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In this article we investigate the applicability of the statistical Gamma state as following from the
quasi-Gaussian entropy theory, where all thermodynamic properties at every temperature are
obtained from the knowledge of the potential energy distribution at one temperature. We compared
for a typically polar system~water! and an apolar one~methane! the experimental heat capacity and
entropy data with the predictions of the theory at various densities, ranging from the almost ideal gas
to typical liquids. Interestingly, the behavior of water and methane is quite similar. Low-density
gases and fluid-liquid systems can be described as weakly perturbed Gamma states. For intermediate
densities a more complex statistical state arises. In order to describe more accurately the fluid-liquid
regime, we propose in this paper a confined Gamma state, based on the division of phase-space into
two different regions: one of them described by an exact Gamma state and another very unstable
one. We conclude that typical fluid-liquids can be described very well by this new Gamma state
approximation. We also try to give a physical interpretation of the two parts of phase space that arise
from the model. The high accuracy of the theory over a large temperature range makes the approach
very suitable for the prediction of thermodynamical properties at, for example, supercritical
conditions. ©1996 American Institute of Physics.@S0021-9606~96!00317-X#

I. INTRODUCTION

The use of~empirical! fitting functions of thermody-
namic properties or equations of state is often not very sat-
isfactory because of the lack of a full physical consistency
and the need of a large dataset to extract the parameters. The
possibility to obtain predictions of thermodynamic properties
or an equation of state, based on a coherent physical theory
which would require only a limited set of initial data~pref-
erably measured at moderate conditions!, could be of great
importance.

In this paper we apply a recently introduced physical
theory, the quasi-Gaussian entropy theory, to predict the
temperature dependence of various thermodynamic proper-
ties at a given density from the knowledge of the internal
energy, entropy, heat capacity, and its temperature derivative
at one~moderate! initial temperature. In a recent article1 we
described a way of calculating excess thermodynamic prop-
erties, like excess free energy, entropy, potential energy, and
heat capacity, based on knowledge of the shape of the poten-
tial energy distribution function. As the excess free energy is
uniquely related to the moment generating function~Laplace
transform! of the potential energy distribution, it follows that
all thermodynamic properties can be derived from the
knowledge of this distribution. Each different type of distri-
bution therefore defines a different ‘‘statistical state’’ of the
system, with its own specific equilibrium physics. A sche-
matic diagram of the theory is given in Fig. 1.

We used a generalization of the Pearson system of fre-
quency curves1,2 to generate a set of different~potential en-
ergy! distribution functions, with increasing complexity. The
simplest solutions are the Gaussian and Gamma distribution.

We derived expressions for the thermodynamic properties in
terms of the parameters of these distributions, which in turn
can be related to~temperature derivatives of! the heat capac-
ity CV . Using the thermodynamic relation]S/]T5CV/T we
were also able to obtain the temperature behavior of these
thermodynamic properties. Knowledge ofCV ~Gaussian
state! or CV and]CV/]T ~Gamma state! at one temperature
is sufficient to predict the temperature behavior of the heat
capacity and the entropy. Combined with the knowledge of
the initial internal energy, also the internal energy and the
free energy can be calculated as a function of temperature.

In the same article we also tested the Gamma state solu-
tion on liquid water and methanol, finding that both liquids
could be considered as weakly perturbed Gamma states, still
well described by a simple Gamma state approximation~ef-
fective Gamma state!. Another interesting feature of these
liquids was the fact that the intrinsic entropy functiona, i.e.,
the ratio between excess entropy and heat capacity, is very
temperature insensitive over a large temperature interval.

In this paper we will investigate the effect of the density
on the thermodynamic properties of water and methane~the
entropy, the heat capacity, and the intrinsic entropy function!
and the quality of the Gamma state description. For low den-
sity gas conditions a left-skewed Gamma distribution is in-
troduced, defining the special negative Gamma state~G2!.
For fluid-liquid conditions a confined Gamma approximation
is proposed, based on the division of the phase-space into
two different regions, one of which is described by an exact
Gamma state and the other is completely unstable. Such a
model provides a very accurate description of the fluid-liquid
regime, a weakly perturbed Gamma state condition. Interest-
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ingly, the Gamma region, where fluid-liquid systems are
completely confined, could be connected with the restrictions
in molecular organization, arising at increasing density.

The paper is organized as follows. The first two theory
sections are a summary of the quasi-Gaussian entropy theory
described in detail previously,1 while in Sec. II C we intro-
duce the specialG2 state and in Sec. II D we describe the
new confined Gamma approximation based on the double
state model~in Appendix B we give a general description of
this model!. In the results part we investigate for both water
and methane the effect of the density~ranging from the al-
most ideal gas to a typical liquid! and the polarity on the
applicability of the Gamma state descriptions.

II. THEORY

A. Introduction

For clarity a schematic diagram is presented in Fig. 1,
summarizing the theory and the various approximations, de-
scribed previously1 and in this article. The macroscopic mo-
lecular systems under consideration are~as usual! assumed to
be in the quasiclassical limit. This means that apart from
quantum bond and angle vibrations, all other interactions are
described classically. In that case the excess~or ideal re-

duced! Helmholtz free energy of a system, i.e., the free en-
ergy with respect to a system with the same temperature and
density and the same bond and angle constraints~if present!
but with no intermolecular and intramolecular interactions
and no vibrations3 is given by1

A85A2A05kT ln^ebV & ~1!

5U81kT ln^eby&. ~2!

HereA andA0 are the full free energies of the actual system
and the reference state,V is the total potential energy of the
system ~including possible quantum vibrational energies!,
U85^V & is the ~ideal reduced! internal energy,y5V 2^V &
is the potential energy fluctuation andb51/kT. Angular
brackets denote a canonical ensemble average and the prime
stands for ‘‘ideal reduced.’’

Equation~2! can be rewritten in terms of the potential
energy distribution functionr(y) as

A85U81kT ln E ebyr~y!dy, ~3!

wherer(y)dy is the probability of finding a potential energy
fluctuation betweeny and y1dy. Thus if we know the en-
ergy distribution, all equilibrium physics follows from that,
since

S852S ]A8

]T D
V

5
U82A8

T
52k ln E ebyr~y!dy, ~4!

CV85TS ]S8

]T D
V

, ~5!

etc.
Equation~1! indicates that the~ideal reduced! free en-

ergy is proportional to the logarithm of the moment generat-
ing function4 ~or Laplace transform! of the total potential
energy distribution function, whereas Eq.~4! shows that the
ideal reduced entropyS8 is proportional to the logarithm of
the moment generating function of the distribution of the
potential energy fluctuations.

If the macroscopic system can be thought to be built up
from a large collection of identical, independent subsystems
~elementary systems! which are still thermodynamically de-
fined, we can apply the central limit theorem to show that
r(y) must be uninormal and close to a Gaussian distribution.
Using a generalized Pearson system of frequency curves1,2

we can generate distributions with increasing complexity
which satisfy the mathematical and physical restrictions that
we can impose.1 The solutions of this Pearson system can be
used to classify the physical systems into different ‘‘statisti-
cal states,’’ since the shape ofr uniquely determines the kind
of physics. The two simplest possible solutions~see also Fig.
1! are the Gaussian distribution,

r~y!5~1/A2pb0!expS 2
y2

2b0
D ~6!

and the Gamma distribution,

FIG. 1. A schematic diagram of the quasi-Gaussian entropy theory. Left of
the dotted line are the input equations, approximations are denoted by
dashed arrows. The input data atT0 to calculateS8(T) andCV8 (T) are given
below the different solutions. For all solutions with the knowledge ofU08
alsoA8(T) andU8(T) can be obtained.
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r~y!5
b1~1/b1

2!b0 /b1
2

G~b0 /b1
2!

