mdl/dm
still being represented by a negative Gamma state, but for all
other densities by a positive one. The increasedafith
density is a reflection of the fact that the potential energy
distribution in water becomes more asymmetric by increas-
ing the density, since the average intermolecular distances
are somewhat reduced, which gives rise to more unfavour-
able interactions. In this way the rigktiigh energy tail of

p(y) becomes more pronounced, while the distribution close
to the mode is only little affected since water, because of its
very directed and strong interactions, is able to maintain on
average a reasonable low-energy structure on increasing den-
sity. At the same time we see the valueeofiecreasing from
~40% to ~10% of phase space, as expected from the fact
that the number of configurations with a not too unfavour-
able potential energy will decrease with density. For the
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TABLE Il. Gamma state parameters of high-density water at 653 K.

p (mol/dn?) olpc? 5(653P €(653) 5(653° (653°
30.38 1.74 -0.23 0.37 0.48 -0.75
37.24 2.13 0.15 0.32 0.66 -0.96
42.69 2.44 0.28 0.26 0.74 -1.11
49.00 2.80 0.36 0.20 0.80 -1.26
55.32 3.16 ~0.57 ~0.22 0.84 —~1.40

3Reduced density, using a critical densityof 17.51 mol/dm (Ref. 11).
bvalues of the double state and effectifethe molecular phase-space fractigrand « calculated aff =653.0
K from a second-order fit on crude experimer@y) data.

same reason the value of the effecti¥feat 653 K(Table II) confined Gamma approximation reproduces the experimental
increases with density, partly to correct for the increasinglata very well abovd, and just as in the case of water for

extra termk In e in the entropy due to the growing unstable higher densities, the constant alpha approximation is also
part of phase space. Basically, in the effective Gamma stateery accurate. Similar to water we see that the effective
the value ofM;xdC\/dT is adapted to reproduce the en- Gamma state, although very good for the entropy, shows
tropy atT,, keeping fixed the value ofl,xC\,. Further- more deviations for the heat capacity. In Fig. 13 the experi-
more, the values ofa| increase with density, indicating a mental values ofx and the different predictions are given.

larger ‘“resistance” of high density systems for increasingWe see that in all cases the confined Gamma approximation
the order when the temperature is loweregte also Eq. gives very good results over a large temperature range; at
(13)]. This means that at comparable temperature systems higher density also the constant alpha approximation works
higher density already have a more collapsed structurevell. Remember that, being the ratio of two quantities, is

which, decreasing the temperature, cannot be easily optthe most sensitive property. We see that just as with water

mized. the stability ofa is enhanced with density.
In Table Il the parameters of the confined and effective
D. High density methane Gamma states &, are given and in Table IV the values of

. : - hese parameters are presented at a common temperature
] For r:|gh density methang the results of the pred|ct|ons 0_&320 K). First of all it is clear that, although in absolute terms

S. andCy are presente_d in Figs. 11 and 12, using the effeCy,, yensities of “regular” liquid water and methane are
tive Gamma, the confined Gamma and the constant a_lph@omparable(starting at~30 mol/d), the reduced densities
approximations. A3y we choose a temperature above wh|chp/p are much larger for methane than for wateee Tables

the behavior oy, was “regular” i.e., decreasing with tem- I acnd IV). Here the critical densities apg=10.11 mol/dm

perature(see Fig. 12 o for methan& and 17.51 mol/drhfor water?® This is (prob-
In Fig. 11 we see that all trhree approximations agree,) caused by the much weaker interactions in methane.
very well with the experimenta®’ data, even for tempera- Secondly we see that the values of botand & (Table

tures~200 K lower thanT,. The onlyaexce_-pti(_)n Is the con- |v/y are much larger than for watéFable 1), indicating that
stant alpha approximation at 30 mol/drwhich is only valid o ootential energy distribution in methane is much more
up to~100 K belowT,. For the heat capacity, especially the
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o 25 o 180
2 H
£ %r S 140
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40 100
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_40 ; } 120 ' ! }
P a
~ 240 | 35.0 mol/dm
220 e
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35.0 moldm® 200
. . 180 .
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Temperature (K) Temperature (K)