~b01b1y!b0 /b1
2
21exp@2~b0

1b1y!/b1
2# ~7!

with G~•! the Gamma function5 and where the parametersb0
andb1 are related to the central momentsMn5^yn& of the
energy distribution in the following way:

b05M2 , ~8!

b15
M3

2M2
. ~9!

Using standard statistical mechanical relations,6,7 we can
link these moments to~temperature derivatives of! the ideal
reduced isochoric heat capacityCV8 , obtaining

b05kT2CV8 , ~10!

b15kT1
kT2~]CV8 /]T!V

2CV8
. ~11!

Hence with the knowledge ofU8, CV8 , and]CV8 /]T all ther-
modynamical properties are defined in the ‘‘Gamma state.’’
For the ‘‘Gaussian state’’ justU8 andCV8 are sufficient. Fur-
ther solutions of the Pearson system will not be considered
here, partly because of their increased mathematical com-
plexity and partly because already the Gamma state is suffi-
cient to approximate in many different cases the actual sta-
tistical state of the system.

B. Intrinsic entropy function and thermodynamic
master equation

We also introduced the concept of theintrinsic entropy
function1 a, a dimensionless and intensive quantity, defined
as

a5
S8

CV8
. ~12!

Since the ideal reduced entropy is always negative andCV8
positive, this means thata,0. The meaning ofa becomes
more evident by rewriting Eq.~12! as

a5
S8

CV8
5S ~]S8/]T!V

S8/T D 21

52S ~]S8/]b!V
S8/b D 21

. ~13!

SinceS850 whenb50, a is thus the ratio between the av-
erage slope ofS8 vsb and the instantaneous slope]S8/]b. If
for instanceuau.1 the instantaneous slope is smaller than the
average slope in absolute values, meaning that the system
has a large ‘‘resistance’’ against increasing the order by low-
ering the temperature.

In Appendix A we derive the high temperature limit of
a:

lim
T→`

a~T!52 1
2. ~14!

The valuea521
2 corresponds to the Gaussian state condi-

tion, implying that at infinite temperature for every system

the thermodynamics is indistinguishable from that of a
Gaussian state. For example we find that in this high tem-
perature limitS8~b!}b2.

SinceS85CV8a we can obtain an analytical expression
for a using Eq. ~4! if the distribution is known. We can
closely linka andCV8 via their temperature derivatives. Us-
ing the fact that (]S8/]T)V 5 CV8 /T we obtain thethermody-
namic master equation1

CV8

T
5aS ]CV8

]T D
V

1CV8 S ]a

]TD
V

. ~15!

If at a certain temperature we know the exact statistical state
of the system~i.e., we know the analytical shape of the en-
ergy distribution defined by a set of parameters in terms of
energy moments, which can be linked to temperature deriva-
tives ofCV8 !, we can calculate the integral in Eq.~4! to obtain
an analytical expression ofS8 in terms ofT, CV8 , ]CV8 /]T,
etc. and, hence, ofS8/CV8 5 a(T,CV8 ,]CV8 /]T,...).Then Eq.
~15! forms a completely defined differential equation inCV8
andT ~see also Fig. 1!, the solution of which yieldsCV8 (T)
and all its temperature derivatives inT, given the values of
CV08 ,]CV08 /]T,... at one temperatureT0 as boundary condi-
tions. From that we can obtaina(T), the entropy viaS8(T)
5CV8 (T)a(T), the potential energy via U8(T)
5U081*T0

T CV8 (T)dT and finallyA8(T)5U8(T)2TS8(T). In

the next section we will investigate in detail the expressions
of the Gamma state.

C. Properties of the Gamma state

The free energy of the Gamma state can be readily cal-
culated, evaluating the integral in Eq.~3! using Eqs.~7!,
~10!, and~11! to obtain1

A85U82TCV8 F1d 1S 1d D 2 ln~12d!G , ~16!

where

d5
b1
kT

5
T~]CV8 /]T!

2CV8
11 ~17!

and, hence,

a~d!5
S8

CV8
5
1

d
1S 1d D 2 ln~12d!. ~18!

The quantityd is a measure for the asymmetry of the energy
distribution. For physical reasons, since the free energy must
be a finite value and, hence, the integral in Eq.~3! must
converge, we find that

d,1. ~19!

Furthermore, the sign ofd indicates if we are dealing with a
left-skewed Gamma distribution~d,0! defining a negative
Gamma state~G2! or a right-skewed Gamma distribution
~d.0! defining a positive Gamma state~G1!. The valued50
corresponds to a perfectly symmetrical distribution, i.e., a
Gaussian.
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It is important to note that in a negative Gamma state the
energy distribution is defined from2` to a finite upper en-
ergy limit, as follows from Eq. ~7! in the case that
kTd5b1,0. For a positive Gamma state, on the contrary,
the distribution has a finite lower energy limit, and is defined
up to1`. This implies that only the positive Gamma state
can be considered as a real physical statistical state, fulfilling
all the physical and mathematical restrictions,1 while the
negative Gamma state must be regarded as a numerical ap-
proximation of a more complex statistical state.

To solve the thermodynamic master equation, we first
have to solve the differential equation written in terms of
d(T) and from that obtain the solution ofCV8 (T). We finally
find1

d~T!5
T0d0

T~12d0!1T0d0
, ~20!

CV8 ~T!5CV08 S T0
T~12d0!1T0d0

D 25CV08 S d~T!

d0
D 2, ~21!

S8~T!5CV8 ~T!F 1

d~T!
1S 1

d~T! D
2

ln@12d~T!#G , ~22!

U8~T!5U081T0CV08
~T2T0!

T~12d0!1T0d0

5U081~T2T0!CV08 S d~T!

d0
D , ~23!

A8~T!5U082
T0CV08

d0
2
TCV08

d0
2 lnS T~12d0!

T~12d0!1T0d0
D

5U082
T0CV08

d0
2
TCV08

d0
2 lnS T~12d0!

T0

d~T!

d0
D , ~24!

whereCV08 , U08 , andd0 are the values ofCV8 , U8, andd at
the arbitrary reference temperatureT0, andd0 is calculated
using Eq.~17!.

These expressions have a finite limit forT→` for both
the positive and negative Gamma state. By expanding the
logarithm we obtain

lim
T→`

d~T!5 lim
T→`

CV8 ~T!5 lim
T→`

S8~T!50, ~25!

lim
T→`

A8~T!5 lim
T→`

U8~T!5U081
T0CV08

12d0
. ~26!

The low temperature limit though is different for both
distributions. For a positive Gamma state~G1! we find the
following limits for T→0:

lim
T→0

d~T!51, ~27!

lim
T→0

CV8 ~T!5
CV08

d0
2 , ~28!

lim
T→0

S8~T!52`, ~29!

lim
T→0

A8~T!5 lim
T→0

U8~T!5U082
T0CV08

d0
. ~30!

For a negative Gamma state~G2!, however, the solution of
the master equation in temperature encounters a singularity
at a temperatureT

*
.0. The singularity occurs when the de-

nominator in Eq.~20! is zero, i.e.,

T*52T0d0 /~12d0!. ~31!

TheT→T
*
limits in this case are

lim
T→T

*

d~T!5 lim
T→T

*

S8~T!5 lim
T→T

*

U8~T!

5 lim
T→T

*

A8~T!52`, ~32!

lim
T→T

*

CV8 ~T!5`. ~33!

Note that]CV8 /]T . 0 for all T in the case of aG1 distribu-
tion, and for allT.T

*
in the case of aG2 distribution.8

Another distinction between the positive and negative
Gamma state is the domain ofa, the intrinsic entropy func-
tion. One can prove that

2 1
2,a,0 for d,0~5G2!,

a,2 1
2 for 0,d,1~5G1!. ~34!

Although the positive Gamma state is compatible with
all the mathematical and physical restrictions we for-
mulated,1 it cannot be an exact physical solution at every
temperature. The reason is the behavior ofCV8 asT→0: from
a thermodynamical point of view, both the heat capacity of
the system and that of the reference state must tend to zero as
T→0, because of Nernst heat theorem9 ~S50 at T50!.
ThereforeCV8 must tend to zero asT→0 as well. This is
obviously not the case for both Gamma states. Therefore
even the positive Gamma state cannot be considered a physi-
cal statistical state for systems in the limitT→0. This restric-
tion in the applicability of the positive Gamma state is con-
nected with the emerging quantum character of the system in
the low temperature limit. However for systems in the liquid
or gas phase, theT→0 limit is never encountered, since at
constant volume there is a phase transition from a liquid or
gas with homogeneous density to a liquid or solid in equilib-
rium with a gas.

There is another important difference between the nega-
tive and positive Gamma state. The energy difference be-
tween the average,^V &, and the lower~or upper! limit of the
distribution V 0, given by1 y0 5 V 0 2 ^V & 5 2b0 /b1
5 2TCV8 /d, tends to2T0CV08 /„d0(1 2 d0)… asT→`. For a
negative Gamma state we find limT→`y0.0 while a positive
Gamma state yields limT→`y0,0. If we look at the tempera-
ture derivative of this difference, we find]y0 /]T
5 2T0

2CV08 /@T(12 d0)1 T0d0#
2, 0 forbothstates.Thus the

absolute differenceuy0u increases to a maximum for a posi-
tive Gamma state, whereasuy0u decreases to a minimum for a
negative Gamma state. This means that in the high tempera-
ture limit the corresponding left-skewed Gamma distribution
is more or less ‘‘squeezed.’’ This implies that the latter can
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only be a reasonable approximation up to a certain tempera-
ture. As soon as the average energy is approaching the upper
energy limit too much, the approximation of the real physical
statistical state by a negative Gamma state will break down.

Therefore, the negative Gamma state must be regarded
always as an approximation of the real statistical state of the
system, while the positive Gamma state, from a certain tem-
perature on, might be considered the real statistical state of
the system. An exact right-skewed Gamma distribution is
obtained1 for the potential energy distribution of a collection
of classical harmonic oscillators coupled to a temperature
bath, which is a good model for a solid in the classical
limit,10 i.e., T@\v0/k.

D. Approximated solutions of the thermodynamic
master equation

In this section we will describe different approximated
solutions of the thermodynamic master equation, Eq.~15!,
two of which are based on the assumption that the real sta-
tistical state is~very! close to a Gamma state, a perturbed
Gamma state condition~see also Fig. 1!.

The first approximation is theeffective Gamma state.1 It
provides the ‘‘closest’’ Gamma state solution to the real sta-
tistical state around the reference temperatureT0. The en-
tropy at the reference temperature is used to calculate the
effectived0* via Eq. ~18!, i.e., solving

S08/CV08 5a051/d0*1~1/d0* !2ln~12d0* !.

With this effectived0* Eqs.~20!–~24! can be used. It must be
noted that in the case of an exact Gamma state the values of
d0 obtained from Eqs.~17! and ~18! must be equal. In the
case of a perturbed Gamma state on the other hand both
equations will provide somewhat different values and Eq.
~18! is used to calculated0* as in this way the approximated
Gamma solution will reproduce the entropy and, hence, the
free energy of the system very efficiently. This effective
Gamma state proved to be a general good approximation for
liquid water and methanol.1

The second approximated solution of the thermodynamic
master equation is theconstant alpha approximation.1 Here
it is assumed that the last term in Eq.~15! is negligible with
respect to the other terms. This means that]a/]T;0 and,
hence,a(T)>a0. This simplifies the master equation consid-
erably, and we obtain

CV8 ~T!5CV08 S TT0D
l0

, ~35!

U8~T!5U081
CV8 ~T!T

l011
2
CV08 T0
l011

, ~36!

A8~T!5U082
CV08

l011 Fa0TS TT0D
l0

1T0G , ~37!

where

l05
1

a0
. ~38!

This approximation turned out to be an excellent description
for liquid water and methanol over a large temperature
range.1 However, it can not be a global solution, since in the
limit of infinite temperaturea must tend to21

2, see Eq.~14!.
Note that this approximation is, in principle, independent
from the choice of the potential energy distribution function
following from the generalized Pearson system.

In this paper we introduce a new approximation for per-
turbed Gamma state conditions, theconfined Gamma state,
based on a double state model. In Appendix B we derive the
general equations for the ideal reduced free energy, entropy,
energy, and heat capacity, based on the division of phase
space into two subspaces. By assuming that one of these
subspaces is very unstable~i.e., the free energy of that part of
phase space is much higher than the free energy of the other
part, meaning that the system is completely confined within
the stable part!, and assuming that the stable subspace is
exactly described by a Gamma state~G! we obtain

CV8 ~T!5CV
G8~T!, ~39!

S8~T!5SG8~T!1k ln e, ~40!

U8~T!5UG8~T!, ~41!

A8~T!5AG8~T!2kT ln e, ~42!

r~V !5rG~V !, ~43!

where the ‘‘G’’ superscript refers to the pureG equations
@Eqs. ~21!–~24! and ~7!# and e is the volume fraction of
phase space corresponding to theG region. Note that onlyS8
andA8 are corrected for the presence of the other unstable
part of phase space.

As already mentioned this approximation is only appli-
cable in the case of a perturbed Gamma state. Such an ap-
proach can be considered than as a more sophisticated
Gamma state approximation than the effective Gamma state.
However, it must be noted that in the infinite temperature
limit this new approximation cannot be valid, because in this
limit the difference in stability of the two states in reality will
tend to zero. In this approach thoughS8 tends to a constant
different from zero. The effective Gamma state approxima-
tion on the contrary still provides a proper behavior in the
infinite temperature limit.