FIG. 11. Experimental results and predictionsSffor high-density meth-  FIG. 12. Experimental results and predictionsQif for high-density meth-
ane. Legend:S" experimental(O) and effective Gammd---), confined ane. LegendCy, experimental(A) and effective Gammd---), confined
Gamma(—) and constant alpha predictiofis-). The value at the reference  Gamma(—) and constant alpha predictiofis-). The value at the reference
temperaturel , is denoted by solid symbols. temperaturel ; is denoted by solid symbols.
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TABLE lll. Gamma state parameters of high-density methangyat

-1.0
-15 | -
TGSt ] p (mol/dn?) To (K) & < st
Do Lo 30.0 moldm® ]
0 ; ; ; 30.0 320.0 0.87 0.64 0.92
s 60 325 280.0 0.83 0.47 0.90
2 18t 335 280.0 0.81 0.47 0.89
22 35.0 240.0 0.72 0.28 0.87
1.4 | e
-16 ¢ >
18l W 33.5 mol/dm’
20 ’ — tribution of methane is increasing faster than the third one
e ,w;e@@eee@_ ] (remember thatt=M;/2kTM,, see Eqs(9) and (17), i.e.,
el 3.0 moldm” ] the distribution is getting “fatter” around the mode, instead
-1.8 . . . .
100 200 300 400 500 of enhancing the asymmetry. We also see that the absolute

Temperature (K)

value of @ is decreasing with density; hen€, (<M,) is

. . . .
FIG. 13. Experimental results and predictionscofor high-density meth- Increasing faster than the order in the systefm 6 )’ Inwa

ane. Legend:a experimental(¢) and effective Gammd-—), confined  t€r we see the opposite. Probably for a simple system like
Gamma(—), and constant alpha predictiofs-). The value at the reference  methane the order can be hardly increa&&dbe decreased

temperaturel, is denoted by solid symbols. with density as the intermolecular distance is the dominant

factor for the potential energy. Water, on the other hand, can

o ] . ) still optimize the structure much more at high density, as the

asymmetric i.e., quite “thin” around the mode and with @ qjentation of the molecules is also very important. From this
long tail on the rightthigh energy side. This stronger asym- j; flows that for liquids consisting of molecules of interme-

metry can be explained by the fact that the intermoleculagiste polaritye might be quite constant in density.
interactions in methane are of much shorter range and the

attractive interactions are much weakeompared to the re-
pulsive onesthan in water. Hence, at relatively high density
the weight of the high energy values in methane is larger For intermediate densities we find a more complex be-
than in water, where the dominating long-range electrostatibavior of the thermodynamic properties. For water approxi-
interactions create more or less a balance between attractiomately up to the critical point the behavior 6f, is regular,
and repulsion, giving rise to a more symmetric distribution. i.e., decreasing with temperature. Around the critical density
Also we see that the values of the molecular volumethough we find thaCy, starts to behave differently; close to
fraction e of the stable region in Tables Ill and IV are in the coexistence line it increases with temperature but after
reasonable agreement, decreasing froB0% to ~30% of  some temperature interval it behaves regular agsée for
phase space. These values are significantly larger than fexample the initial behavior of!, at 30 mol/dm, Fig. 9).
water. The reason for this could be simply the difference inFor methane the behavior &, above the critical density
intermolecular interactions. Methane can be represented veft0 mol/dn?) to ~30 mol/dn? is given in Fig. 14. We see
well by a monoatomic van der Waals liquid with virtually no that only above 30 mol/dfnthere is a regular behavior at
directional preferences'® whereas water forms hydrogen high temperature within the range of experimental data.
bonded structures with very directed interactions. Because dElearly, the behavior around the critical point cannot be de-
this very strong ordering in water the fraction of configura-scribed by a simple Gamma stafbeing either effective
tions with a “favorable” energyinside the confined Gamma Gamma or confined GammaThis means that neither the
statg is much less than in the case of methane, where thentire phase space can be described by one siaffctive
intermolecular distance is the determining factor and the anGamma state, nor the system is confined within a small
gular orientations are much less important. stable part of phase spa@mnfined Gammpa Maybe in such
Interestingly, we see that by increasing the density theonditions a full double state model, using two Gamma
values of§and&* are actually decreasing. This indicates thatstates, is able to describe properly the behavior of the sys-
in contrast with water the second moment of the energy distem.