E. Application to small molecules

From a practical point of view, the measurable quantities
are thereducedproperties instead of the ideal reduced prop-
erties, i.e., with respect to a reference system with no inter-
molecular interaction~physical ideal gas!. The reduced free
energyAr can be written in general as1

Ar5A82A085kT ln^ebn&2kT ln^ebn0&0 , ~44!

wheren0 includes only semiclassical intramolecular interac-
tions and quantum vibrations. For small molecules like water
and methane, however, the intramolecular interactions are
not present or can be neglected, and thereforen0 only con-
tains the quantum vibrational energyE0.
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For small molecules with a large seperation between the
vibrational energy levels for a large range of temperature Eq.
~44! becomes1

Ar5kT ln^ebn&2E0
0 ~45!

with E0
0 the total vibrational groundstate energy of the ideal

gas, which is independent from the temperature. In this case
thereforeSr5S8, CV

r 5CV8 , andU
r5U82E0

0 .
For small molecules where excited vibrational states are

accessible, assuming that in the real system the vibrational
energy is independent from the semiclassical coordinates,
Eq. ~44! reduces to

Ar5kT ln^ebF& ~46!

with F the intermolecular interaction energy, as in this case

^ebn&5^ebF&^ebE& and ^ebE&5^ebE0&0 where E is the
quantum vibrational energy of the real system. We can thus
use the quasi-Gaussian entropy theory to express^ebF& in
terms of^F&5Ur and central moments ofF, and to express
the thermodynamic master equation in reduced properties.
Hence in this case we can apply the equations of the previous
section directly to the reduced properties.

III. RESULTS

Here we present a survey for water and methane at vari-
ous densities, ranging from the almost ideal gas to typical
liquids. We focus mainly on the reduced entropy and iso-
choric heat capacity, since they are the most sensitive quan-
tities andUr5*CV

r dT andAr52*SrdT are determined by
these quantities up to a constant. Therefore, a consistent pre-
diction of bothSr andCV

r means that alsoDUr andDAr will
be predicted with comparable accuracy. Moreover, we will
use the intrinsic entropy functiona to judge the quality of
the various predictions~effective Gamma, confined Gamma,
and constant alpha approximation!.

In the previous article1 we showed that for water we can
calculate the reduced properties via Eq.~45!, since the first
vibrational energy gap is much larger thankT, at least up to
1000 K. For methane on the contrary, because of
anharmonicity,11,12 already at moderate temperature excited
states are accessible. In this case we assume the vibrations to
be independent from the environment and therefore we can
calculate the reduced properties via Eq.~46!.

In all cases we calculated the excess quantities using
tabulated values of the entropy and, if available, the isoch-
oric heat capacity. If not available, the heat capacity was
calculated from the entropy viaCV

r 5T(]Sr /]T)V . As refer-
ence state we chose for both systems a density~or pressure!
close enough to the ideal gas condition for the whole tem-
perature range we investigated. For water we used for that
purpose data measured at 0.01 bar, for methane we used a
density of 0.001 mol/dm3. The molar reduced entropy was
calculated as

Sr~T,r!5S~T,r!2S0~T,r0!1R ln
r

r0
, ~47!

where the last term on the right-hand side is the correction of
the ideal gas entropy due to the change of density.

The experimental data for water were taken from
Schmidt.13 The covered part of ther,T phase diagram is
represented in Fig. 2. The data on the liquid side are severely
limited at high temperature because of the pressure, as the
density has to be fixed; experimental data are given by
Schmidt up to 1000 bar, and this especially affects the liquid
region ~see, for example, Obert and Gaggioli9 for the pVT
surface of water!. We therefore also included high-pressure
data~100–10 000 bar! from Burnhamet al.14 Previously1 we
presented data for the reduced free energy at 55.32 mol/dm3

~the largest density in Fig. 2! over a large temperature range,
using liquid-vapor equilibrium data. However we had to
make several corrections, which were difficult to evaluate
within 0.5 kJ/mol at temperatures above;500 K, say.
Hence, the numerical calculation ofSr andCV

r from these
data~basically the first and second derivative! is somewhat
difficult at high temperatures. We therefore decided to use
only the data from Burnhamet al. and Schmidt. To reduce
the random noise ina, the heat capacity data at low density
were calculated from a sixth-order polynomial least square
fit of Sr . At high density the heat capacity data were calcu-
lated directly fromSr , separately for each data source. How-
ever, the input data for the predictions atT0, i.e.,CV

r , a, and
]CV

r /]T were also calculated from a sixth-order polynomial
fit of the merged entropy data set.

For methane we used the tables of Anguset al.15 These
tables were calculated on the basis of a 32-parameter equa-
tion of state, which was used also successfully for air, para
hydrogen, nitrogen, oxygen~see Reynolds16! and Lennard-
Jones fluids~see Nicolaset al.17!. Values ofCV

r could be
extracted directly from the tables, values of]CV

r /]T were
calculated numerically aroundT0. The covered part of the
r,T diagram is represented in Fig. 3. Note that compared to
water a relatively much larger temperature range is covered,
taking into account the difference in critical temperature be-

FIG. 2. The covered part of ther,T diagram of water, based on data from
Schmidt ~Ref. 11! ~3! and Burnhamet al. ~Ref. 12! ~s!. C denotes the
critical point, andG, L, andF denote gas, liquid, and fluid phase~conditions
above the critical temperature!, respectively.
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tween water~Tc5647.3 K! and methane~Tc5190.6 K!.
Only for low density methane the exact Gamma state

formulas@Eqs.~20!–~24!, using the actual value of]CV
r /]T

at T0!# gave identical results to the effective Gamma state
equations@Eqs. ~20!–~24! with the effectived0* calculated
from Eq. ~18!#. All other gas and typical liquid densities can
thus be considered, if applicable, asperturbedGamma states.
We therefore use the effective Gamma state equations for all
densities and the constanta and the confined Gamma ap-
proximations only for the more dense liquidlike systems. We
will focus on low density water and methane first, then we
will investigate high density systems, and finally we describe
the behavior close to the critical point.

A. Low density water

In Fig. 4 the experimental values ofSr andCV
r are given

for water, together with the effective Gamma predictions.

For low-density water up to;0.4 mol/dm3 the effective
Gamma state is an excellent description for bothSr andCV

r

even for temperatures up to 1000 K. At densities above 1.0
mol/dm3 ~50.018 kg/dm3! there is a small but distinct devia-
tion starting at;800 K. All these low-density gases are de-
scribed by negative Gamma states~d0* , 0 atT0!. As already
mentioned the negative Gamma state can be considered only
as an approximation of a more complex statistical state, valid
up to a certain temperature. While initially, close to the co-
existence line, the energy distribution is left-skewed, at a
certain temperature it will become symmetric and for even
higher temperatures it will transform itself into a right-
skewed distribution. This is especially clear from the behav-
ior of a in T, see Fig. 5. We see that close to the coexistence
line, low-density water is described almost exactly by a
negative Gamma state. For densities up to;0.4 mol/dm3 this
holds for a temperature range of about 200 K. Above a cer-
tain temperature, the behavior ofa starts to deviate from that
of an effective negative Gamma state. We see that for all
densities shown the reala crosses the line21

2 at ;700 K,
followed by a very shallow minimum of about20.6 to20.7
~corresponding tod;0.3–0.4!, indicating that r(y) has
transformed itself into a slightly right-skewed distribution.
Above 1000 K, the thermodynamics is basically indistin-
guishable from that of the Gaussian state. By increasing the
density to 5 mol/dm3 we see that only the temperature range
of ‘‘perfect’’ negative Gamma behavior is reduced, giving
rise to a final 0.7 J mol21 K21 deviation inSr at 1100 K for
the last density. Also note that for the lowest densities the
values ofa close to the coexistence line are quite small
~;20.25!, indicating that the initial distribution is rather
asymmetric.

B. Low density methane

A similar behavior is observed for low-density methane,
but in details different because of the different type of mo-

FIG. 3. The sampled part of ther,T diagram of methane.C denotes the
critical point, andG, L, F, andS denote gas, liquid, fluid, and solid phase,
respectively.

FIG. 4. Experimental results and effective Gamma predictions ofSr and
CV
r for low-density water. Legend:Sr experimental~s! and prediction~—!;

CV
r experimental~n! and prediction~---!. The values at the reference tem-

peratureT0 are filled symbols; the critical temperature is denoted by an
arrow.

FIG. 5. Experimental results and effective Gamma predictions ofa for
low-density water. Legend:a experimental~L! and prediction~—!. The
values at the reference temperatureT0 are solid symbols; the critical tem-
perature is denoted by an arrow.
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lecular interactions. In Fig. 6 the experimental values and the
effective Gamma predictions ofSr and CV

r are presented,
using aT0 close to the coexistence line. First of all we see
that in the first 60 K, say, starting from the coexistence line,
the effective Gamma is in good agreement with the experi-
mental entropy data for all densities presented, although the
deviations for the heat capacity are larger. Furthermore, it is
clear that, in contrast with water, already at the lowest den-
sity there is a distinct deviation at higher temperature. Just
like water, the deviations are more pronounced at higher
densities. Interestingly, if we look at the temperature range
DT within which the entropy is more or less well described,
we find that forr51.0–5.0 mol/dm3 ~50.016–0.080 kg/dm3!
the normalized quantityDT/Tc for methane~0.26–0.32! is
virtually the same as for water~0.31–0.35!. The behavior of
a is given in Fig. 7. We see that close to the coexistence line
the system is also described by a negative Gamma state,
although less asymmetric than water~a;20.4!. We see also
in this case that there is a transition from a moderately left-
skewed distribution via a symmetric towards a quite asym-
metric right-skewed one~a;23, corresponding tod;0.98!.
If we choose a higher reference temperature~T05420 K! we
obtain for all gas densities presented a positive Gamma state,
which is perfectly able to describe the high temperature data
~Sr ,CV

r as well asa! over a large range~250–600 K!, see
Figs. 6 and 7. Of course below a certain temperature the
agreement breaks down. From Figures 6 and 7 it is clear that
after the transformation from a left to a right-skewed distri-
bution, a stable positive Gamma state is obtained. The same
is true also for low-density water, although there the stable
positive Gamma state is almost a Gaussian state~a;20.5!.

C. High density water

Next we will focus on high-density systems. For liquid
water the results of the effective Gamma, constant alpha and

the confined Gamma equations are compared to experimental
data in Figs. 8 and 9 for densities ranging from 0.55 g/cm3 to
0.997 g/cm3.

For all four densities the confined Gamma predictions
agree very well with both the experimental entropy and heat
capacity data, even for a temperature range of 500 K. Both
the effective Gamma and the constant alpha approximations
reproduce the entropy data over 200–300 K very well, but
deviate somewhat for larger temperature ranges. It is clear
that the quality of the constant alpha approximation im-
proves with increasing density. The experimental heat capac-
ity data from Schmidt and Burnhamet al. are given sepa-
rately, to indicate the noise and discrepancies in the
experimentalCV8 data, especially at lower density, when cal-
culated directly from the entropy. For the heat capacity the
effective Gamma approximation is less accurate than the
confined Gamma one, while for higher densities the constant
alpha approximation is comparable. This confirms our previ-

FIG. 6. Experimental results and effective Gamma predictions ofSr and
CV
r for low-density methane. Legend:Sr experimental~s! and predictions

with low T0 ~—! and highT0 ~—!; CV
r experimental~n! and predictions

with low T0 ~---! and highT0 ~---!. The values at both reference tempera-
turesT0 are denoted by solid symbols; the critical temperature is denoted by
an arrow.

FIG. 7. Experimental results and effective Gamma predictions ofa for
low-density methane. Legend:a experimental~L! and predictions with low
T0 ~—! and highT0 ~---!. The critical temperature is denoted by an arrow;
theT0’s by solid symbols.

FIG. 8. Experimental results and predictions ofSr for high-density water.
Legend:Sr experimental~s! and effective Gamma~---!, confined Gamma
~—!, and constant alpha predictions~—!. The value at the reference tem-
peratureT0 is denoted by solid symbols.
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ous findings on liquid water1 at 55 mol/dm3. Maybe the
‘‘waves’’ in the experimentalCV

r data from Burnhamet al.
are caused by the particular choice of the analytical shape of
the equation of state they used to produce their tables. For all
densities the confined Gamma approximation seems to be the
best curve through the experimental data. In Fig. 10 the ex-
perimental values ofa are presented with the various predic-
tions. The values ofa were calculated separately for each
source. Even fora the confined Gamma prediction is about
the best curve through the~noisy! experimental points for
every density. We see that with increasing densitya be-
comes more constant in temperature. This explains why the
quality of the constant alpha approximation is enhanced with
density. For 55 mol/dm3 we see that this constant alpha ap-
proximation is almost exact.

In Table I we present the parameters of the effective
Gamma and confined Gamma state. Note that in the tables

we give the molecular phase-space fractionē5e1/N, with N
the total number of molecules in the system. As an illustra-
tion of the errors in these parameters the values ofCV

r and
]CV

r /]T were also calculated via a second-order polynomial
fit on the mergedCV

r data from Schmidt and Burnhamet al.,
instead of via a sixth-order polynomial fit on the mergedSr

data. This gave a second set of parametersd0, ē, andd0* at
T0, see the values in Table I between parentheses. Compar-
ing the two sets we see that they are quite close. It is also
clear that the confined Gamma state at the two lowest liquid
densities is not completely defined: the value ofd0 is very
close to zero, being either negative or positive depending on
the precise input data. In fact, these exact Gamma states are
almost Gaussian ones.

To illustrate the effect of the density on the energy dis-
tribution we calculated the values ofd, d* , anda at a com-
mon temperature, namely 653 K, see Table II. In addition,
the values ofē were calculated again and matched very well
the values evaluated atT0 ~Table I!, as the volume fraction of
occupied phase space should be temperature independent.
Here we must stress that for this temperature the value of
]CV

r /]T at 55 mol/dm3 was more difficult to evaluate with
the same precision than at lower densities, because of the
large noise in the experimental data. Remember that for this
density the temperature is;350 K away from the coexist-
ence line, and the experimental data are measured at pres-
sures exceeding 8000 bar. A worse evaluation of]CV

r /]T
will especially influence the calculation ofe5exp@(Sr

2SGr)/k]. Anyway, the values ofd of the confined Gamma
state clearly increase with density, the system at 30 mol/dm3

still being represented by a negative Gamma state, but for all
other densities by a positive one. The increase ofd with
density is a reflection of the fact that the potential energy
distribution in water becomes more asymmetric by increas-
ing the density, since the average intermolecular distances
are somewhat reduced, which gives rise to more unfavour-
able interactions. In this way the right~high energy! tail of
r(y) becomes more pronounced, while the distribution close
to the mode is only little affected since water, because of its
very directed and strong interactions, is able to maintain on
average a reasonable low-energy structure on increasing den-
sity. At the same time we see the value ofē decreasing from
;40% to;10% of phase space, as expected from the fact
that the number of configurations with a not too unfavour-
able potential energy will decrease with density. For the

FIG. 9. Experimental results and predictions ofCV
r for high-density water.