E. Intermediate densities

TABLE IV. Gamma state parameters of high-density methane at 320 K.

p (mol/dn?) plp? 5(320° €(320) 5(320P «(320°
30.0 2.97 0.87 0.64 0.92 -1.86
325 3.21 0.84 0.61 0.89 -1.70
335 3.31 0.76 0.40 0.88 -1.62
35.0 3.46 0.71 0.34 0.86 -1.51

3Reduced density, using a critical densityof 10.11 mol/dm (Ref. 13.
bvalues of the double state and effectifethe molecular phase-space fractigrand« calculated aff =320 K
from the experimenta$’ andC\, data.
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" potential energies, occurAt higher temperatures the repul-

7ol 1 el ] sive interactions are becoming more important, and within a
geop 4 1 & small temperature interval the system transforms itself into a
g so0} “ 50 AA weakly perturbedbositive Gamma state, which can be de-
G40t s 1 sl W scribed accurately by an effectiié, state. Probably this

30| w effective Gamma state is able to describe the physics of the

20 e an a0 s0 ‘O aee w0 400 500 system at every temperature above the—I", transition.

Therefore for typical gas densities the entire phase-space can

80 T e " T be described by one effectié state(e~1). For very dilute
R 8 e S ] systems the statistical state of the system is an exact negative
E 76 N - Gamma state at every temperature and in the limit of infinite
274 A T N dilution the left-skewed Gamma distribution will become a
R womosart | 10 LA 0.0 molidm® delta functionli.e., a (negativé Gamma distribution with

g0 LB ‘ . . ‘ ‘ . Mgoxcb; % §—0 and alsaCy, « M2.—>0'].. For larger densities

100 Zoﬂempig?mm;w 500 00 ZOﬁemp;:?um(K;m 500 the temperature range of applicability of the effectiVe

state decreases, while the range of the high-temperature ef-
FIG. 14. Experimental results @F, for methane beyond the critical density. fective I', state increases.
For densities close to the critical density, the effective
I', state is not able to describe the behavior of the system
IV. DISCUSSION AND CONCLUSIONS any more. This can be explained in terms of the double state

In this paper we presented an investigation of the appli-mOdeI: phase space can be split into two regi(_)ns O_f still
comparable free energy, where one of the regions is de-

cability of the quasi-Gaussian entropy theory on two ver
g d by y y ribed by an exact Gamma state, but the second one has an

different systems, water and methane. For densities rangi o L . ;
from the almost ideal gas to dense liquids we calculated e Unknown statistical state. Perhaps it is possible to describe

perimentalreducedthermodynamic propertiebasically en- also thi§ seco_nd region by qnothgr Gamma state, but this is
tropy S, heat capacityC!,, and the intrinsic entropy func- something which has to be investigated more thoroughly.

tion a=S'/C\)) and compared them with various predictions . For densities beyond the critical density thi; second re-
following from the theory. If the statistical state of the sys- gion of phase space becomes very unstable with respect to

tem is a weakly perturbed Gamma state, the effectivé‘h.e 'Gamma state, i.e., the system is gompletely confmed
Gamma and the confined Gamma approximations can b ithin one part of phase space, the confined Gamma region.

used. A third approach is the constant alpha approximatio _robably this confinement reflects the appearing molecular
We showed in this paper that a large part of #h@ diagram restrictions of the system. We see that the volume fraction of

of water and methane can be considered as weakly perturb(Ill?JiS stable part of phase spagg decreases with density, as

Gamma states. where the effective Gamma or confine%ﬂ”th increasing density the fraction of the very unstable con-
Gamma equations give good results. This is schematicall gurations is enlarged very mgch. For methane the confined
illustrated in Fig. 15, giving the effective Gamma regions, camma states arg, ones, with a larges (~0.7 to 0.9,

For low density systems we find close to the coexistenc&"h'le for water the exact Gamma state is either slightly nega-

line a weakly perturbediegativeGamma statddue to the tive (lowest densityor moderately positivé5~—0.2 to 0.5.

fact that at this low density the repulsive interactions areTh'fS d|fference In asymm_etry of the _potenﬂal energy d'Str."
ution is caused by the difference in intermolecular potential

hardly present and only attractive interactions, i.e., negativ - .
yP y g %)short range, only weakly attractive van der Waals interac-

tions in methane and long-range electrostatic interactions in
water, where the attractive interactions are of the same mag-
nitude as the repulsive ones

This partitioning explains the fact that the entire phase
space in the fluid-liquid regime can be described by a per-
turbed Gamma state. The effectilie state therefore is able
to reproduce the entropy very weland, hence, the free
energy) but less accurately the heat capacity. An interesting
feature of these fluid-liquid systems is the fact that the intrin-
sic entropy functione is becoming very stable in tempera-
ture for high density systems. Therefore, in this range of
densities also the constant alpha approximation gives very
good results.

For solids with, in general, an even higher density, we
FIG. 15. A schematic phase-diagram of wamethang with an indication fmd.m the classical I|mi1(“|d.eal” classical harmonLc solif
of the regions where one of the two effective Gamma stdfesor ') is ~ @dain an exact’, state. This exact “harmonic™I". state
applicable.c denotes the critical point. has a nonconverging free energy, as the atoms may be infi-
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nitely far apart. In a real monatomic solid, behaving almostwhere w, is the nth central moment of the potential energy
like a classical harmonic solid.e., C,~3R, C{, ~ 3 Rand fluctuation Ae within each elementary subsystem. Since
dC\/aT =~ 0), this is obviously not the case. Indeed in a realwe are interested in the limf—o, i.e., B—0 we must know
solid the system is confined into a small part of phase spac#he behavior ofy, in T. In general, we can decompose
just as in the case of liquids. The statistical state of this smalthe energy distribution function gs(Ae)=exp(—Be)Qelq,
part of phase space is a converging state, well approximateghereQ(e) is the microcanonical partition function at energy
by theI™ state. The value oé is likely to be even smaller ¢, q is the usual canonical partition function of the elemen-
than for dense liquids. tary system and exp-Be) is the Boltzmann factof® Since
Interestingly the idea of “confinement” of a liquid sys- (e) is temperature independent and the Boltzmann factor
tem into a small part of phase space is also expressed tends to one ag—0 we find

several other models of the liquid state. One of the simplest n _

cell models is the Lennard-Jones and Devonshire mtdel, lim = lim J(Ae)"d(e)expl~ Be)de

where each molecule is confined to its own “cell” and the -0 poo JQle)exp(—Be)de

configuration partition functior’ is split into partition func- F(Ae"Q(e)de

tions of single occupancy and a disorder parameter. The mol- - (A2)
ecules are thought to move in the field produced by the JQ(e)dAe

neighbouring ones as if they were fixed at the centers of theirhis means that the momerii§existing) reach a final value
cells. Another model is the one proposed by Eyringat infinite temperature. The assumption that these moments
et al,*"* where the degrees of freedom of the system arexist is generally accepted in perturbation theory see, for
arbitrarily divided into “crystallike” and “gaslike” ones. examp|e, Zwanzia or Hansen and McDonaFd_Therefore,