Legend:CV
r experimental from Schmidt~Ref. 11! ~n! and Burnhamet al.

~Ref. 12! ~,! and effective Gamma~---!, confined Gamma~—!, and con-
stant alpha predictions~—!. The value at the reference temperatureT0 is
denoted by solid symbols.

FIG. 10. Experimental results and predictions ofa for high-density water.
Legend:a experimental from Schmidt~Ref. 11! ~L! and Burnhamet al.
~Ref. 12! ~h! and effective Gamma~---!, confined Gamma~—!, and con-
stant alpha predictions~—!. The value at the reference temperatureT0 is
denoted by solid symbols.

TABLE I. Gamma state parameters of high-density water atT0.

r ~mol/dm3! T0 ~K! d0
a

ē a d0*
a

30.38 653.0 20.13~20.23! 0.42 ~0.37! 0.44 ~0.48!
37.24 613.0 20.26~0.22! 0.21 ~0.35! 0.63 ~0.66!
42.69 563.0 0.30~0.44! 0.24 ~0.33! 0.72 ~0.72!
49.00 513.0 0.34~0.49! 0.15 ~0.24! 0.77 ~0.76!
55.32 313.0 0.49~0.57! 0.09 ~0.14! 0.77 ~0.77!

aCalculated from a sixth-order polynomial fit onSr ; values between paren-
theses are calculated from a second-order fit on crude experimentalCV

r

data.
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same reason the value of the effectived* at 653 K~Table II!
increases with density, partly to correct for the increasing
extra termk ln e in the entropy due to the growing unstable
part of phase space. Basically, in the effective Gamma state
the value ofM3}]CV

r /]T is adapted to reproduce the en-
tropy at T0, keeping fixed the value ofM2}CV

r . Further-
more, the values ofuau increase with density, indicating a
larger ‘‘resistance’’ of high density systems for increasing
the order when the temperature is lowered@see also Eq.
~13!#. This means that at comparable temperature systems at
higher density already have a more collapsed structure
which, decreasing the temperature, cannot be easily opti-
mized.

D. High density methane

For high density methane the results of the predictions of
Sr andCV

r are presented in Figs. 11 and 12, using the effec-
tive Gamma, the confined Gamma and the constant alpha
approximations. AsT0 we choose a temperature above which
the behavior ofCV

r was ‘‘regular’’ i.e., decreasing with tem-
perature~see Fig. 12!.

In Fig. 11 we see that all three approximations agree
very well with the experimentalSr data, even for tempera-
tures;200 K lower thanT0. The only exception is the con-
stant alpha approximation at 30 mol/dm3, which is only valid
up to;100 K belowT0. For the heat capacity, especially the

confined Gamma approximation reproduces the experimental
data very well aboveT0, and just as in the case of water for
higher densities, the constant alpha approximation is also
very accurate. Similar to water we see that the effective
Gamma state, although very good for the entropy, shows
more deviations for the heat capacity. In Fig. 13 the experi-
mental values ofa and the different predictions are given.
We see that in all cases the confined Gamma approximation
gives very good results over a large temperature range; at
higher density also the constant alpha approximation works
well. Remember thata, being the ratio of two quantities, is
the most sensitive property. We see that just as with water
the stability ofa is enhanced with density.

In Table III the parameters of the confined and effective
Gamma states atT0 are given and in Table IV the values of
these parameters are presented at a common temperature
~320 K!. First of all it is clear that, although in absolute terms
the densities of ‘‘regular’’ liquid water and methane are
comparable~starting at;30 mol/dm3!, the reduced densities
r/rc are much larger for methane than for water~see Tables
II and IV!. Here the critical densities arerc510.11 mol/dm3

for methane15 and 17.51 mol/dm3 for water.13 This is ~prob-
ably! caused by the much weaker interactions in methane.

Secondly we see that the values of bothd andd* ~Table
IV ! are much larger than for water~Table II!, indicating that
the potential energy distribution in methane is much more

TABLE II. Gamma state parameters of high-density water at 653 K.

r ~mol/dm3! r/rc
a d~653!b ē (653)b d* ~653!b a~653!b

30.38 1.74 20.23 0.37 0.48 20.75
37.24 2.13 0.15 0.32 0.66 20.96
42.69 2.44 0.28 0.26 0.74 21.11
49.00 2.80 0.36 0.20 0.80 21.26
55.32 3.16 ;0.57 ;0.22 0.84 21.40

aReduced density, using a critical densityrc of 17.51 mol/dm3 ~Ref. 11!.
bValues of the double state and effectived, the molecular phase-space fractionē, anda calculated atT5653.0
K from a second-order fit on crude experimentalCV

r data.

FIG. 11. Experimental results and predictions ofSr for high-density meth-
ane. Legend:Sr experimental~s! and effective Gamma~---!, confined
Gamma~—! and constant alpha predictions~—!. The value at the reference
temperatureT0 is denoted by solid symbols.

FIG. 12. Experimental results and predictions ofCV
r for high-density meth-

ane. Legend:CV
r experimental~n! and effective Gamma~---!, confined

Gamma~—! and constant alpha predictions~—!. The value at the reference
temperatureT0 is denoted by solid symbols.
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asymmetric i.e., quite ‘‘thin’’ around the mode and with a
long tail on the right~high energy! side. This stronger asym-
metry can be explained by the fact that the intermolecular
interactions in methane are of much shorter range and the
attractive interactions are much weaker~compared to the re-
pulsive ones! than in water. Hence, at relatively high density
the weight of the high energy values in methane is larger
than in water, where the dominating long-range electrostatic
interactions create more or less a balance between attraction
and repulsion, giving rise to a more symmetric distribution.

Also we see that the values of the molecular volume
fraction ē of the stable region in Tables III and IV are in
reasonable agreement, decreasing from;60% to;30% of
phase space. These values are significantly larger than for
water. The reason for this could be simply the difference in
intermolecular interactions. Methane can be represented very
well by a monoatomic van der Waals liquid with virtually no
directional preferences,7,18 whereas water forms hydrogen
bonded structures with very directed interactions. Because of
this very strong ordering in water the fraction of configura-
tions with a ‘‘favorable’’ energy~inside the confined Gamma
state! is much less than in the case of methane, where the
intermolecular distance is the determining factor and the an-
gular orientations are much less important.