In general, we can say that in this paper we have showRince all moments reach a final finite value, the argument of

that in a large part of they, T phase diagram there is a the logarithm in Eq(A1) tends to one, and by expanding we

general description of thermodynamic properties in terms ofing

simple Gamma stategeffective Gamma or confined ) N

Gamma. It is also clear that the temperature range of appli- I'moa(ﬁ): e

cability is very large: in many cases excellent predictions of N

various properties over a range of more than 500 K are podt still depends on the sign gi; from which side this limit-

sible. This means that for different densities properties caing value is reached. }f;<0, i.e., a left-skewed distribution,

be measured at relatively moderate conditions, not very faihe limit is approached from the right, and vise versa for

from the coexistence line, and extrapolated to for exampléight-skewed distributions.

supercritical conditions. This could therefore be used to con-

struct an _equation of_ state valid over a large _temperaturg\PPENDlx B: DOUBLE STATE MODEL

range. Existing equations of state can be examined for con-

sistency with our description. It is also clear that the descrip-  In this appendix we introduce the basic idea of a parti-

tion is valid for molecules with very different chemical prop- tioning of phase space into two different regions.

erties, like water(very pola) and methandvery apolay. The ideal reduced free energy can be writteh as

Furthermore, the theory can be applied to the overall prop- o

erties of mixtures as well, and can also be formulated for A’=—kTIn2'=—kTIn /; (B1)

partial molar properties. Presently we are investigating the ~o

partial molar properties of a solute at infinite dilution. whereZ’ and, are the partition functions of the system and
the reference state and is the reduced partition function. If
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AT PR P
= — n — 4+ —_—
ROy B

= KT In[ee B~ + (1— e)eFA" ], (B3)

APPENDIX A: HIGH TEMPERATURE LIMIT OF « where e=3/¢, is the volume-fraction of phase space be-
longing to thea region. This volume-fraction is temperature
independent, since the reference st@@h no interactions
and no vibrations can be regarded as a system at infinite
IN[1+ up( B2/2Y) + pa(B331) + -+ ] (A1) lemperawre, as the effect 6F—0 is the same ag—0.
wof3° ' Therefore ¢y is just the phase-space volume. Further

The intrinsic entropy functione can be expressed in
properties of the elementary subsysterh as

a(B)=—
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AY = — KT In P13 is the ideal reduced free energy of the
region,A®" is the ideal reduced free energy of theegion.

Apol, Amadei, and Berendsen: Thermodynamic properties of water and methane

exact Gamma state with a constant temperature independent
shift. Moreover, for the free energy there is a correction

We can obtain the other thermodynamic properties usingerm. With the knowledge of;,, Cy,,, dCy,/dT, andS; at

S'=(3A"1dT)y,U'=A"+TS, andCy, = (dU'/dT)y . This
yields

S =k In[ee A2 +(1— e)e A2

! ’ b’ '
ee P U +(1—e)e PATUP

T , B2
| ee AU (1 e)e AU
e PACY 4 (1-e)e PR CY
A\ C/’?[
L e U E (- ge 0 U2
kT2
! ’ ! ) 2
1 | ee PA U +(1-e)e A" UP
kT2 o (B6)
with
' =ee PR 4 (1—e)e P (B7)

The energy distribution function of the entire phase space is

given by
e AR (7)) + (1— e)e PA” pb(7
p(%ze pH7)+(1—e) p(7) 89)

C//

as can be checked easily by calculgt(egp(ﬁf?/)) and real-
izing that (exp(B7)).,—=exp(BA*) and (exp(B7)),

the reference temperatuiig one can calculate the phase-
space volume fractiowr, using Eq.(B10).

Within the same approximation we find that E&8)
simplifies to

p(7)=p"(7), (B13)

where p'(7) is the Gamma distribution of th& region,
implying that this approach corresponds to perturbed Gamma
state conditions, in the whole phase space.

In molecular terms the confined Gamma region probably
for a large part corresponds to “ordered” molecular clusters
or structures, while the other part of phase space corresponds
to high-energy configurations.
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