Interestingly, we see that by increasing the density the
values ofd andd* are actually decreasing. This indicates that
in contrast with water the second moment of the energy dis-

tribution of methane is increasing faster than the third one
~remember thatd5M3/2kTM2 , see Eqs.~9! and ~17!, i.e.,
the distribution is getting ‘‘fatter’’ around the mode, instead
of enhancing the asymmetry. We also see that the absolute
value of a is decreasing with density; henceCV

r ~}M2! is
increasing faster than the order in the system (2 Sr); in wa-
ter we see the opposite. Probably for a simple system like
methane the order can be hardly increased~Sr be decreased!
with density as the intermolecular distance is the dominant
factor for the potential energy. Water, on the other hand, can
still optimize the structure much more at high density, as the
orientation of the molecules is also very important. From this
it follows that for liquids consisting of molecules of interme-
diate polaritya might be quite constant in density.

E. Intermediate densities

For intermediate densities we find a more complex be-
havior of the thermodynamic properties. For water approxi-
mately up to the critical point the behavior ofCV

r is regular,
i.e., decreasing with temperature. Around the critical density
though we find thatCV

r starts to behave differently; close to
the coexistence line it increases with temperature but after
some temperature interval it behaves regular again~see for
example the initial behavior ofCV

r at 30 mol/dm3, Fig. 9!.
For methane the behavior ofCV

r above the critical density
~10 mol/dm3! to ;30 mol/dm3 is given in Fig. 14. We see
that only above 30 mol/dm3 there is a regular behavior at
high temperature within the range of experimental data.
Clearly, the behavior around the critical point cannot be de-
scribed by a simple Gamma state~being either effective
Gamma or confined Gamma!. This means that neither the
entire phase space can be described by one single~effective!
Gamma state, nor the system is confined within a small
stable part of phase space~confined Gamma!. Maybe in such
conditions a full double state model, using two Gamma
states, is able to describe properly the behavior of the sys-
tem.

FIG. 13. Experimental results and predictions ofa for high-density meth-
ane. Legend:a experimental~L! and effective Gamma~---!, confined
Gamma~—!, and constant alpha predictions~—!. The value at the reference
temperatureT0 is denoted by solid symbols.

TABLE III. Gamma state parameters of high-density methane atT0.

r ~mol/dm3! T0 ~K! d0 ē d0*

30.0 320.0 0.87 0.64 0.92
32.5 280.0 0.83 0.47 0.90
33.5 280.0 0.81 0.47 0.89
35.0 240.0 0.72 0.28 0.87

TABLE IV. Gamma state parameters of high-density methane at 320 K.

r ~mol/dm3! r/rc
a d~320!b ē (320)b d* ~320!b a~320!b

30.0 2.97 0.87 0.64 0.92 21.86
32.5 3.21 0.84 0.61 0.89 21.70
33.5 3.31 0.76 0.40 0.88 21.62
35.0 3.46 0.71 0.34 0.86 21.51

aReduced density, using a critical densityrc of 10.11 mol/dm3 ~Ref. 13!.
bValues of the double state and effectived, the molecular phase-space fractionē, anda calculated atT5320 K
from the experimentalSr andCV

r data.
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IV. DISCUSSION AND CONCLUSIONS

In this paper we presented an investigation of the appli-
cability of the quasi-Gaussian entropy theory on two very
different systems, water and methane. For densities ranging
from the almost ideal gas to dense liquids we calculated ex-
perimentalreducedthermodynamic properties~basically en-
tropy Sr , heat capacityCV

r , and the intrinsic entropy func-
tion a5Sr /CV

r ! and compared them with various predictions
following from the theory. If the statistical state of the sys-
tem is a weakly perturbed Gamma state, the effective
Gamma and the confined Gamma approximations can be
used. A third approach is the constant alpha approximation.
We showed in this paper that a large part of ther, T diagram
of water and methane can be considered as weakly perturbed
Gamma states, where the effective Gamma or confined
Gamma equations give good results. This is schematically
illustrated in Fig. 15, giving the effective Gamma regions.

For low density systems we find close to the coexistence
line a weakly perturbednegativeGamma state~due to the
fact that at this low density the repulsive interactions are
hardly present and only attractive interactions, i.e., negative

potential energies, occur!. At higher temperatures the repul-
sive interactions are becoming more important, and within a
small temperature interval the system transforms itself into a
weakly perturbedpositiveGamma state, which can be de-
scribed accurately by an effectiveG1 state. Probably this
effective Gamma state is able to describe the physics of the
system at every temperature above theG2→G1 transition.
Therefore for typical gas densities the entire phase-space can
be described by one effectiveG state~e'1!. For very dilute
systems the statistical state of the system is an exact negative
Gamma state at every temperature and in the limit of infinite
dilution the left-skewed Gamma distribution will become a
delta function @i.e., a ~negative! Gamma distribution with
M3}b1}d→0 and alsoCV

r } M2→0#. For larger densities
the temperature range of applicability of the effectiveG2

state decreases, while the range of the high-temperature ef-
fectiveG1 state increases.

For densities close to the critical density, the effective
G1 state is not able to describe the behavior of the system
any more. This can be explained in terms of the double state
model: phase space can be split into two regions of still
comparable free energy, where one of the regions is de-
scribed by an exact Gamma state, but the second one has an
unknown statistical state. Perhaps it is possible to describe
also this second region by another Gamma state, but this is
something which has to be investigated more thoroughly.

For densities beyond the critical density this second re-
gion of phase space becomes very unstable with respect to
the Gamma state, i.e., the system is completely confined
within one part of phase space, the confined Gamma region.
Probably this confinement reflects the appearing molecular
restrictions of the system. We see that the volume fraction of
this stable part of phase space~e! decreases with density, as
with increasing density the fraction of the very unstable con-
figurations is enlarged very much. For methane the confined
Gamma states areG1 ones, with a larged ~;0.7 to 0.9!,
while for water the exact Gamma state is either slightly nega-
tive ~lowest density! or moderately positive~d;20.2 to 0.5!.
This difference in asymmetry of the potential energy distri-
bution is caused by the difference in intermolecular potential
~short range, only weakly attractive van der Waals interac-
tions in methane and long-range electrostatic interactions in
water, where the attractive interactions are of the same mag-
nitude as the repulsive ones!.

This partitioning explains the fact that the entire phase
space in the fluid-liquid regime can be described by a per-
turbed Gamma state. The effectiveG1 state therefore is able
to reproduce the entropy very well~and, hence, the free
energy1! but less accurately the heat capacity. An interesting
feature of these fluid-liquid systems is the fact that the intrin-
sic entropy functiona is becoming very stable in tempera-
ture for high density systems. Therefore, in this range of
densities also the constant alpha approximation gives very
good results.

For solids with, in general, an even higher density, we
find in the classical limit~‘‘ideal’’ classical harmonic solid!
again an exactG1 state.1 This exact ‘‘harmonic’’G1

h state
has a nonconverging free energy, as the atoms may be infi-

FIG. 14. Experimental results ofCV
r for methane beyond the critical density.

FIG. 15. A schematic phase-diagram of water~methane! with an indication
of the regions where one of the two effective Gamma states~G1 or G2! is
applicable.c denotes the critical point.
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nitely far apart. In a real monatomic solid, behaving almost
like a classical harmonic solid~i.e.,CV'3R, CV

r ' 3
2 R and

]CV
r /]T ' 0!, this is obviously not the case. Indeed in a real

solid the system is confined into a small part of phase space,
just as in the case of liquids. The statistical state of this small
part of phase space is a converging state, well approximated
by theG1

h state. The value ofe is likely to be even smaller
than for dense liquids.

Interestingly the idea of ‘‘confinement’’ of a liquid sys-
tem into a small part of phase space is also expressed in
several other models of the liquid state. One of the simplest
cell models is the Lennard-Jones and Devonshire model,18

where each molecule is confined to its own ‘‘cell’’ and the
configuration partition functionQ is split into partition func-
tions of single occupancy and a disorder parameter. The mol-
ecules are thought to move in the field produced by the
neighbouring ones as if they were fixed at the centers of their
cells. Another model is the one proposed by Eyring
et al.,19–21 where the degrees of freedom of the system are
arbitrarily divided into ‘‘crystallike’’ and ‘‘gaslike’’ ones.

In general, we can say that in this paper we have shown
that in a large part of ther, T phase diagram there is a
general description of thermodynamic properties in terms of
simple Gamma states~effective Gamma or confined
Gamma!. It is also clear that the temperature range of appli-
cability is very large: in many cases excellent predictions of
various properties over a range of more than 500 K are pos-
sible. This means that for different densities properties can
be measured at relatively moderate conditions, not very far
from the coexistence line, and extrapolated to for example
supercritical conditions. This could therefore be used to con-
struct an equation of state valid over a large temperature
range. Existing equations of state can be examined for con-
sistency with our description. It is also clear that the descrip-
tion is valid for molecules with very different chemical prop-
erties, like water~very polar! and methane~very apolar!.
Furthermore, the theory can be applied to the overall prop-
erties of mixtures as well, and can also be formulated for
partial molar properties. Presently we are investigating the
partial molar properties of a solute at infinite dilution.
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APPENDIX A: HIGH TEMPERATURE LIMIT OF a

The intrinsic entropy functiona can be expressed in
properties of the elementary subsystem as1

a~b!52
ln@11m2~b2/2! !1m3~b3/3! !1•••#

m2b
2 , ~A1!

wheremn is thenth central moment of the potential energy
fluctuation De within each elementary subsystem. Since
we are interested in the limitT→`, i.e.,b→0 we must know
the behavior ofmn in T. In general, we can decompose
the energy distribution function asr~De!5exp~2be!Ve/q,
whereV~e! is the microcanonical partition function at energy
e, q is the usual canonical partition function of the elemen-
tary system and exp~2be! is the Boltzmann factor.10 Since
V~e! is temperature independent and the Boltzmann factor
tends to one asb→0 we find

lim
b→0

mn5 lim
b→0

*~De!nV~e!exp~2be!de

*V~e!exp~2be!de

5
*~De!nV~e!de

*V~e!dDe
. ~A2!

This means that the moments~if existing! reach a final value
at infinite temperature. The assumption that these moments
exist is generally accepted in perturbation theory see, for
example, Zwanzig22 or Hansen and McDonald.7 Therefore,
since all moments reach a final finite value, the argument of
the logarithm in Eq.~A1! tends to one, and by expanding we
find

lim
b→0

a~b!52 1
2. ~A3!

It still depends on the sign ofm3 from which side this limit-
ing value is reached. Ifm3,0, i.e., a left-skewed distribution,
the limit is approached from the right, and vise versa for
right-skewed distributions.

APPENDIX B: DOUBLE STATE MODEL

In this appendix we introduce the basic idea of a parti-
tioning of phase space into two different regions.

The ideal reduced free energy can be written as1

A852kT ln Q852kT ln
Q

Q0
, ~B1!

whereQ andQ0 are the partition functions of the system and
the reference state andQ8 is the reduced partition function. If
we ~arbitrarily! subdivide the phase space into two regions,
called ‘‘a’’ and ‘‘ b’’, we get

Q5Qa1Qb ~B2!

and a similar expression forQ0. Hence, we can rewrite Eq.
~B1! as

A852kT lnSQa

Q0
a

Q0
a

Q0
1
Qb

Q0
b

Q0
b

Q0
D

52kT ln@ee2bAa81~12e!e2bAb8#, ~B3!

wheree5Q0
a/Q0 is the volume-fraction of phase space be-

longing to thea region. This volume-fraction is temperature
independent, since the reference state~with no interactions
and no vibrations! can be regarded as a system at infinite
temperature, as the effect ofV →0 is the same asb→0.
Therefore Q0 is just the phase-space volume. Further
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Aa852kT ln Qa/Q0
a is the ideal reduced free energy of thea

region,Ab8 is the ideal reduced free energy of theb region.
We can obtain the other thermodynamic properties using

S85(]A8/]T)V ,U85A81TS8, andCV8 5 (]U8/]T)V . This
yields

S85k ln@ee2bAa81~12e!e2bAb8#

1
ee2bAa8Ua81~12e!e2bAb8Ub8

TQ8
, ~B4!

U85
ee2bAa8Ua81~12e!e2bAb8Ub8

Q8
, ~B5!

CV85
ee2bAa8CV

a81~12e!e2bAb8CV
b8

Q8

1
ee2bAa8~Ua8!1~12e!e2bAb8~Ub8!2

kT2Q8

2
1

kT2
H ee2bAa8Ua81~12e!e2bAb8Ub8

Q8
J 2

~B6!

with

Q85ee2bAa81~12e!e2bAb8. ~B7!

The energy distribution function of the entire phase space is
given by

r~V !5
ee2bAa8ra~V !1~12e!e2bAb8rb~V !

Q8
~B8!

as can be checked easily by calculating^exp~bV !& and real-
izing that ^exp~bV !&a2[exp(bAa8) and ^exp~bV !&b
[exp(bAb8), where^•••&a and ^•••&b are ensemble averages
in thea andb region.

If the free energy of theb region is much higher than the
free energy of thea region, then~12e!exp(2bAb8) is neg-
ligible with respect toe exp(2bAa8), which means that the
system is completely confined into thea region. If, further-
more, we assume that the statistical state of thea region is a
Gamma state, Eqs.~B3!–~B6! can be simplified to the
confined Gammaequations:

A85AG82kT ln e, ~B9!

S85SG81k ln e, ~B10!

U85UG8, ~B11!

CV85CV
G8 , ~B12!

whereCV
G8 , SG8, UG8, andAG8 are given by Eqs.~21!–~24!.

We see that in this case the entropy is just the entropy of an

exact Gamma state with a constant temperature independent
shift. Moreover, for the free energy there is a correction
term. With the knowledge ofU08 , CV08 , ]CV08 /]T, andS08 at
the reference temperatureT0 one can calculate the phase-
space volume fractione, using Eq.~B10!.

Within the same approximation we find that Eq.~B8!
simplifies to

r~V !5rG~V !, ~B13!

where rG~V ! is the Gamma distribution of theG region,
implying that this approach corresponds to perturbed Gamma
state conditions, in the whole phase space.

In molecular terms the confined Gamma region probably
for a large part corresponds to ‘‘ordered’’ molecular clusters
or structures, while the other part of phase space corresponds
to high-energy configurations.
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